Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2121-2134.doi: 10.3864/j.issn.0578-1752.2022.11.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Water-Saving Irrigation on Grain Yield and Quality: A Meta-Analysis

MENG Yi1(),WENG WenAn1,CHEN Le1,HU Qun1,XING ZhiPeng1,WEI HaiYan1,GAO Hui1,HUANG Shan2,LIAO Ping1(),ZHANG HongCheng1()   

  1. 1Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Industrial Engineering Research Center of High Quality Japonica Rice/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu
    2Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Jiangxi Agricultural University, Nanchang 330045
  • Received:2021-08-23 Accepted:2021-11-04 Online:2022-06-01 Published:2022-06-16
  • Contact: Ping LIAO,HongCheng ZHANG E-mail:1813662383@qq.com;p.liao@yzu.edu.cn;hczhang@yzu.edu.cn

Abstract:

【Objective】 Compared with continuous flooding, the water-saving irrigation can increase water use efficiency. However, the effects of water-saving irrigation on yield and quality in rice paddies have not been clearly defined. The objective of this study was to identify the systematic effects of water-saving irrigation on rice yield and quality through Meta-analysis techniques. 【Method】 In the present study, a total of 34 studies that adapted a water-saving treatment and continuous flooding as the control involving 263 paired observations were included across this dataset. The meta-analysis was conducted to identify the responses of yield and quality to water-saving irrigation as affected by experimental type, water-saving irrigation type, cropping system, rice type, the period of water-saving irrigation, soil total nitrogen (N), soil texture, N rate, and the number of N application. 【Result】 Overall, the water-saving irrigation did not significantly affect grain yield and quality relative to continuous flooding. In terms of water-saving irrigation type, the moderate water-saving irrigation increased brown rice rate (+0.9%), milled rice rate (+1.5%), and head milled rice rate (+2.3%), but did not affect grain yield, chalkiness percentage, chalkiness degree, length/width ratio, amylose content, gel consistency, and protein content relative to continuous flooding. However, the severe water-saving irrigation significantly decreased grain yield (-22.1%), brown rice rate (-2.7%), milled rice rate (-2.7%), and head milled rice rate (-3.6%), and increased chalkiness percentage (+28.0%) and chalkiness degree (+46.7%), while no marked differences were observed on length/width ratio, amylose content, gel consistency, and protein content. Furthermore, compared with continuous flooding, the water-saving irrigation reduced protein content (-9.8%) of late rice, but did not affect that of early rice, middle rice, and single rice. 【Conclusion】 Compared with continuous flooding, the moderate water-saving irrigation could improve rice milling quality, and did not affect grain yield, appearance quality, cooking and eating quality, and nutrition quality. The severe water-saving irrigation significantly reduced rice yield, milling quality, and appearance quality, while no significant effects were found on cooking and eating quality and nutrition quality. The results provided an insight to evaluate the responses of grain yield and quality to water-saving irrigation.

Key words: water-saving irrigation, continuous flooding irrigation, yield, rice quality, meta-analysis

Table 1

Overview of the studies included in the present meta-analysis"

参考文献1)
Reference
试验类型2)
Experimental type
节水灌溉类型3)
Water-saving irrigation type
水稻类型4)
Rice
type
土壤质地5)
Soil texture
种植制度6)
Cropping
system
产量
Grain yield
加工品质
Milling quality
外观品质
Appearance quality
蒸煮食味品质
Cooking and eating quality
营养品质
Nutrition quality
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head milled rice rate
垩白粒率
Chalkiness percentage
垩白度
Chalkiness degree
长宽比
Length/width ratio
直链淀粉
Amylose content
胶稠度
Gel consistency
蛋白质
Protein content
1 P M/S I L NA NA NA
2 F M J L NA NA
3 F M/S I/J L 单季稻 Single NA NA NA NA NA NA
4 F M/S I H NA NA NA NA
5 F M/S I H NA NA NA NA NA NA NA
6 F M J L 中稻 Middle NA NA NA NA NA NA NA NA
7 F M I L 早稻 Early NA NA
8 F M I L/H NA NA NA NA NA NA NA NA
9 F M/S J L NA NA NA NA NA NA NA
10 F M I L 中稻 Middle NA
11,12 P NA I/J NA NA NA NA NA NA NA
13 P M I NA NA NA
14 F M I/J L 中稻 Middle
15 F M/S I/J L 中稻 Middle NA
16 F M J L 中稻 Middle NA NA NA
17 F M/S J L/H 中稻 Middle NA
18,19 F M I H 晚稻 Late NA
20 P M/S I H NA NA NA NA
21 P M/S I L NA
22 F M/S I L 晚稻 Late NA
23 F M I L 晚稻 Late NA
24 P M/S I/J L NA NA NA
25 P/F M/S I/J L 中稻 Middle NA NA NA NA NA
26 F M/S J H 中稻 Middle
参考文献1)
Reference
试验类型2)
Experimental type
节水灌溉类型3)
Water-saving irrigation type
水稻类型4)
Rice
type
土壤质地5)
Soil texture
种植制度6)
Cropping
system
产量
Grain yield
加工品质
Milling quality
外观品质
Appearance quality
蒸煮食味品质
Cooking and eating quality
营养品质
Nutrition quality
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head milled rice rate
垩白粒率
Chalkiness percentage
垩白度
Chalkiness degree
长宽比
Length/width ratio
直链淀粉
Amylose content
胶稠度
Gel consistency
蛋白质
Protein content
27 P M/S J H NA
28 F M/S I L 中稻 Middle NA NA NA NA
29 F M/S I L 中稻 Middle NA NA NA NA NA
30 F NA I H 早、晚稻 Double NA NA NA NA
31 F M/S I L 晚稻 Late NA
32 F M I NA 晚稻 Late NA NA
33 F NA J H 单季稻 Single NA NA NA NA
34 P M/S I L NA

Fig. 1

The response of grain yield to water-saving irrigation as affected by categorical variables Numbers in the parentheses indicated the number of sample sizes within each category. Error bars indicated 95% confidence intervals. The same as below"

Table 2

The responses of grain yield, milling quality, appearance quality, cooking and eating quality, and nutrition quality to water-saving irrigation as affected by categorical variables (P values)"

分类变量
Categorical variable
产量
Grain yield
加工品质
Milling quality
外观品质
Appearance quality
蒸煮食味品质
Cooking and eating quality
营养品质
Nutrition quality
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head milled
rice rate
垩白粒率
Chalkiness percentage
垩白度
Chalkiness degree
长宽比
Length/width ratio
直链淀粉
Amylose content
胶稠度
Gel
consistency
蛋白质
Protein
content
节水灌溉类型 Water-saving irrigation type < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.751 0.058 < 0.001 0.658
种植制度 Cropping system 0.470 0.811 0.672 0.889 0.483 0.284 0.433 0.929 0.180 < 0.05
水稻类型 Rice type 0.370 0.640 0.328 0.143 0.963 0.276 0.857 0.439 < 0.05 0.756
节水灌溉时期 Water-saving irrigation period 0.801 0.660 0.274 0.332 0.381 0.994 0.103 0.996 0.577 0.392
土壤全氮 Soil TN 0.852 0.504 0.947 0.237 0.078 0.083 0.717 0.090 0.766 0.371
土壤质地 Soil texture 0.258 0.122 < 0.05 0.819 0.117 0.223 0.550 0.835 < 0.01 0.858
氮肥施用量 N rate 0.837 0.261 0.842 0.633 0.338 0.938 0.542 0.405 0.819 0.828
氮肥施用次数 N application number 0.777 0.686 0.564 0.922 0.510 0.538 0.095 0.254 0.489 0.714
试验类型 Experimental type < 0.05 0.542 0.210 0.317 0.614 0.808 0.877 0.895 0.076 < 0.001

Fig. 2

The responses of brown rice rate (a), milled rice rate (b), and head milled rice rate (c) to water-saving irrigation as affected by categorical variables"

Fig. 3

The responses of chalkiness percentage (a), chalkiness degree (b), and length/width ratio (c) to water-saving irrigation as affected by categorical variables"

Fig. 4

The responses of amylose content (a), gel consistency (b), and protein content (c) to water-saving irrigation as affected by categorical variables"

[1] ALEXANDRATOS N, BRUINSMA J. World agriculture towards 2030/2050: The 2012 revision. FAO: ESA working paper, Rome.
[2] 熊若愚, 解嘉鑫, 谭雪明, 杨陶陶, 潘晓华, 曾勇军, 石庆华, 张俊, 才硕, 曾研华. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响. 中国农业科学, 2021, 54(7): 1512-1524.
XIONG R Y, XIE J X, TAN X M, YANG T T, PAN X H, ZENG Y J, SHI Q H, ZHANG J, CAI S, ZENG Y H. Effects of irrigation management on grain yield and quality of high-quality eating late-season indica rice in South China. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524. (in Chinese)
[3] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 中国农业科学, 2016, 49(2): 305-318.
HE H B, YANG R, LIAO J, WU L Q, KONG L C, HUANG Y D. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region. Scientia Agricultura Sinica, 2016, 49(2): 305-318. (in Chinese)
[4] IRRI. How to manage water[EB/OL]. (2020-11-03) [2021-08-01]. http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management.
[5] PIMENTEL D, BERGER B, FILIBERTO D, NEWTON M, WOLFE B, KARABINAKIS E, CLARK S, POON E, ABBETT E, NANDAGOPAL S. Water resources: Agricultural and environmental issues. BioScience, 2004, 54(10): 909-918.
doi: 10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
[6] LIU X Y, ZHOU T, LIU Y, ZHANG X H, LI L Q, PAN G X. Effect of mid-season drainage on CH4 and N2O emission and grain yield in rice ecosystem: A meta-analysis. Agricultural Water Management, 2019, 213: 1028-1035.
doi: 10.1016/j.agwat.2018.12.025
[7] JIANG Y, CARRIJO D, HUANG S, CHEN J, BALAINE N, ZHANG W J, VAN GROENIGEN K J, LINQUIST B. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 2019, 234: 47-54.
doi: 10.1016/j.fcr.2019.02.010
[8] WANG Z Y, SHAO G C, LU J S, ZHANG K, GAO Y, DING J H. Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis. Agricultural Water Management, 2020, 239: 106253.
doi: 10.1016/j.agwat.2020.106253
[9] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42(7): 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
CHU G, ZHAN M F, ZHU K Y, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01026
[10] DEVKOTA K P, HOOGENBOOM G, BOOTE K J, SINGH U, LAMERS J P A, DEVKOTA M, VLEK P L G. Simulating the impact of water saving irrigation and conservation agriculture practices for rice-wheat systems in the irrigated semi-arid drylands of Central Asia. Agricultural and Forest Meteorology, 2015, 214: 266-280.
[11] BELDER P, BOUMAN B A M, CABANGON R, GUOAN L, QUILANG E J P, YUANHUA L, SPIERTZ J H J, TUONG T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004, 65(3): 193-210.
doi: 10.1016/j.agwat.2003.09.002
[12] WON J G, CHOI J S, LEE S P, SON S H, CHUNG S O. Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science, 2005, 8(4): 487-492.
doi: 10.1626/pps.8.487
[13] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26(1): 77-84.
LIU L J, LI H W, ZHAO B H, WANG Z Q, YANG J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chinese Journal of Rice Science, 2012, 26(1): 77-84. (in Chinese)
[14] 张耗, 马丙菊, 张春梅, 赵步洪, 许京菊, 邵士梅, 顾骏飞, 刘立军, 王志琴, 杨建昌. 全生育期干湿交替灌溉对稻米品质及淀粉特性的影响. 扬州大学学报(农业与生命科学版), 2020, 41(6): 1-8.
ZHANG H, MA B J, ZHANG C M, ZHAO B H, XU J J, SHAO S M, GU J F, LIU L J, WANG Z Q, YANG J C. Effects of alternate wetting and drying irrigation during whole growing season on quality and starch properties of rice. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(6): 1-8. (in Chinese)
[15] ZHANG H, ZHANG S F, YANG J C, ZHANG J H, WANG Z Q. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal, 2008, 100(3): 726-734.
doi: 10.2134/agronj2007.0169
[16] ZHAO C, CHEN M Y, LI X F, DAI Q G, XU K, GUO B W, HU Y J, WANG W L, HUO Z Y. Effects of soil types and irrigation modes on rice root morphophysiological traits and grain quality. Agronomy, 2021, 11(1): 120.
doi: 10.3390/agronomy11010120
[17] XU Y J, GU D J, LI K, ZHANG W Y, WANG Z Q, YANG J C. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Science, 2019, 59(3): 1261-1272.
doi: 10.2135/cropsci2018.11.0700
[18] 马立晓, 李婧, 邹智超, 蔡岸冬, 张爱平, 李贵春, 杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析. 中国农业科学, 2021, 54(9): 1913-1925.
MA L X, LI J, ZOU Z C, CAI A D, ZHANG A P, LI G C, DU Z L. Effect of no-tillage and straw returning on soil C-cycling enzyme activities in China: Meta-analysis. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925. (in Chinese)
[19] 苑俊丽, 梁新强, 李亮, 叶玉适, 傅朝栋, 宋清川. 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析. 中国农业科学, 2014, 47(17): 3414-3423.
YUAN J L, LIANG X Q, LI L, YE Y S, FU C D, SONG Q C. Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China: A meta-analysis. Scientia Agricultura Sinica, 2014, 47(17): 3414-3423. (in Chinese)
[20] LIAO P, HUANG S, ZENG Y J, SHAO H, ZHANG J, VAN GROENIGEN K J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta-analysis. Plant and Soil, 2021, 465: 157-169.
doi: 10.1007/s11104-021-05004-w
[21] 张桂莲, 张顺堂, 王力, 肖应辉, 唐文帮, 陈光辉, 陈立云. 抽穗结实期不同时段高温对稻米品质的影响. 中国农业科学, 2013, 46(14): 2869-2879.
ZHANG G L, ZHANG S T, WANG L, XIAO Y H, TANG W B, CHEN G H, CHEN L Y. Effects of high temperature at different times during the heading and filling periods on rice quality. Scientia Agricultura Sinica, 2013, 46(14): 2869-2879. (in Chinese)
[22] ISHFAQ M, FAROOQ M, ZULFIQAR U, HUSSAIN S, AKBAR N, NAWAZ A, ANJUM S A. Alternate wetting and drying: A water- saving and ecofriendly rice production system. Agricultural Water Management, 2020, 241: 106363.
doi: 10.1016/j.agwat.2020.106363
[23] CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JAING Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: 100359.
doi: 10.1016/j.gfs.2020.100359
[24] Soil Survey Staff. Keys to Soil Taxonomy. 12th Edition. Washington DC: United States Department of Agriculture, 2014.
[25] LIAO P, SUN Y N, ZHU X C, WANG H Y, CHEN J, ZHANG J, ZENG Y H, ZENG Y J, HUANG S. Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: A global meta-analysis. Agriculture, Ecosystems and Environment, 2021, 322: 107663.
doi: 10.1016/j.agee.2021.107663
[26] DE GRAAFF M A, VAN GROENIGEN K J A N, SIX J, HUNGATE B, VAN KESSEL C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 2006, 12(11): 2077-2091.
doi: 10.1111/j.1365-2486.2006.01240.x
[27] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[28] VAN GROENIGEN K J, OSENBERG C W, TERRER C, CARRILLO Y, DIJKSTRA F A, HEATH J, NIE M, PENDALL E, PHILLIPS R P, HUNGATE B A. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Global Change Biology, 2017, 23(10): 4420-4429.
doi: 10.1111/gcb.13752
[29] 张立成, 姚帮松, 肖卫华, 张文萍. 盆栽与大田栽培水稻的生长及产量的比较研究. 天津农业科学, 2016, 22(3): 102-106.
ZHANG L C, YAO B S, XIAO W H, ZHANG W P. Study on the growth and yield of rice in pot and field cultivation. Tianjin Agricultural Sciences, 2016, 22(3): 102-106. (in Chinese)
[30] 张玉屏, 李金才, 黄义德, 黄文江. 水分胁迫对水稻根系生长和部分生理特性的影响. 安徽农业科学, 2001, 29(1): 58-59.
ZHANG Y P, LI J C, HUANG Y D, HUANG W J. Effect of water stress on the growth and some physiological characteristics of root system in rice. Journal of Anhui Agricultural Sciences, 2001, 29(1): 58-59. (in Chinese)
[31] 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008, 34(2): 268-276.
doi: 10.3724/SP.J.1006.2008.00268
LIU K, ZHANG H, ZHANG S F, WANG Z Q, YANG J C. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism. Acta Agronomica Sinica, 2008, 34(2): 268-276. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00268
[32] 陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干-湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015, 48(7): 1288-1299.
CHEN T T, XU G W, QIAN X Y, WANG Z Q, ZHANG H, YANG J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains. Scientia Agricultura Sinica, 2015, 48(7): 1288-1299. (in Chinese)
[33] 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019, 25(8): 1362-1372.
LU D K, DUAN H, WANG W W, LIU M S, WEI Y Q, XU G W. Comparison of rice root development and function among different degrees of dry-wet alternative irrigation coupled with nitrogen forms. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1362-1372. (in Chinese)
[34] 刘立军, 王康君, 卞金龙, 熊溢伟, 王志琴, 杨建昌. 结实期干湿交替灌溉对籽粒蛋白质含量不同的转基因水稻的生理特性及产量的影响. 中国水稻科学, 2014, 28(4): 384-390.
LIU L J, WANG K J, BIAN J L, XIONG Y W, WANG Z Q, YANG J C. Effect of alternate wetting and soil drying irrigation during grain filling on the physiological traits and yield of transgenic rice with different protein content in grains. Chinese Journal of Rice Science, 2014, 28(4): 384-390. (in Chinese)
[35] 徐国伟, 陆大克, 王贺正, 贾付俊, 陈明灿. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响. 中国生态农业学报, 2018, 26(4): 516-525.
XU G W, LU D K, WANG H Z, JIA F J, CHEN M C. Coupling effect of alternate wetting and drying irrigation and nitrogen rate on organic acid in rice root secretion at heading stage. Chinese Journal of Eco-Agriculture, 2018, 26(4): 516-525. (in Chinese)
[36] 杨建昌, 彭少兵, 顾世梁, VISPERAS R M, 朱庆森. 水稻结实期籽粒和根系中玉米素与玉米素核苷含量的变化及其与籽粒充实的关系. 作物学报, 2001, 27(1): 35-42.
YANG J C, PENG S B, GU S L, VISPERAS R M, ZHU Q S. Changes in zeatin and zeatin riboside content in rice grains and roots during grain filling and the relationship to grain plumpness. Acta Agronomica Sinica, 2001, 27(1): 35-42. (in Chinese)
[37] 杨建昌, 刘凯, 张慎凤, 王学明, 王志琴, 刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008, 34(1): 111-118.
doi: 10.1016/S1875-2780(08)60005-X
YANG J C, LIU K, ZHANG S F, WANG X M, WANG Z Q, LIU L J. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agronomica Sinica, 2008, 34(1): 111-118. (in Chinese)
doi: 10.1016/S1875-2780(08)60005-X
[38] 张自常, 李鸿伟, 曹转勤, 王志琴, 杨建昌. 施氮量和灌溉方式的交互作用对水稻产量和品质影响. 作物学报, 2013, 39(1): 84-92.
doi: 10.3724/SP.J.1006.2013.00084
ZHANG Z C, LI H W, CAO Z Q, WANG Z Q, YANG J C. Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice. Acta Agronomica Sinica, 2013, 39(1): 84-92. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00084
[39] 熊淑萍, 张娟娟, 杨阳, 刘娟, 王晓航, 吴延鹏, 马新明. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析. 植物生态学报, 2013, 37(7): 601-610.
doi: 10.3724/SP.J.1258.2013.00062
XIONG S P, ZHANG J J, YANG Y, LIU J, WANG X H, WU Y P, MA X M. Research on nitrogen metabolism characteristics and use efficiency in different winter wheat cultivars grown on three soil textures. Chinese Journal of Plant Ecology, 2013, 37(7): 601-610. (in Chinese)
doi: 10.3724/SP.J.1258.2013.00062
[40] GRAHAM-ACQUAAH S, SIEBENMORGEN T J, REBA M L, MASSEY J H, MAUROMOUSTAKOS A, ADVIENTO-BORBE A, JANUARY R, BURGOS R, BALTZ-GRAY J. Impact of alternative irrigation practices on rice quality. Cereal Chemistry, 2019, 96(5): 815-823.
doi: 10.1002/cche.10182
[41] NEVAME A Y M, EMON R M, MALEK M A, HASAN M M, ALAM M A, MUHARAM F M, ASLANI F, RAFII M Y, ISMAIL M R. Relationship between high temperature and formation of chalkiness and their effects on quality of rice. BioMed Research International, 2018, 2018: 1-18.
[42] ISHFAQ M, AKBAR N, ANJUM S A, ANWAR-IJL-HAQ M. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture, 2020, 19(11): 2656-2673.
doi: 10.1016/S2095-3119(19)62876-5
[43] XIONG R Y, XIE J X, CHEN L M, YANG T T, TAN X M, ZHOU Y J, PAN X H, ZENG Y J, SHI Q H, ZHANG J, ZENG Y H. Water irrigation management affects starch structure and physicochemical properties of indica rice with different grain quality. Food Chemistry, 2021, 347: 129045.
doi: 10.1016/j.foodchem.2021.129045
[44] 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻主要品质性状和淀粉RVA谱特征的差异研究. 核农学报, 2015, 29(7): 1374-1385.
GONG J L, XING Z P, HU Y J, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H. Difference of main quality traits and RVA profile characteristics of starch between indica and japonica super rice. Journal of Nuclear Agricultural Sciences, 2015, 29(7): 1374-1385. (in Chinese)
[45] XIONG D L, LING X X, HUANG J L, PENG S B. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environmental and Experimental Botany, 2017, 141: 1-9.
doi: 10.1016/j.envexpbot.2017.06.007
[46] CHEN Y, WANG M, OUWERKERK P B F. Molecular and environmental factors determining grain quality in rice. Food and Energy Security, 2012, 1(2): 111-132.
doi: 10.1002/fes3.11
[47] LIU J, OUYANG X Q, SHEN J L, LI Y, SUN W R, JIANG W Q, WU J S. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Science of the Total Environment, 2020, 715: 136852.
doi: 10.1016/j.scitotenv.2020.136852
[48] 金正勋, 秋太权, 孙艳丽, 赵久明, 金学泳. 氮肥对稻米垩白及蒸煮食味品质特性的影响. 植物营养与肥料学报, 2001, 7(1): 31-35.
JIN Z X, QIU T Q, SUN Y L, ZHAO J M, JIN X Y. Effects of nitrogen fertilizer on chalkiness ratio and cooking and eating quality properties of rice grain. Plant Nutrition and Fertilizer Science, 2001, 7(1): 31-35. (in Chinese)
[49] 沈鹏, 罗秋香, 金正勋. 稻米蛋白质与蒸煮食味品质关系研究. 东北农业大学学报, 2003, 34(4): 378-381.
SHEN P, LUO Q X, JIN Z X. Relationship between protein content and the cooking and eating quality properties of rice grain. Journal of Northeast Agricultural University, 2003, 34(4): 378-381. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!