Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3805-3817.doi: 10.3864/j.issn.0578-1752.2021.18.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology

WU ShiYang(),YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei()   

  1. College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan
  • Received:2021-02-03 Accepted:2021-03-16 Online:2021-09-16 Published:2021-09-26
  • Contact: HuaWei XU E-mail:1773857571@qq.com;xhwcyn@163.com

Abstract:

【Objective】Auxin efflux protein family PIN-FORMED (PIN) is a key protein family in controlling polar auxin transport (PAT). OsPIN9 is one of the monocot-specific PIN genes in rice, while its biological function still needs to be further elucidated. In this study, OsPIN9 was edited and ospin9 homozygous mutants were obtained using CRISPR/Cas9 genome editing technology. The resultant ospin9 mutant lines could provide a basis for further research on the function of OsPIN9.【Method】The specific target sequence was designed according to OsPIN9 genome sequence and OsPIN9 genome editing vector was constructed. Nippobare (Oryza sativa japonica) was used as the material and the hygromycin-resistant rice was obtained by Agrobacterium-mediated transformation. The positive transgenic lines were screened by PCR. The mutation sites were confirmed by the combination of PCR and subsequent analysis of sequencing results, the homozygous mutants were obtained and the difference of amino acid sequence and tertiary structure of OsPIN9 protein was analyzed between WT and ospin9 mutants. The expression of OsPINs genes in mutant roots was performed by quantitative real-time PCR (qRT-PCR), and the phenotype of ospin9 mutants was analyzed at the seedling stage. The effects of 1-naphthaleneacetic acid (NAA) treatment on seedling development were also analyzed under 0.05 μmol·L -1 NAA for 7 d.【Result】The target site sequence was designed based on the sequence of exon1 of OsPIN9 and, subsequently, the OsPIN9 genome editing recombinant vector was constructed. A total of 18 independent transgenic lines were obtained by transformation. Sequencing analysis revealed that three different mutation types were present in 7 T0 generation lines, including 3 lines with T insertion, 3 lines with G insertion and 1 line with C insertion, and all the mutation sites happened at the 18 th base of the target sequence. Two homozygous mutation lines were further identified in the T1 generation. BLAST analysis showed that the two types of OsPIN9 mutations caused frame-shift mutation and premature termination of translation, and the mutation protein was shortened from 426 aa in WT to 172 aa, thus leading to the complete disappearance of the transmembrane helices. qPCR analysis indicated that the transcription abundance of OsPIN9 significantly decreased in ospin9 mutants compared with WT, OsPIN1a and OsPIN5b were up-regulated, while OsPIN5a was down-regulated in ospin9 mutants. Both the shoot height and the number of adventitious roots of ospin9 mutants were reduced significantly than that of WT, while its root length was comparable to that of WT. The plant growth was inhibited and the adventitious root number was still less than that of WT under NAA treatment, but no significant difference was found between ospin9 mutants and WT plants. 【Conclusion】 Auxin efflux carrier OsPIN9 was directionally edited by using CRISPR/Cas9 technology, and two transgene-free homozygous ospin9 mutants were obtained. The mutation of OsPIN9 affected the expression level of other OsPINs genes, the shoot and root development were inhibited in ospin9 mutants at the seedling stage and NAA treatment partially rescued the development of adventitious roots in ospin9 mutants.

Key words: rice, OsPIN9, polar auxin transport, CRISPR/Cas9

Fig. 1

Schematic diagram of CRISPR-RICE"

Table 1

The primers and sequence in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途 Usage
PIN9-CRISPR-F TGTGTTTCTCCAACGAGCAGTGCGC CRISPR/Cas9载体构建
CRISPR/Cas9 vector construction
PIN9-CRISPR-R AAACGCGCACTGCTCGTTGGAGAA
M13-F GTTGTAAAACGACGGCCAGTGCC 筛选阳性克隆 Screening for positive clones
HPT-F CTGAACTCACCGCGACGTCTGTC 筛选阳性植株
Screening for positive transgenic plants
HPT-R TAGCGCGTCTGCTGCTCCATACA
PIN9-Assay-F CGACCTGGCTTACGAACGAA 扩增OsPIN9基因组片段
Amplification of OsPIN9 genome fragment
PIN9-Assay-R CCATGTCGAAGATGAGCACC
PIN1a-qF CCTGAAATCCATCTCCATCCTC OsPIN1a表达分析
Expression analysis of OsPIN1a
PIN1a-qR AACGTCGCCACCTTGTT
PIN1b-qF GAATCGTGCCCTTTGTGTTTG OsPIN1b表达分析
Expression analysis of OsPIN1b
PIN1b-qR TGTAGTAGACGAGGGTGATAGG
PIN1c-qF GAGCAATCAGCATCCCGAATA OsPIN1c表达分析
Expression analysis of OsPIN1c
PIN1c-qR GAGCAATCAGCATCCCGAATA
PIN2-qF CGTCTCCTTCAGGTGGAATATC OsPIN2表达分析
Expression analysis of OsPIN2
PIN2-qR AGAGCCATGAACAAGCCTAAG
PIN5a-qF CCCTACCTCAATCCATCACATC OsPIN5a表达分析
Expression analysis of OsPIN5a
PIN5a-qR GTAGGGAGACAAGCATTCCAA
PIN5b-qF GCAAAGGAGTATGGGCTTCA OsPIN5b表达分析
Expression analysis of OsPIN5b
PIN5b-qR GCAATCAGAATCGGCAGAGA
PIN9-qF GAGGACTCTCTGTTCACCATTC OsPIN9表达分析
Expression analysis of OsPIN9
PIN9-qR GAGAACGACGCTATCTTGTATCC
OsACTIN1-qF CTTCATAGGAATGGAAGCTGCG qRT-PCR内参基因
Internal control for qRT-PCR
OsACTIN1-qF CACCTTGATCTTCATGCTGCTA

Fig. 2

Schematic diagram of OsPIN9 target site and screening for positive clones A: Schematic diagram of OsPIN9 target site; B: Screening for positive clones by PCR amplification of OsU6 promoter"

Fig. 3

Identification of the transgenic lines and screening of ospin9 homozygous mutants by sequencing A: Identification of the transgenic lines by PCR amplification of HPT; B: Screening of the homozygous ospin9 mutants by sequencing"

Fig. 4

Schematic representations of amino acid sequence changes of OsPIN9 mutant proteins The base inserted is shown in red color; The amino acids below the red lines represent the predicted transmembrane helices"

Fig. 5

Transmembrane helices (TMH) and tertiary structure analysis of OsPIN9 mutant proteins A: Transmembrane helices (TMH) analysis; B: Tertiary structure analysis"

Fig. 6

Expression analysis of OsPINs genes in seedling roots of ospin9 mutants"

Fig. 7

Phenotype of ospin9 mutants at the seedling stage A: Photograph of ospin9 mutants at the seedling stage; B: Statistical analysis of the phenotypic data (n≥14). Black dot indicates measured data; * indicates difference at the P<0.01 level; *** indicates difference at the P<0.001 level. The same as below"

Fig. 8

Effects of NAA treatment on seedling shoot height and adventitious root number A, B: Statistical analysis of shoot height and adventitious root number in untreated plants (n=12); C: Statistical analysis of shoot height and adventitious root number under 0.05 μmol·L-1 NAA treated for 7 d (n=12). * indicates difference at the P<0.05 level"

[1] KARKI S, RIZAL G, QUICK W P. Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway. Rice, 2013, 6:28.
doi: 10.1186/1939-8433-6-28
[2] FRIML J, VIETEN A, SAUER M, WEIJERS D, SCHWARZ H, HAMANN T, OFFRINGA R, JURGENS G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426(6963): 147-153.
doi: 10.1038/nature02085
[3] PETRASEK J, MRAVEC J, BOUCHARD R, BLAKESLEE J J, ABAS M, SEIFERTOVA D, WISNIEWSKA J, TADELE Z, KUBES M, COVANOVA M, DHONUKSHE P, SKUPA P, BENKOVA E, PERRY L, KRECEK P, LEE O R, FINK G R, GEISLER M, MURPHY A S, LUSCHNIG C, ZAZIMALOVA E, FRIML J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006, 312(5775): 914-918.
doi: 10.1126/science.1123542
[4] TUSKAN G A, DIFAZIO S, JANSSON S, BOHLMANN J, GRIGORIEV I, HELLSTEN U, PUTNAM N, RALPH S, ROMBAUTS S, SALAMOV A, SCHEIN J, STERCK L, AERTS A, BHALERAO R R, BHALERAO R P, BLAUDEZ D, BOERJAN W, BRUN A, BRUNNER A, BUSOV V, CAMPBELL M, CARLSON J, CHALOT M, CHAPMAN J, CHEN G L, COOPER D, COUTINHO P M, COUTURIER J, COVERT S, CRONK Q, CUNNINGHAM R, DAVIS J, DEGROEVE S, DEJARDIN A, DEPAMPHILIS C, DETTER J, DIRKS B, DUBCHAK I, DUPLESSIS S, EHLTING J, ELLIS B, GENDLER K, GOODSTEIN D, GRIBSKOV M, GRIMWOOD J, GROOVER A, GUNTER L, HAMBERGER B, HEINZE B, HELARIUTTA Y, HENRISSAT B, HOLLIGAN D, HOLT R, HUANG W, ISLAM-FARIDI N, JONES S, JONES-RHOADES M, JORGENSEN R, JOSHI C, KANGASJARVI J, KARLSSON J, KELLEHER C, KIRKPATRICK R, KIRST M, KOHLER A, KALLURI U, LARIMER F, LEEBENS-MACK J, LEPLE J C, LOCASCIO P, LOU Y, LUCAS S, MARTIN F, MONTANINI B, NAPOLI C, NELSON D R, NELSON C, NIEMINEN K, NILSSON O, PEREDA V, PETER G, PHILIPPE R, PILATE G, POLIAKOV A, RAZUMOVSKAYA J, RICHARDSON P, RINALDI C, RITLAND K, ROUZE P, RYABOY D, SCHMUTZ J, SCHRADER J, SEGERMAN B, SHIN H, SIDDIQUI A, STERKY F, TERRY A, TSAI C J, UBERBACHER E, UNNEBERG P, VAHALA J, WALL K, WESSLER S, YANG G, YIN T, DOUGLAS C, MARRA M, SANDBERG G, VAN DE PEER Y, ROKHSAR D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604.
doi: 10.1126/science.1128691
[5] BENJAMINS R, SCHERES B. Auxin: the looping star in plant development. Annual Review of Plant Biology, 2008, 59:443-465.
doi: 10.1146/annurev.arplant.58.032806.103805
[6] DUBROVSKY J G, SAUER M, NAPSUCIALY-MENDIVIL S, IVANCHENKO M G, FRIML J, SHISHKOVA S, CELENZA J, BENKOVA E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(25): 8790-8794.
[7] MRAVEC J, SKUPA P, BAILLY A, HOYEROVA K, KRECEK P, BIELACH A, PETRASEK J, ZHANG J, GAYKOVA V, STIERHOF Y D, DOBREV P I, SCHWARZEROVA K, ROLCIK J, SEIFERTOVA D, LUSCHNIG C, BENKOVA E, ZAZIMALOVA E, GEISLER M, FRIML J. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009, 459(7250): 1136-1140.
doi: 10.1038/nature08066
[8] HAGA K, SAKAI T. Differential roles of auxin efflux carrier PIN proteins in hypocotyl phototropism of etiolated Arabidopsis seedlings depend on the direction of light stimulus. Plant Signalling & Behavior, 2013, 8(1): e22556.
[9] ZHANG K X, XU H H, YUAN T T, ZHANG L, LU Y T. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. The Plant Journal, 2013, 76(2): 308-321.
[10] CHEN R, HILSON P, SEDBROOK J, ROSEN E, CASPAR T, MASSON P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 15112-15117.
[11] KLEINE-VEHN J, LEITNER J, ZWIEWKA M, SAUER M, ABAS L, LUSCHNIG C, FRIML J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17812-17817.
[12] RAHMAN A, TAKAHASHI M, SHIBASAKI K, WU S, INABA T, TSURUMI S, BASKIN T I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. The Plant Cell, 2010, 22(6): 1762-1776.
doi: 10.1105/tpc.110.075317
[65] SINGH P K, INDOLIYA Y, CHAUHAN A S, SINGH S P, SINGH A P, DWIVEDI S, TRIPATHI R D, CHAKRABARTY D. Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Scientific Reports, 2017, 7:3592.
doi: 10.1038/s41598-017-03923-2
[13] RAKUSOVA H, GALLEGO-BARTOLOME J, VANSTRAELEN M, ROBERT H S, ALABADI D, BLAZQUEZ M A, BENKOVA E, FRIML J. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal, 2011, 67(5): 817-826.
doi: 10.1111/j.1365-313X.2011.04636.x
[14] LEITNER J, RETZER K, KORBEI B, LUSCHNIG C. Dynamics in PIN2 auxin carrier ubiquitylation in gravity-responding Arabidopsis roots. Plant Signaling & Behavior, 2012, 7(10): 1271-1273.
[15] YANG Y, HAMMES U Z, TAYLOR C G, SCHACHTMAN D P, NIELSEN E. High-affinity auxin transport by the AUX1 influx carrier protein. Current Biology, 2006, 16(11): 1123-1127.
doi: 10.1016/j.cub.2006.04.029
[16] NOH B, MURPHY A S, SPALDING E P. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. The Plant Cell, 2001, 13(11): 2441-2454.
[17] GEISLER M, MURPHY A S. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Letters, 2006, 580(4): 1094-1102.
doi: 10.1016/j.febslet.2005.11.054
[18] WISNIEWSKA J, XU J, SEIFERTOVA D, BREWER P B, RUZICKA K, BLILOU I, ROUQUIE D, BENKOVA E, SCHERES B, FRIML J. Polar PIN localization directs auxin flow in plants. Science, 2006, 312(5775): 883.
doi: 10.1126/science.1121356
[19] GRIENEISEN V A, XU J, MAREE A F, HOGEWEG P, SCHERES B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 2007, 449(7165): 1008-1013.
doi: 10.1038/nature06215
[20] WANG J, HU H, WANG G, LI J, CHEN J, WU P. Expression of PIN genes in rice (Oryza sativa L.): Tissue specificity and regulation by hormones. Molecular Plant, 2009, 2(4): 823-831.
doi: 10.1093/mp/ssp023
[21] MIYASHITA Y, TAKASUGI T, ITO Y. Identification and expression analysis of PIN genes in rice. Plant Science, 2010, 178(5): 424-428.
doi: 10.1016/j.plantsci.2010.02.018
[22] KRECEK P, SKUPA P, LIBUS J, NARAMOTO S, TEJOS R, FRIML J, ZAZIMALOVA E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology, 2009, 10(12): 249.
doi: 10.1186/gb-2009-10-12-249
[23] ADAMOWSKI M, FRIML J. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell, 2015, 27(1): 20-32.
doi: 10.1105/tpc.114.134874
[24] DAL BOSCO C, DOVZHENKO A, LIU X, WOERNER N, RENSCH T, EISMANN M, EIMER S, HEGERMANN J, PAPONOV I A, RUPERTI B, HEBERLE-BORS E, TOURAEV A, COHEN J D, PALME K. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The Plant Journal, 2012, 71(5): 860-870.
doi: 10.1111/tpj.2012.71.issue-5
[25] DING Z, WANG B, MORENO I, DUPLAKOVA N, SIMON S, CARRARO N, REEMMER J, PENCIK A, CHEN X, TEJOS R, SKUPA P, POLLMANN S, MRAVEC J, PETRASEK J, ZAZIMALOVA E, HONYS D, ROLCIK J, MURPHY A, ORELLANA A, GEISLER M, FRIML J. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 2012, 3:941.
doi: 10.1038/ncomms1941
[26] BARBEZ E, KUBES M, ROLCIK J, BEZIAT C, PENCIK A, WANG B, ROSQUETE M R, ZHU J, DOBREV P I, LEE Y, ZAZIMALOVA E, PETRASEK J, GEISLER M, FRIML J, KLEINE-VEHN J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012, 485(7396): 119-122.
doi: 10.1038/nature11001
[27] FERARU E, VOSOLSOBE S, FERARU M I, PETRASEK J, KLEINE-VEHN J. Evolution and structural diversification of PILS putative auxin carriers in plants. Frontiers in Plant Science, 2012, 3:227.
[28] ABDOLLAHI S N, RUZICKA K. ER-localized PIN carriers: Regulators of intracellular auxin homeostasis. Plants, 2020, 9(11): 1527.
doi: 10.3390/plants9111527
[29] WANG Y, CHAI C, VALLIYODAN B, MAUPIN C, ANNEN B, NGUYEN H T. Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max). BMC Genomics, 2015, 16:951.
doi: 10.1186/s12864-015-2149-1
[30] ZHANG Y, HE P, YANG Z, HUANG G, WANG L, PANG C, XIAO H, ZHAO P, YU J, XIAO G. A genome-scale analysis of the PIN gene family reveals its functions in cotton fiber development. Frontiers in Plant Science, 2017, 8:461.
[31] LI Y, ZHU J, WU L, SHAO Y, WU Y, MAO C. Functional divergence of PIN1 paralogous genes in rice. Plant and Cell Physiology, 2019, 60(12): 2720-2732.
doi: 10.1093/pcp/pcz159
[32] CHEN Y, FAN X, SONG W, ZHANG Y, XU G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 2012, 10(2): 139-149.
doi: 10.1111/pbi.2011.10.issue-2
[33] WANG L, GUO M, LI Y, RUAN W, MO X, WU Z, STURROCK C J, YU H, LU C, PENG J, MAO C. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Journal of Experimental Botany, 2018, 69(3): 385-397.
doi: 10.1093/jxb/erx427
[34] INAHASHI H, SHELLEY I J, YAMAUCHI T, NISHIUCHI S, TAKAHASHI NOSAKA M, MATSUNAMI M, OGAWA A, NODA Y, INUKAI Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiologia Plantarum, 2018, 164(2): 216-225.
doi: 10.1111/ppl.2018.164.issue-2
[35] WU D, SHEN H, YOKAWA K, BALUSKA F. Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. Journal of Experimental Botany, 2014, 65(18): 5305-5315.
doi: 10.1093/jxb/eru292
[36] WU D, SHEN H, YOKAWA K, BALUŠKA F. Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex. Journal of Experimental Botany, 2015, 66(21): 6791-6801.
doi: 10.1093/jxb/erv385
[37] LU G, CONEVA V, CASARETTO J A, YING S, MAHMOOD K, LIU F, NAMBARA E, BI Y M, ROTHSTEIN S J. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal, 2015, 83(5): 913-925.
doi: 10.1111/tpj.2015.83.issue-5
[38] ZHANG Q, LI J, ZHANG W, YAN S, WANG R, ZHAO J, LI Y, QI Z, SUN Z, ZHU Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. The Plant Journal, 2012, 72(5): 805-816.
doi: 10.1111/tpj.2012.72.issue-5
[39] HOU M M, LUO F F, WU D X, ZHANG X H, LOU M M, SHEN D F, YAN M, MAO C Z, FAN X R, XU G H, ZHANG Y L. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist, 2021, 229:935-949.
doi: 10.1111/nph.v229.2
[40] HSIEH P H, KAN C C, WU H Y, YANG H C, HSIEH M H. Early molecular events associated with nitrogen deficiency in rice seedling roots. Scientific Reports, 2018, 8(1): 12207.
doi: 10.1038/s41598-018-30632-1
[41] 祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国农业科学, 2020, 53(8): 1501-1509.
QI Y B, ZHANG L X, WANG L Y, SONG J, WANG J J. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509. (in Chinese)
[42] 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019, 40(5): 38-49.
LIU Y G, LI G S, ZHANG Y L, CHEN L T. Current advances on CRISPR/Cas genome editing technologies in plants. Journal of South China Agricultural University, 2019, 40(5): 38-49. (in Chinese)
[43] LIU W Z, XIE X R, MA X L, LI J, CHEN J H, LIU Y G. DSDecode: A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Molecular Plant, 2015, 8(9): 1431-1433.
doi: 10.1016/j.molp.2015.05.009
[44] MA X L, CHEN L T, ZHU Q L, CHEN Y L, LIU Y G. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Molecular Plant, 2015, 8(8): 1285-1287.
doi: 10.1016/j.molp.2015.02.012
[45] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054
[46] WATERHOUSE A M, PROCTER J B, MARTIN D M A, CLAMP M, BARTON G J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, 25(9): 1189-1191.
doi: 10.1093/bioinformatics/btp033
[47] KROGH A, LARSSON B, VON HEIJNE G, SONNHAMMER E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 2001, 305(3): 567-580.
doi: 10.1006/jmbi.2000.4315
[48] MADEIRA F, PARK Y M, LEE J, BUSO N, GUR T, MADHUSOODANAN N, BASUTKAR P, TIVEY A, POTTER S C, FINN R D, LOPEZ R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 2019, 47(W1): W636-W641.
doi: 10.1093/nar/gkz268
[49] YOSHIDA S, FORNO D A, COCK J H, GOMEZ K A. Laboratory Manual for Physiological Studies of Rice. Manila: International Rice Research Institute, 1976.
[50] BENNETT T, BROCKINGTON S F, ROTHFELS C, GRAHAM S W, STEVENSON D, KUTCHAN T, ROLF M, THOMAS P, WONG G K, LEYSER O, GLOVER B J, HARRISON C J. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Molecular Biology and Evolution, 2014, 31(8): 2042-2060.
doi: 10.1093/molbev/msu147
[51] MA X L, ZHANG Q Y, ZHU Q L, LIU W, CHEN Y, QIU R, WANG B, YANG Z F, LI H Y, LIN Y Y, XIE Y Y, SHEN R X, CHEN S F, WANG Z, CHEN Y L, GUO J X, CHEN L T, ZHAO X C, DONG Z C, LIU Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
doi: 10.1016/j.molp.2015.04.007
[52] WANG M G, MAO Y F, LU Y M, TAO X P, ZHU J K. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Molecular Plant, 2017, 10(7): 1011-1013.
doi: 10.1016/j.molp.2017.03.001
[53] ZHANG Y, LIANG Z, ZONG Y, WANG Y P, LIU J X, CHEN K L, QIU J L, GAO C X. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7(1): 12617-12617.
doi: 10.1038/ncomms12617
[54] LIANG Z, CHEN K L, LI T D, ZHANG Y, WANG Y P, ZHAO Q, LIU J X, ZHANG H W, LIU C M, RAN Y D, GAO C X. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8:14261.
doi: 10.1038/ncomms14261
[55] 陈日荣, 周延彪, 王黛君, 赵新辉, 唐晓丹, 许世冲, 唐倩莹, 符星学, 王凯, 刘选明, 杨远柱. 利用CRISPR/Cas9技术编辑水稻温敏不育基因TMS5. 作物学报, 2020, 46(8): 1157-1165.
doi: 10.3724/SP.J.1006.2020.92059
CHEN R R, ZHOU Y B, WANG D J, ZHAO X H, TANG X D, XU S C, TANG Q Y, FU X X, WANG K, LIU X M, YANG Y Z. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice. Acta Agronomica Sinica, 2020, 46(8): 1157-1165. (in Chinese)
doi: 10.3724/SP.J.1006.2020.92059
[56] 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018, 44(6): 844-851.
doi: 10.3724/SP.J.1006.2018.00844
HUANG Z M, ZHOU Y B, TANG X D, ZHAO X H, ZHOU Z W, FU X X, WANG K, SHI J W, LI Y F, FU C J, YANG Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agronomica Sinica, 2018, 44(6): 844-851. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00844
[57] 王美娜, 彭静静, 王凯婕, 安文静, 刘亚菲, 李珂嘉, 梁卫红. 利用CRISPR/Cas9技术编辑水稻ROP基因OsRac5. 中国生物化学与分子生物学报, 2018, 34(12): 1350-1357.
WANG M N, PENG J J, WANG K J, AN W J, LIU Y F, LI K J, LIANG W H. Editing ROP gene OsRac5 of rice by CRISPR/Cas9 technique. Chinese Journal of Biochemistry and Molecular Biology, 2018, 34(12): 1350-1357. (in Chinese)
[58] 徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性. 中国水稻科学, 2019, 33(4): 313-322.
XU P, WANG H, TU R R, LIU Q E, WU W X, FU X M, CAO L Y, SHEN X H. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system. Chinese Journal of Rice Science, 2019, 33(4): 313-322. (in Chinese)
[59] 龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻. 中国水稻科学, 2019, 33(5): 407-420.
LONG Q Z, HUANG Y L, TANG X Y, WANG H M, LU M, YUAN L F, WAN J L. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9. Chinese Journal of Rice Science, 2019, 33(5): 407-420. (in Chinese)
[60] 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34(5): 406-412.
XU S B, ZHENG H L, LIU L F, BU Q Y, LI X F, ZOU D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chinese Journal of Rice Science, 2020, 34(5): 406-412. (in Chinese)
[61] 周天顺, 余东, 刘玲, 欧阳宁, 袁贵龙, 段美娟, 袁定阳. 利用CRISPR/Cas9技术编辑AFP1基因提高水稻耐逆性. 中国水稻科学, 2021, 35(1): 11-18.
ZHOU T S, YU D, LIU L, OU Y N, YUAN G L, DUAN M J, YUAN D Y. CRISPR/Cas9-mediated editing of AFP1 improves rice stress tolerance. Chinese Journal of Rice Science, 2021, 35(1): 11-18. (in Chinese)
[62] XU M, ZHU L, SHOU H X, WU P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology, 2005, 46(10): 1674-1681.
doi: 10.1093/pcp/pci183
[63] WANG T, LI C X, WU Z H, JIA Y C, WANG H, SUN S Y, MAO C Z, WANG X L. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. Frontiers in Plant Science, 2017, 8:1121.
doi: 10.3389/fpls.2017.01121
[64] ZHANG X W, LI J P, LIU A L, ZOU J, ZHOU X Y, XIANG J H, RERKSIRI W, PENG Y, XIONG X Y, CHEN X B. Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage. PLoS ONE, 2012, 7(11): e49652.
doi: 10.1371/journal.pone.0049652
[1] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[2] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[3] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[4] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[5] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[6] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[7] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[8] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[9] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[10] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[11] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[12] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[13] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[14] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[15] ZHAO YongJian, ZHANG BoFei, ZHANG Chong, JU XiaoTang. Nitrogen and Phosphorus Surplus and Soil Nitrate Nitrogen Accumulation in Typical Rice-Vegetable Rotation and Banana Garden in Hainan [J]. Scientia Agricultura Sinica, 2023, 56(15): 2954-2965.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!