Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4497-4506.doi: 10.3864/j.issn.0578-1752.2020.21.017

• HORTICULTURE • Previous Articles     Next Articles

Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy

LIU QianNan1,2(),HUANG Wei2,DING YunHua1,WANG YaQin1,HU LiPing1,ZHAO XueZhi1,HE HongJu1,LIU GuangMin1()   

  1. 1Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097
    2College of Agricultural and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, Hebei
  • Received:2020-03-09 Accepted:2020-04-20 Online:2020-11-01 Published:2020-11-11
  • Contact: GuangMin LIU E-mail:1367194814@qq.com;liuguangmin@nercv.org

Abstract:

【Objective】Broccoli is a cruciferous vegetable with high glucosinolates content. A large number of medical and nutritional studies have shown that regular consumption of broccoli can effectively reduce the incidence of a variety of cancers. It has been confirmed that the anticancer characteristics of broccoli are mainly related to the degradation products of glucosinolates, especially the degradation products of 4-methylthiobutyl-thioglucoside (RAA) and 3-methylindolythioglucoside (GBC). The aim of this study was to establish a rapid method for the determination of anticancer glucosinolates in broccoli by near infrared spectroscopy.【Method】In this study, the content of RAA and GBC in broccoli was determined by high performance liquid chromatography (HPLC). Based on the partial least squares (PLS), the spectral files obtained by NIRS scanning and chemical analysis results were progressed by different scattering methods (SNV, detrend, and SNV + detrend) and different derivative treatment (FD and SD). After the spectral data were preprocessed, the calibration equation was obtained and the model was verified.【Result】RAA and GBC were the main glucosinolates in broccoli, accounting for more than 60% of the total content. The results of 90 broccoli samples showed that the average content of RAA was the highest, the range of change was the largest, the average content was 6.20 μmol?g-1, and the range of change was 0.66-14.54 μmol?g-1; the average content of GBC was 4.43 μmol?g-1, and the range of change was 0.25-10.79 μmol?g-1. After screening, the correlation coefficients of calibration set and prediction set of RAA prediction model with SNV + SD treatment were 0.867 and 0.912, respectively; the correlation coefficients of calibration set and prediction set of GBC prediction model using SNV + SD treatment were 0.918 and 0.960, respectively. 【Conclusion】In this study, the rapid detection model of RAA and GBC was established, which laid a foundation for the rapid detection of the nutritional quality of broccoli and the rapid detection and utilization of superior broccoli germplasm resources.

Key words: broccoli, glucosinolates, 4-methylsulfonylbutyl-glucosinolate, 3-indolylmethyl-glucosinolate, near infrared spectroscopy, rapid determination

Fig. 1

High performance liquid chromatography of the glucosinolates"

Table 1

Content of glucosinolates in broccoli samples"

硫代葡萄糖苷成分
Glucosinolates components
含量范围
Content range (μmol?g-1)
平均值
Average (μmol?g-1)
RAA 0.66—14.54 6.20
GBC 0.25—10.79 4.43
PRO 0.01—3.42 0.72
NAP 0—0.23 0.07
4OH 0.03—1.86 0.53
4ME 0.05—1.16 0.42
NEO 0.06—11.84 2.91
ERU 0.01—1.96 0.27

Fig. 2

Original near-infrared spectrum of broccoli"

Fig. 3

Spectra treated by the SNV+Detrend+FD method"

Fig. 4

Spectra treated by the SNV+Detrend+SD method"

Table 2

Comparison of calibration equations of RAA in broccoli by different treatment methods"

光谱预处理方法
Spectral treatment method
RAA
定标相关系数
RSQ
矫正标准偏差
SEC
内部交叉验证误差
SECV
内部交叉验证相关系数 1-VR
原始光谱+FD Original spectrum+FD 0.814 1.436 1.461 0.808
原始光谱+SD Original spectrum+SD 0.848 1.263 1.330 0.831
SNV+Detrend+FD 0.832 1.363 1.402 0.823
SNV+Detrend+SD 0.859 1.214 1.275 0.844
SNV+FD 0.834 1.359 1.401 0.823
SNV+SD 0.867 1.209 1.269 0.846
Detrend+SD 0.794 1.511 1.535 0.788
Detrend+FD 0.839 1.319 1.385 0.823

Table 3

Comparison of GBC in broccoli with different treatment methods"

光谱预处理方法
Spectral treatment method
GBC
定标相关系数
RSQ
矫正标准偏差
SEC
内部交叉验证误差
SECV
内部交叉验证相关系数 1-VR
原始光谱+FD Original spectrum+FD 0.860 0.813 0.829 0.854
原始光谱+SD Original spectrum+SD 0.884 0.778 0.825 0.869
SNV+Detrend+FD 0.861 0.831 0.845 0.855
SNV+Detrend+SD 0.899 0.717 0.760 0.887
SNV+FD 0.862 0.846 0.867 0.854
SNV+SD 0.912 0.692 0.738 0.892
Detrend+FD 0.849 0.836 0.861 0.839
Detrend+SD 0.875 0.802 0.842 0.862

Fig. 5

RAA model result"

Fig. 6

GBC model result"

Table 4

Analysis of validation samples by calibration model"

组分
Components
外部检验 External inspection
验证集(个)
Validation set (n)
平均值 Mean 外部检验相关系数
RSQ
预测标准差
SEP
检验偏差
Bias
Lab NIR
RAA 20 6.325 6.166 0.918 1.429 0.143
GBC 20 4.319 4.467 0.960 0.780 0.064
[1] MURILLO G, MEHTAR G. Cruciferous vegetables and cancer prevention. Nutrition and Cancer, 2001,41:17-28.
doi: 10.1080/01635581.2001.9680607 pmid: 12094621
[2] HERR I, BUCHLER M W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treatment Reviews, 2010,36:377-383.
pmid: 20172656
[3] 何洪巨, 陈杭, W. H. Schnitzler. 芸薹属蔬菜中硫代葡萄糖苷鉴定与含量分析. 中国农业科学, 2002,35(2) : 192-197.
HE H J, CHEN H, SCHNITZLER W H. Glucosinolate composition and contents in brassica vegetables. Scientia Agricultura Sinica, 2002,35(2):192-197. (in Chinese)
[4] CLARKE D B. Glucosinolates, structures and analysis in food. Analytical Methods, 2010,2:310-325.
[5] MITHEN R F, DEKKER M, VERKERK R. Review the nutritional significance, biosynthesis and bioavailability of glucosinolates inhuman foods. Journal of the Science of Food and Agriculture, 2000,80:967-984.
[6] MORENO D A, CARVAJAL M, LOPEZ-BERENGUER C, GARCIA-VIGUERA C. Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 2006,41:1508-1522.
pmid: 16713696
[7] TALALAY P, FAHEY J W. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. Journal of Nutrition, 2001,131:3027-3033.
[8] 马越, 丁云花, 刘光敏, 胡丽萍, 赵学志, 何洪巨. 青花菜花球及叶片中硫代葡萄糖组分及含量分析. 江苏农业科学, 2016,44(7):300-303.
MA Y, DING Y H, LIU G M, HU L P, ZHAO X Z, HE H J. Analysis of glucosinolate composition and content in broccoli bulbs and leaves. Jiangsu Agricultural Sciences, 2016,44(7):300-303. (in Chinese)
[9] AGGARWAL B B, ICHIKAWA H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle, 2005,4:1201-1215.
pmid: 16082211
[10] WENG J R, TSAI C H, KULP S K, CHEN C S. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Letters, 2008,262:153-163.
pmid: 18314259
[11] RAMIREZ M C, SINGLETARY K. Regulation of estrogen receptorexpression in human breast cancer cells by sulforaphane. The Journal of Nutritional Biochemistry, 2009,20:195-201.
pmid: 18602823
[12] 杨燕宇, 陈社员. 油菜品质近红外反射光谱分析建模及应用研究进展. 作物研究, 2007,21(2):152-156.
YANG Y Y, CHEN S Y. Progress on modeling of rapeseed quality analysis by near-infrared reflectance spectra analysis and its application. Crop Research, 2007,21(2):152-156. (in Chinese )
[13] 李庆春, 王文真, 张玉良. 近红外漫反射光谱分析法(NIRS)在作物品质育种中的应用. 作物学报, 1992,18(3) : 235-240.
LI Q C, WANG W Z, ZHANG Y L. Application of NIR diffuse reflectence spectroscopy analysis in crop quality breeding. Acta Agronomica Sinica, 1992,18(3):235-240. (in Chinese )
[14] 鲍峰伟, 刘景艳. 近红外光谱分析技术在石油化工中的应用. 贵州化工, 2006,36(6):34-36, 37.
BAO F W, LIU J Y. Application of near infrared spectroscopy in petrochemical industry. Guizhou Chemical Industry, 2006,36(6):34-36, 37. (in Chinese)
[15] 董文宾, 王顺民. 近红外光谱技术在食品分析中的应用. 食品研究与开发, 2004,25(1):113-114.
DONG W B, WANG S M. Application of near-infrared spectroscopy in food analysis. Food Research and Development, 2004,25(1):113-114. (in Chinese)
[16] JHA S N, MATSUOKA T. Non-destructive determination of acid-brix ratio of tomato juice using near infrared spectroscopy. International Journal of Food Science and Technology, 2004,39(4):425-430.
[17] PEDRO A M K, FERREIRA M M C. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Analytical chemistry, 2005,77:2505-2511.
doi: 10.1021/ac048651r pmid: 15828787
[18] 覃方丽, 闵顺耕, 石正强, 马海燕, 车江旅. 鲜辣椒中糖份和维生素C含量的近红外光谱非破坏性测定. 分析试验室, 2003,22(4):59-61.
QIN F L, MIN S G, SHI Z Q, MA H Y, CHE J L. Nondestructive determination of sugar and vitamin C in raw pepper by near-infrared spectroscopy. Chinese Journal of Analysis Laboratory, 2003,22(4):59-61. (in Chinese)
[19] 王多加, 钟娇娥, 胡祥娜, 张兵, 周向阳, 金同铭, 吴启堂. 用傅里叶变换近红外光谱和偏最小二乘法测定蔬菜中硝酸盐含量. 分析化学, 2003,31(7):892.
WANG D J, ZHONG J E, HU X N, ZHANG B, ZHOU X Y, JIN T M, WU Q T. Determination of nitrate content in vegetables by Fourier transform near-infrared spectroscopy and partial least square method. Chinese Journal of Analytical Chemistry, 2003,31(7):892. (in Chinese)
[20] 金同铭, 崔洪昌. 苹果中蔗糖、葡萄糖、果糖、苹果酸的非破坏检测. 华北农学报, 1997,12(1):91-96.
JIN T M, CUI H C. Non-destructive determination of sucrose, glucose, fructose and malic acid in apple. Acta Agriculture Boreali-Sinica, 1997,12(1):91-96. (in Chinese)
[21] FONT R, DEL RIO M, FERNANDEZ-MARTINEZ J M, DE HARO-BAILON A. Use of near-infrared spectroscopy for screening the individual and total glucosinolate contents in Indian mustard seed (Brassica juncea L. Czern. & Coss.). Journal of Agricultural and Food Chemistry, 2004,52(11):3563-3569.
[22] CHEN J, LI L N, WANG S S, TAO X Y, WANG Y, SUN A D, HE H J. Assessment of glucosinolates in Chinese kale by Near-infrared spectroscopy. International Journal of Food Properties, 2014,17:1668-1679.
[23] 王耐红, 张敏, 王瑞, 李施蒙, 刘川. 甘蓝型油菜硫苷组分近红外检测模型的建立. 西南大学学报(自然科学版) , 2015,37(3):35-41.
WANG N H, ZHANG M, WANG R, LI S M, LIU C. The construction of near infrared inspection model for glucosinolate constituent content in Brassica napus L. Journal of Southwest University (Natural Science Edition), 2015,37(3):35-41. (in Chinese)
[24] 贺启川, 蒙大庆, 李芝凡, 胥岚, 汤天泽, 范启新, 陈军. 近红外光谱仪快速检测油菜硫苷、芥酸及油份含量数学模型的建立. 激光生物学报, 2009,18(6):815-818.
HE Q C, MENG D Q, LI Z F, XU L, TANG T Z, FAN Q X, CHEN J. Establishment of mathematical models for glucosinolates, erucic acid and oil content in rapeseeds by near-infrared reflectance spectroscopy. Acta Laser Biology Sinica, 2009,18(6):815-818. (in Chinese)
[25] 郭泽慧. 萝卜硫苷组分近红外定标模型的构建[D]. 杭州: 浙江农林大学, 2017.
GUO Z H. NIR spectroscopy model construction for glucosinolate content in radish[D]. Hangzhou: Zhejiang A & F University, 2017. (in Chinese)
[26] HE H, PING L, BONNEMA G, DEKKER M, VERKERK R. Genetic variation in glucosinolate content withinBrassica rapa vegetables. Acta Horticulturae, 2012,944:129-140.
[27] 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 2004,4:528-542.
CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique. Progress in Chemistry, 2004,4:528-542. (in Chinese)
[28] 陆婉珍, 袁洪福, 褚小立. 近红外光谱仪器. 第1版. 北京: 化学工业出版社, 2010: 29.
LU W Z, YUAN H F, CHU X L. Near Infrared Spectroscopy Instrument. 1st ed. Beijing: Chemical Industry Press, 2010: 29. (in Chinese)
[29] 张斌. 稻米氨基酸含量的近红外定标模型的创建及应用[D]. 杭州: 浙江大学, 2010.
ZHANG B. NIR spetroscopy model construction and application for amino acid composition in rice grain[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
[30] LEE Y, CHEN M, LEE J D, ZHANG J, LIN S, FU T, CHEN H, ISHIKAWA T, CHIANG S, KATON J, ZHANG Y, SHULGA Y V, BESTER A C, FUNG J, MONTELEONE E, WAN L, SHEN C, HSU C, PAPA A, CLOHESSY J G, TERUYA-FELDSTEIN J, JAIN S, WU H, MATESIC L, CHEN R, WEI W, PANDOLFI P P. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science, 2019, 364(6441): eaau0159.
doi: 10.1126/science.aax3501 pmid: 31097651
[31] WILLIAMS P, NORRIS K. Near Infrared Technology in the Agriculture and Food Industries. Washington, D.C.: American Association of Cereal Chemists, Inc, 1987: 35-37.
[32] 褚小立, 袁洪福, 陆婉珍. 基础数据准确性对近红外光谱分析结果的影响. 光谱学与光谱分析, 2005,25(6):886-889.
ZHU X L, YUAN H F, LU W Z. Effects of the accuracy of reference data on NIR prediction results. Spectroscopy and Spectral Analysis, 2005,25(6):886-889. (in Chinese)
[33] 张宁, 张德权, 李淑荣, 周洪杰, 李庆鹏, 方梦琳. 近红外光谱定性分析技术在食品安全中的应用研究进展. 食品与检测, 2008,33(8):218-221.
ZHANG N, ZHANG D Q, LI S R, ZHOU H J, LI Q P, FANG M L. Development of the application of qualitative analysis by near infrared spectroscopy in food safety. Food Science and Technology, 2008,33(8):218-221. (in Chinese)
[1] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[2] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[3] CHEN XuePing, LIU ShiYao, YIN NengWen, JING LingYun, WEI LiJuan, LIN Na, XIAO Yang, XU XinFu, LI JiaNa, LIU LieZhao. Construction of a Near Infrared Model for Detecting Stem Fiber Component Content and Lignin Monomer G/S in Rapeseed [J]. Scientia Agricultura Sinica, 2018, 51(4): 688-696.
[4] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[5] LI ZhanSheng, LIU YuMei, FANG ZhiYuan, YANG LiMei, ZHUANG Mu, ZHANG YangYong, Lü HongHao. Full Length Cloning, Expression and Correlation Analysis of P450 CYP79F1 Gene with Sulforaphane Content in Different Broccoli Organs [J]. Scientia Agricultura Sinica, 2018, 51(12): 2357-2367.
[6] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[7] LIU Ya-qiu, CHEN Hong-yan, WANG Rui-yan, CHANG Chun-yan, CHEN Zhe. Quantitative Analysis of Soil Salt and Its Main Ions Based on Visible/Near Infrared Spectroscopy in Estuary Area of Yellow River [J]. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935.
[8] LIU Jin, ZHANG Ji-fang, LIANG Jian-li, CHENG Feng, WU Jian, WANG Xiao-wu. Evolutionary Study of MAM Genes Which Function in the Process  of Glucosinolates Synthesis in Brassica rapa [J]. Scientia Agricultura Sinica, 2014, 47(21): 4309-4317.
[9] DING Yan-1, LI Li-Qian-1, CAO Rong-2, TANG Gen-Sheng-2, GU Zhen-Xin-1, HAN Yong-Bin-1. Effect of Enzymolysis Conditions on Glucosinolates in Rapeseed Meal and Identification of Their Degradation Products [J]. Scientia Agricultura Sinica, 2014, 47(2): 383-393.
[10] WANG Shi, CHENG Jie, SU Xiao-ou. Rapid Determination of Vanillin in Infant Formulas by Surface Enhanced Raman Spectroscopy [J]. Scientia Agricultura Sinica, 2014, 47(11): 2224-2232.
[11] TU Xing-Hao, ZHENG Hua, ZHANG Hong, GAN Jin, ZHANG Wen-Wen, LI Kun, XU Juan. Effects of High Temperature-Short Time Steam Blanching (HTSTSB) on Myrosinase Activity and Nutrients of Maca [J]. Scientia Agricultura Sinica, 2012, 45(21): 4447-4456.
[12] ZHU Da-zhou; HUANG Wen-jiang; MA Zhi-hong; ZHAO Liu ; YANG Xiao-dong; WANG Ji-hua; . Wheat Quality Monitoring by NIR Network [J]. Scientia Agricultura Sinica, 2011, 44(9): 1806-1814.
[13] YAO Xue-qin,XIE Zhu-jie,LI Guang-qing,QIU Hai-rong,LI Yuan
. Analysis of Glucoraphanin and Sulforaphane Contents in Different Organs of Broccoli
[J]. Scientia Agricultura Sinica, 2011, 44(4): 851-858 .
[14] YI Shi-lai,,DENG Lie,,HE Shao-lan,ZHENG Yong-qiang,WANG Ji-hua,WANG Liang,ZHAO Xu-yang. The Near Infrared Spectrum Based Models for Monitoring Fe, Mn, and Zn Content of the Purple Soil in Citrus Orchard [J]. Scientia Agricultura Sinica, 2011, 44(11): 2318-2324 .
[15]

. The Role of D1 Protein Turnover and Xanthophylls Cycle in Protecting Photosynthetic Apparatus of Broccoli Leaves Against Photodamage
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1582-1589 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!