Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (1): 144-155.doi: 10.3864/j.issn.0578-1752.2023.01.011
• HORTICULTURE • Previous Articles Next Articles
LI XuFei(),YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe(
)
[1] |
OKATAN V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Horticulturae, 2020, 32(1): 79-85.
doi: 10.2478/fhort-2020-0008 |
[2] |
SOVAK M. Grape extract, resveratrol, and its analogs: A review. Journal of Medicinal Food, 2001, 4(2): 93-105.
pmid: 12639418 |
[3] |
YU Y H, BIAN L, YY K K, YANG S D, GUO D L. Vitis vinifera bZIP14 functions as a transcriptional activator and enhances drought stress resistance via suppression of reactive oxygen species. Journal of Berry Research, 2020, 10(4): 547-558.
doi: 10.3233/JBR-200523 |
[4] |
YU Y H, MENG X X, GUO D L, YANG S D, ZHANG G H, LIANG Z C. Grapevine U-box E3 ubiquitin ligase VlPUB38 negatively regulates fruit ripening by facilitating abscisic- aldehyde oxidase degradation. Plant and Cell Physiology, 2020, 61(12): 2043-2054.
doi: 10.1093/pcp/pcaa118 |
[5] |
GUO D L, XI F F, YU Y H, ZHANG X Y, ZHANG G H, ZHONG G Y. Comparative RNA-Seq profiling of berry development between table grape ‘Kyoho’ and its early-ripening mutant ‘Fengzao’. BMC Genomics, 2016, 17(1): 795.
doi: 10.1186/s12864-016-3051-1 |
[6] |
ZABADAL T J, BUKOVAC M J. Effect of CPPU on fruit development of selected seedless and seeded grape cultivars. HortScience, 2006, 41(1): 154-157.
doi: 10.21273/HORTSCI.41.1.154 |
[7] |
QUINET M, BUYENS C, DOBREV P I, MOTYKA V, JACQUEMART A L. Hormonal regulation of early fruit development in european pear (Pyrus communis cv. ‘Conference’). Horticulturae, 2019, 5(1). doi: 10.3390/horticulturae5010009.
doi: 10.3390/horticulturae5010009 |
[8] | SARKAR M D, SHAH M, KABIR M H. Flower and fruit setting of summer tomato regulated by plant hormones. Applied Science Reports, 2014, 7: 117-120. |
[9] |
HWANG I. Cytokinin signaling networks. Annual review of plant biology, 2012, 63: 353-380.
doi: 10.1146/annurev-arplant-042811-105503 pmid: 22554243 |
[10] |
WERNER T, MOTYKA V, LAUCOU V, SMETS R, VAN ONCKELEN H, SCHMÜLLING T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell, 2003, 15(11): 2532-2550.
doi: 10.1105/tpc.014928 |
[11] | BECHTOLD N, BOUCHEZ D. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Gene Transfer to plants, 1995:19-23. |
[12] |
KRIZEK B A. Making bigger plants: Key regulators of final organ size. Current Opinion in Plant Biology, 2009, 12(1): 17-22.
doi: 10.1016/j.pbi.2008.09.006 pmid: 18951836 |
[13] |
KOPECNY D, BRIOZZO P, POPELKOVA H, SEBELA M, KONCITIKOVA R, SPICHAL L, NISLER J, MADZAK CATHERINE, FREBORT I, LALOUE M, HOUBA H N. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie, 2010, 92(8): 1052-1062.
doi: 10.1016/j.biochi.2010.05.006 pmid: 20478354 |
[16] | SMITH R. Effects of CPPU, a synthetic cytokinin, on fruit set and yield. Sonoma Ctry Grape Day, 2008, 7: 2008. |
[17] |
CURRY E A, GREENE D W. CPPU influences fruit quality, fruit set, return bloom, and preharvest drop of apples. HortScience, 1993, 28(2): 115-119.
doi: 10.21273/HORTSCI.28.2.115 |
[18] | NIMBOLKAR P K, RAI P N, MISHRA D S, SINGH S K, SINGH A K, KUMAR J. Effect of CPPU, NAA and salicylic acid on vegetative growth, fruit retention and yield of pear [Pyrus pyrifolia (Burm.) Nakai] cv Gola. Environment and Ecology, 2016, 34(2): 462-465. |
[19] | ASSAD S A. Effect of CPPU on fruit set, drop, yield and fruit quality of Hollywood and Santarosa plum cultivars. Egyptian Journal of Horticulture, 2013, 2(40): 187-204. |
[20] |
CHEN L, ZHAO J, SONG J C, JAMESON P E. Cytokinin dehydrogenase a genetic target for yield improvement in wheat. Plant Biotechnology Journal, 2020, 18 (3): 614-630.
doi: 10.1111/pbi.13305 |
[21] | ANTOGNOZZI E, FAMIANI F, PROIETTI P, TOMBESI A, FRENGUELLI G. Effect of CPPU (Cytokinin) treatments on fruit anatomical structure and quality in actinidia deliciosa. Acta Horticulturae, 1997, 444(2): 459-465. |
[22] | LEWIS D H, BURGE G K, HOPPING M E, JAMESON P E. Cytokinios and fruit development in the kiwifruit (Actinidia deliciosa) effects of reduced pollination and CPPU application. Horticultural Science, 1996, 98(1): 187-195. |
[23] |
KÖLLMER I, NOVÁK O, STRNAD M, SCHMÜLLING T, WERNER T. Overexpression of the cytosolic cytokinin oxidase/ dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. The Plant Journal, 2014, 78(3): 359-371. doi: 10.1111/tpj.12477.
doi: 10.1111/tpj.12477 |
[24] |
ASHIKARI M, SAKAKIBARA H, LIN S, YAMAMOTO T, TAKASHI T, NISHIMURA A, ANGELES E R, QIAN Q, KITANO H, MATSUOKA M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745. doi: 10.1126/science.1113373.
doi: 10.1126/science.1113373 pmid: 15976269 |
[25] |
TSAI Y C, WEIR N R, HILL K, ZHANG W J, KIM H J, SHIU S H, SCHALLER G E, KIEBER J J. Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiology, 2012, 158(4): 1666-1684. doi: 10.1104/pp.111.192765.
doi: 10.1104/pp.111.192765 |
[26] |
ZHANG W, PENG K X, CUI F B, WANG D L, ZHAO J Z, ZHANG Y H, YU N N, WANG Y Y, ZENG D L, WANG Y H, ZHENG Z K, ZHANG K W. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnology Journal, 2020, 19(2): 335-350.
doi: 10.1111/pbi.13467 |
[27] | YU Y H, LI X F, YANG S D, BAN L, YU K K, MENG X X, LIU H N, PEI M S, WEI T L, GUO D L. CPPU-induced changes in energy status and respiration metabolism of grape young berry development in relation to Berry setting. Scientia Horticulturae, 2021, 283: 110084. |
[28] | YU K K, YU Y H, BIAN L, NI P Y, YANG Y J. Genome-wide identification of cytokinin oxidases/dehydrogenase (CKXs) in grape and expression during berry set. Scientia Horticulturae, 2021, 280(223): 109917. |
[29] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. (in Chinese) | |
[30] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998.00343.x.
doi: 10.1046/j.1365-313x.1998.00343.x |
[31] |
GU R L, FU J J, GUO S, DUAN F Y, WANG Z K, MI G H, YUAN L X. Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. Journal of Plant Growth Regulation, 2010, 29(4): 428-440. doi: 10.1007/s00344-010-9155-y.
doi: 10.1007/s00344-010-9155-y |
[32] |
LIU L X, WANG W Q, YANG J, ZHANG Y, ZHANG G Y, MA Z Y, WANG X F. Molecular cloning of Ve promoters from Gossypium barbadense and G. hirsutum and functional analysis in Verticillium wilt resistance. Plant Cell, Tissue and Organ Culture, 2018, 135(3): 535-544.
doi: 10.1007/s11240-018-1485-7 |
[33] |
MENG X B, ZHAO W S, LIN R M, WANG M, PENG Y L. Identification of a novel rice bZIP-type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Molecular Biology Reporter, 2005, 23(3): 301-302. doi: 10.1007/BF02772762.
doi: 10.1007/BF02772762 |
[34] |
WANG C H, GAO G, CAO S X, XIE Q J, QI H Y. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biology, 2019, 19(1): 75. doi: 10.1186/s12870-019-1678-1.
doi: 10.1186/s12870-019-1678-1 |
[35] |
CHEN C L, YUAN F, LI X Y, MA R C, XIE H. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. Journal of Integrative Agriculture, 2021, 20(5): 1314-1326.
doi: 10.1016/S2095-3119(20)63267-1 |
[36] |
VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic Acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47: 177-206. doi: 10.1146/annurev.phyto.050908.135202.
doi: 10.1146/annurev.phyto.050908.135202 pmid: 19400653 |
[37] |
LI F F, ZHANG L, JI H K, XU Z Y, ZHOU Y, YANG S S. The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat. Plant Science, 2020, 296: 110460. doi: 10.1016/j.plantsci.2020.110460.
doi: 10.1016/j.plantsci.2020.110460 |
[38] |
CONG L, WU T, LIU H T, WANG H B, ZHANG H Q, ZHAO G P, WEN Y, SHI Q R, XU L F, WANG Z G. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in ‘Dangshansu’ pear. Horticulture Research, 2020, 7: 13. doi: 10.1038/s41438-020-0285-5.
doi: 10.1038/s41438-020-0285-5 |
[39] |
WANG Z M, WONG D C J, WANG Y, XU G Z, REN C, LIU Y F, KUANG Y F, FAN P G, LI S H, XIN H P, LIANG Z C. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology, 2021, 186(3): 1660-1678. doi: 10.1093/plphys/kiab142.
doi: 10.1093/plphys/kiab142 pmid: 33752238 |
[40] | 杨盛迪, 郭大龙, 裴茂松, 刘海楠, 韦同路, 余义和. 干旱胁迫下葡萄AQP基因家族的鉴定及转录调控网络预测. 果树学报, 2021, 38(10): 1638-1652. |
YANG S D, GUO D L, PEI M S, LIU H N, WEI T L, YU Y H. Identification of grapevine AQP family and prediction for transcriptional regulatory network under drought stress. Journal of Fruit Science, 2021, 38(10): 1638-1652. (in Chinese) | |
[41] | 牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展. 分子植物育种, 2016(8): 2050-2059. |
NIU Y L, JIANG X M, XU X Y. Reaserch advances on transcription factor MYB gene family in plant. Molecular Plant Breeding, 2016(8): 2050-2059. (in Chinese) | |
[42] | CHEN W, WANG G, YI M. Whole-Genome identification and salt-and aba-induced expression trends of the Nicotiana tabacum CKX gene family. Research Square, 2021: 1-17. |
[1] | SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063. |
[2] | FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036. |
[3] | ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639. |
[4] | CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377. |
[5] | YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684. |
[6] | ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092. |
[7] | GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. |
[8] | JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359. |
[9] | YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226. |
[10] | DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820. |
[11] | WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674. |
[12] | WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276. |
[13] | LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727. |
[14] | MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131. |
[15] | FU ChaoRan, LI YaZi, WU Han, ZHAO Dan, GUO Wei, GUO XiaoChang. Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua [J]. Scientia Agricultura Sinica, 2021, 54(18): 3881-3891. |
|