Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4700-4709.doi: 10.3864/j.issn.0578-1752.2018.24.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees

WANG GuoDong(),XIAO YuanSong(),PENG FuTian(),ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2018-06-05 Accepted:2018-07-27 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】 In order to clarify whether carbon nanoscale could promote the growth of peach trees and to screen out the optimum application ratio of carbon and urea, it was expected to provide a theoretical basis for the application of carbon nanomaterials to improve the nitrogen fertilizer efficiency in the process of fruit tree cultivation. 【Method】 The experiment was conducted by using isotope tracer technology. The 2-year-old Rui pan 21/peaches was used as a test material and 15N urea was used in different doses under potting conditions (5 treatments: CK: 0 mL, T1: 5 mL, T2: 10 mL, T3: 15 mL, and T4: 20 mL). And the nano-carbon sol was tested to investigate the effects of nanocarbon on soil physical and chemical properties, peach growth and development, and nitrogen absorption and utilization. The pH value, redox potential and electrical conductivity of the soil, the dry diameter of 2 cm at the upper part of the plant and the dry weight of each part of the plant, the chlorophyll SPAD value of the leaf, the net photosynthetic rate, the structure of the root system, the total N content, and the 15N abundance of each part of the plant were measured. 【Result】 Application of nano-carbon significantly reduced soil pH value, increased soil oxidation-reduction potential, and affected the redox state of soil solution; with the increase of the amount of nano-carbon, the soil conductivity showed a tendency of decreasing at the early stage of treatment and increasing at a later stage. The application of nano-carbon promoted the growth of the root system of young peach trees. The net photosynthetic rate, chlorophyll content of peach leaves and diameter were increased. The total biomass accumulation of peach trees was highest under T3 treatment, which was 778 g and was 28.4% higher than that under CK. The application of nano-carbon increased the Ndff value of fine roots, coarse roots, lateral branches, spring shoot leaves and other organs of peach trees. Compared with CK, T1 treatment significantly increased the nitrogen distribution rate of the main trunk and the central trunk, while T3 and T4 treatment decreased the nitrogen distribution rate of the main trunk. The nitrogen utilization rate of peach plants was increased significantly with the application of nano-carbon, and the treated with T3 was the highest, being 45.2%, which was 66.5% higher than that under CK. With the increase the amount of carbon nanoscale, the nitrogen residue rate of soil increased. The treatments of T1, T2, T3 and T4 were 1.06 times, 1.35 times, 1.62 times and 1.70 times of CK, respectively, and the nitrogen loss rate decreased significantly. 【Conclusion】 The application of urea with nano-carbon could improve soil physical and chemical properties, effectively adsorb nitrogen in soil, significantly reduce nitrogen loss rate, increase plant nitrogen utilization and soil nitrogen residue, and promote root growth and plant morphology of peach trees.

Key words: nano-carbon, peach, 15N, nitrogen utilization rate, nitrogen loss rate

Fig. 1

Effects of different nano-carbon concentrations on pH, conductivity and ORP of soil"

Fig. 2

Effects of different amounts of nano- carbon on root development of young peach trees"

Fig. 3

Effects of different amounts of nano-carbon on trunk diameter of peach trees"

Table 1

Effects of different amounts of nano-carbon on dry matter accumulation of different peach plant organs"

器官
Organ
干物质积累量Dry matter accumulation (g)
CK T1 T2 T3 T4
细根 Fine root 52.7±1.8c 57.6±1.0bc 63.8±2.7b 75.6±6.5a 78.2±2.1a
粗根 Coarse root 109.1±2.9c 114.9±3.6c 122.8±4.3b 132.3±3.3a 136.1±6.0a
主干 Trunk 47.4±1.9d 54.1±1.2c 61.6±1.4b 65.4±2.3a 67.0±1.5a
中心干 Central trunk 134.3±2.9d 144.7±5.6c 156.0±4.2b 168.2±2.7a 163.8±1.6a
侧枝 Lateral branch 110.5±6.2b 108.7±7.1b 126.6±4.9a 135.1±4.3a 125.±2.1a
春梢叶 Spring leaves 41.0±1.9b 44.2±1.7b 45.5±1.1b 54.7±4.3a 45.5±1.7b
秋梢叶 Autumn leaves 110.7±1.9c 117.5±3.5c 126.5±6.5b 146.7±5.5a 128.9±2.7b
地下部 Underground part 161.9±4.5c 172.4±4.0c 186.7±6.8b 207.8±9.8a 214.4±7.8a
地上部 Overground part 443.9±6.0d 469.2±15.4c 516.1±9.8b 570.1±10.6a 531.1±1.4b
植株 Plant 605.8±1.5e 641.6±12.3d 702.7±11.6c 778.0±12.5a 745.5±6.8b
根冠比 Root and crown ratio 0.365±0.015b 0.368±0.020b 0.362±0.015b 0.365±0.020b 0.404±0.015a

Table 2

Effects of different amounts of nano-carbon on photosynthetic parameters and chlorophyll SPAD value of peach leaves"

处理Treatments 叶绿素SPAD值 Chlorophy SPAD value 净光合速率Pn (μmol·m-2·s-1)
6月16日 7月25日 9月15日 6月25日 7月25日
CK 40.6±0.4c 45.2±0.3e 48.8±0.4d 11.5±0.3d 17.5±0.2b
T1 41.2±0.1c 46.4±0.7d 49.3±0.1cd 12.8±0.3c 18.2±0.3b
T2 42.5±0.6b 47.4±0.7c 50.2±0.6b 13.9±0.2b 20.3±0.6a
T3 43.4±0.3a 49.5±0.4a 51.4±0.3a 14.6±0.5a 20.8±0.2a
T4 42.4±0.3b 48.6±0.3ab 49.6±0.3bc 14.4±0.3ab 20.2±0.6a

Table 3

Effects of different amounts of nano-carbon on Ndff and 15N distribution of organs in peach trees"

项目
Item
处理
Treatments
细根
Fine root
粗根
Coarse root
主干
Trunk
中心干
Central trunk
侧枝
Lateral branch
春梢叶
Spring leaves
秋梢叶
Autumn leaves
Ndff
(%)
CK 0.82±0.04d 0.69±0.03d 0.72±0.05c 0.81±0.03c 0.64±0.04d 0.83±0.03d 0.56±0.03b
T1 0.98±0.04c 0.81±0.02c 0.92±0.03a 0.94±0.03b 0.72±0.03c 0.89±0.02c 0.60±0.03b
T2 1.05±0.03b 0.84±0.02c 0.92±0.02a 1.02±0.04a 0.85±0.03b 0.95±0.03bc 0.66±0.01a
T3 1.09±0.00ab 0.96±0.03b 0.83±0.02b 0.96±0.02b 0.91±0.01a 1.02±0.04b 0.67±0.04a
T4 1.13±0.03a 1.03±0.04a 0.74±0.01c 0.85±0.01c 0.95±0.02a 1.09±0.05a 0.68±0.03a
氮素分配率
N distribtion rate (%)
CK 16.37±0.49a 12.73±0.98ab 3.69±0.33b 9.98±0.55b 9.69±0.45bc 14.44±0.42a 33.09±0.80a
T1 15.98±0.80a 12.99±0.43ab 4.27±0.26a 10.97±0.34a 9.18±0.50c 14.83±0.78a 31.79±1.04ab
T2 15.81±0.75a 12.09±0.30b 3.54±0.23b 10.45±0.47ab 10.63±0.59a 15.24±0.75a 32.25±0.82a
T3 15.89±1.20a 12.86±0.70ab 2.87±0.11c 9.97±0.49b 10.27±0.39ab 15.73±1.15a 32.40±0.33a
T4 16.99±0.98a 13.42±0.67a 2.49±0.05c 9.63±0.11b 10.26±0.17ab 14.99±0.86a 30.50±0.82b

Fig. 4

Effects of different nano-carbon dosage on nitrogen absorption of peach, soil nitrogen residues and loss rate"

[1] 束怀瑞 .苹果学.北京 : 中国农业出版社 1999.
SHU H R. Study of Apple. Beijing: Chinese Agriculture Press 1999. ( in Chinese)
[2] 顾曼如, 束怀瑞, 周宏伟 . 苹果氮素营养研究Ⅲ. 根外追氮及其吸收运转特性. 园艺学报, 1985,12(2):89-94.
GU M R, SHU H R, ZHOU H W . A study on the nitrogen nutrition of apple treeⅢ. The characters of absorption and translocation of 15 N foliarly applicated . Acta Horticulturae Sinica, 1985,12(2):89-94. (in Chinese)
[3] 李红波, 姜远茂, 彭福田, 赵林, 王磊, 房祥吉, 葛顺风 . 不同类型红富士苹果对春季土施 15 N-尿素的吸收、分配和利用特性研究 . 植物营养与肥料学报, 2010,16(4):986-991.
LI H B, JIANG Y M, PENG F T, ZHAO L, WANG L, FANG J X . Characteristics of absorption, distribution and utilization of spring soil 15N-urea application for different types of Fuji (Malus domestica/M. hupehensis). Plant Nutrition and Fertilizer Science, 2010,16(4):986-991. (in Chinese)
[4] FAN M S, SHEN J B, YUAN L X, JIANG R F, CHEN X P, WILLIAM J ,DAVIES ,ZHANG F S . Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 2012,63:13-24.
doi: 10.1093/jxb/err248 pmid: 21963614
[5] ZHANG F S, CUI Z L, CHEN X P, JV X T, SHEN J B, CHEN Q, LIU X J, ZHANG W F, MI G H, FAN M S, JIANG R F . Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012,116:1-40.
doi: 10.1016/B978-0-12-394277-7.00001-4
[6] JV X T, KOU C L, ZHANG F S, CHRISTIE P . Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006,143:117-125.
doi: 10.1016/j.envpol.2005.11.005 pmid: 16364521
[7] LI C, FMLKING S, FMLKING T A . A model of nitrous oxide evolution from soil driven by rainfall events: 1.Model structure and sensitivity. Journal of Geophysical Research, 1992,97:9759-9776.
[8] 张玉铭, 张佳宝, 胡春胜, 李晓欣, 朱安宁 . 华北太行山前平原农田土壤水分动态与氮素的淋溶损失. 土壤学报, 2006,43(1):17-24.
ZHANG Y M, ZHANG J B, HU C S, LI X X, ZHU A N . Nitrate leaching in wheat-maize rotation field in the north China plain. Acta Pedologica Sinica, 2006,43(1):17-24. (in Chinese)
[9] 胡梓超, 周蓓蓓, 王全九 . 模拟降雨条件下纳米碳对黄土坡面养分流失的影响. 水土保持学报, 2016,30(4):1-6, 12.
HU Z C, ZHOU B B, WANG Q J . Effects of nano-carbon on nutrient loss of loess slope under simulated rainfall. Journal of Soil and Water Conservation, 2016,30(4):1-6, 12. (in Chinese)
[10] 张中太, 林元华, 唐子龙, 张俊英 . 纳米材料及其技术的应用前景. 材料工程, 2000(3) : 42-48.
ZHANG Z T, LIN Y H, TANG Z L, ZHANG J Y . Nanometer materials&nanotechnology and their application prospect. Material Engineering, 2000, ( 3) : 42-48. (in Chinese)
[11] 张夫道, 赵秉强, 张骏, 何绪生, 张俊清, 史春余 . 纳米肥料研究进展与前景. 植物营养与肥料学报, 2002(2):254-255.
ZHANG F D, ZHAO B Q, ZHANG J, HE X S, ZHANG J Q, SHI C Y . The progress and prospect on Nano-fertilizers research.Plant Nutrition and Fertilizer Science, 2002(2):254-255. (in Chinese)
[12] MONREAL C M, DEROSA M, MALLUBHOTLA S C, BINDRABAN P S, DIMKPA C . Nanotechnologies for increasing the crop use efficiency of fertilizer -micronutrients. Biology & Fertility of Soils, 2016,52(3):423-437.
[13] 乔俊, 赵建国, 解谦, 邢宝岩, 杜雅琴, 屈文山, 王海青 . 纳米炭材料对作物生长影响的研究进展. 农业工程学报, 2017,33(2):162-170.
QIAO J, ZHAO J G, XIE Q, XING B Y, DU Y Q, QV W S, WANG H Q . Review of effects of carbon nano-materials on crop growth. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(2):162-170. (in Chinese)
[14] ALIA D S, CASTILLO-MICHEL H ,HEMANDEZ-VIEZCAS J A,DIAZ BALTAZAR C,PERALTA-VIDEAN J R . GARDEA- TORRESDEY. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Scienc&Technology, 2012,46(14):7637-7643.
[15] KHODAKOVSKAYA M V, KIM B S, KIM J N, ALIMOHAMMADI M, DERVISHI E, MUSTAFA T, CERNIGLA C E . Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 2013,9(1):115-123.
doi: 10.1002/smll.201201225 pmid: 23019062
[16] HONG F S, YANG P, GAO F Q, LIU C, ZHENG L, YAN G F, ZHOU J . Effect of nano-anatase TiO2 on spectral characterization of photosystem Ⅱ particles from spinach. Chemical Research in Chinese Universities, 2005,21(2):196-200.
[17] HONG F, ZHOU J, LIU C, YANG F, WU C, ZHENG L, YANG P . Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 2005,105(1/3):269-279.
doi: 10.1385/BTER:105:1-3:269 pmid: 16034170
[18] 李绍华 . 桃树学. 北京: 中国农业出版社, 2013.
LI S H. . Peach Tree Science. Beijing: China Agricultural Press, 2013. ( in Chinese)
[19] 鲁如坤 . 土壤农业化学分析方法北京: 中国农业科技出版社, 1999.
LU R K. Soil Agrochemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 1999. ( in Chinese)
[20] 鲍士旦 . 土壤农化分析 .北京: 中国农业出版社, 2000.
BAO S D. Analytical Methods for Soil Agrochemistry. Beijing: China Agricultural Press, 2000. ( in Chinese)
[21] 张亚飞, 罗静静, 彭福田, 郜怀峰, 王国栋, 孙希武 . 肥料袋控缓释对桃树根系生长、氮素吸收利用及产量品质的影响. 中国农业科学, 2017,50(24):4769-4778.
ZHANG Y F, LUO J J, PENG F T, GAO H F, SUN X W . Effects of fertilizer being bag-controlled released on root growth, nitrogen absorption and utilization, fruit yield and quality of peach trees. Scientia Agricultura Sinica, 2017,50(24):4769-4778. (in Chinese)
[22] 丁宁, 姜远茂, 彭福田, 陈倩, 王富林, 周恩达 . 等氮量分次追施对盆栽红富士苹果叶片衰老及~(15)N-尿素吸收、利用特性的影响. 中国农业科学, 2012,45(19):4025-4031.
DING N, JIANG Y M, PENG F T, CHEN Q, WANG F L, ZHOU E D . Effect of topdressing nitrogen application on leaf senescence and 15N-urea of absorption, distribution and utilization in potted ‘fuji’ apple . Scientia Agricultura Sinica, 2012,45(19):4025-4031. (in Chinese)
[23] 陈巍, 罗金葵, 姜慧梅, 沈其荣 . 不同形态氮素比例对不同小白菜品种生物量和硝酸盐含量的影响. 土壤学报, 2004,41(3):420-425.
CHEN W, LUO J K, JIANG H M, SHEN Q R . Effects of different NO3 --N/NH4 +-N ratios on the biomass and nitrate content of different of Chinese cabbage . Acta Pedologica Sinica, 2004,41(3):420-425. (in Chinese)
[24] 顾曼如 . 15N在苹果氮素营养研究中的应用 . 中国果树 , 1990(2) : 46-48.
GU M R . The application of 15 N in the study of nitrogen nutrition of apples. China Fruits, 1990(2):46-48. (in Chinese)
[25] 房祥吉, 姜远茂, 彭福田, 魏绍冲, 葛顺峰, 张大鹏, 崔同丽 . 不同沙土配比对盆栽平邑甜茶的生长及 15N吸收、利用和损失的影响 . 水土保持学报, 2011,25(4):131-134.
FANG J X, JIANG Y M, PENG F T, WEI S C, GE S F, ZHANG D P, CUI T L . Effects of different sand/soil ratio on growth and 15N absorption ,utilization and loss of potted malus hupenhensis . Journal of Soil and Water Conservation, 2011,25(4):131-134. (in Chinese)
[26] MUKHERJEE A, MAJUMDAR S, SERVIN A D, PAGANO L, DHANKER O P, WHITE J C . Carbon nanomaterials in agriculture: A critical review. Frontiers in Plant Science, 2016, doi: 10.3389/fpls. 2016.00172.
doi: 10.3389/fpls.2016.00172 pmid: 4762280
[27] 梁太波, 赵振杰, 王宝林, 张仕祥, 李玉磊, 张艳玲, 尹启生 . 纳米碳溶胶对碱性土壤pH和养分含量的影响. 土壤, 2017,49(5):958-962.
LIANG T B, ZHAO Z J, WANG B L, ZHANG S X, LI Y L, ZHANG Y L, YIN Q S . Effects of nano carbon sols (ncs) on pH and nutrient contents of alkaline soil. Soils, 2017,49(5):958-962. (in Chinese)
[28] 张志明, 刘键, 韩振, 马国辉, 袁隆平 . 纳米增效肥对杂交稻的增产效果研究 .腐植酸, 2012(2):15-19.
ZHANG Z M, LIU J, HAN Z, MA G H, YUAN L P . The research of increasing the yield by nano-synergistic fertilizer on hybrid rice .Humic Acid, 2012(2):15-19. (in Chinese)
[29] 肖元松, 彭福田, 张亚飞, 齐玉吉, 王贵芳, 王新亮, 束怀瑞 . 增氧栽培对桃幼树根系构型及氮素代谢的影响. 中国农业科学, 2014,47(10):1995-2002.
XIAO Y S, PENG F T, ZHANG Y F, QI Y J, WANG G F, WANG X L, SHU H R . Effects of aeration cultivation on root architecture and nitrogen metabolism of young peach trees. Scientia Agricultura Sinica, 2014,47(10):1995-2002. (in Chinese)
[30] GIRALDO J P, LANDRY M P, FALTERMEIER S M, MCNICHOLAS T P, IVERSON N M, BOGHOSSIAN A A, REUEL N F, HILMER A J, SEN F, BREW J A, STRANO M S . Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 2014,13(4):400.
doi: 10.1038/nmat3890 pmid: 24633343
[31] LIU Q, CHEN B, WANG Q, SHI X, XIAO Z, LIN J, FANG X . Carbon nanotubes as molecular transporters for walled cells. Nano Letters, 2009,9(3):1007-1010.
doi: 10.1021/nl803083u pmid: 19191500
[32] SERAG M F, KAJI N, TOKESOKESHI M, BIANCO A , BABAY . The plant cell uses carbon nanotubes to build tracheary elements. Integrative Biology, 2012,4(2):127-131.
doi: 10.1039/c2ib00135g pmid: 22266482
[33] KHODAKOVSKAYA M, DERVISHI E, MAHMOOD M, XU Y, LI Z, WATANABE F, BIRIS A S . Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2012,6(8):3221-3227.
doi: 10.1021/nn302965w pmid: 19772305
[34] 刘安勋, 廖宗文 . 纳米材料对水团簇的影响. 安徽农业科学, 2008,36(36):15780-15781.
LIU A X, LIAO Z W . Effects of Nano-materials on Water Clusters. Journal of Anhui Agricultural Science, 2008,36(36):15780-15781. (in Chinese)
[35] 李淑敏, 马辰, 李丽鹤, 张爱媛, 韩晓光, 王飞, 王德江, 郑成彧, 毛睿麟 . 纳米碳对玉米氮素吸收及根系活力和土壤酶活性的影响. 东北农业大学学报, 2014,45(7):14-18, 25.
LI S M, MA C, LI L H, ZHANG A Y, HAN X G, WANG F, WANG D J, ZHENG C Y, MAO R L . Effect of nano-carbon on nitrogen absorption, root activity and soil enzyme of maize. Journal of Northeast Agricultural University, 2014,45(7):14-18, 25. (in Chinese)
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[8] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[9] Xu LI,WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN. Effects of Straw Addition on Soil Biological N2-Fixation Rate and Diazotroph Community Properties [J]. Scientia Agricultura Sinica, 2021, 54(5): 980-991.
[10] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[11] WANG ShuYing,LI XiaoHong,CHENG Na,FU ShiFeng,LI ShuangYi,SUN LiangJie,AN TingTing,WANG JingKuan. Effects of Plastic Film Mulching and Fertilization on the Sequestration of Carbon and Nitrogen from Straw in Soil [J]. Scientia Agricultura Sinica, 2021, 54(2): 345-356.
[12] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[13] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[14] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[15] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!