Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (5): 909-920.doi: 10.3864/j.issn.0578-1752.2019.05.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Eating Quality and Physicochemical Properties in Nanjing Rice Varieties

ZHAO ChunFang,YUE HongLiang,HUANG ShuangJie,ZHOU LiHui,ZHAO Ling,ZHANG YaDong,CHEN Tao,ZHU Zhen,ZHAO QingYong,YAO Shu,LIANG WenHua,LU Kai,WANG CaiLin()   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice Research and Development Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014
  • Received:2018-09-11 Accepted:2018-10-19 Online:2019-03-01 Published:2019-03-12
  • Contact: CaiLin WANG E-mail:clwang@jaas.ac.cn

Abstract:

【Objective】 The aim of this study was to confirm the main characteristics of cooking and eating quality in three Nanjing rice varieties and to clarify the differences between them and their parents, so as to provide theoretical basis for improvement of high grain quality rice varieties. 【Method】 Three Japonica rice varieties (Nanjing 46, Nanjing 9108, Nanjing 5055) and their parents (Kanto 194, Wujing 13 and Wuxiangjing 14) were used as experimental materials. Twenty-five eating quality related traits, including physicochemical characteristics, amylopectin branching structure, RVA spectrum properties, thermal properties and taste characteristics of cooked rice, were measured and the differences were compared among the six rice varieties. The relationships between physicochemical properties and taste characteristics of cooked rice, and between chemical composition, amylopectin structure and functional characteristics were analyzed. 【Result】 Three Nanjing japonica rice varieties were consistent in the most of the investigated traits. Compared to Wujing 13 and Wuxiangjing 14, three Nanjing varieties contained lower amylose content, peak time, though, final, setback and consistent viscosity, retrogradation enthalpy and rate, and hardness of cooked rice, and higher gel consistency, breakdown viscosity, stickiness and comprehensive value of cooked rice. In amylopectin structure, the proportion of A-chain (DP6-12) was higher, while that of B1-chain (DP13-24) was smaller. The three Nanjing varieties were more similar to Kanto 194 in most of the investigated traits, indicating that the eating quality traits of three Nanjing varieties were inherited from Kanto 194. There were differences among three Nanjing varieties, Nanjing 46 had lower protein content and thermal parameters, Nanjing 9108 contained higher lipid content, and Nanjing 5055 had higher pasting temperature than other two Nanjing varieties. Correlation analysis showed that except for protein content, gelatinization temperature and peak time, significant or extremely significant correlations between the comprehensive value of cooked rice and most of physicochemical properties were identified. Further analysis showed that physicochemical characteristics of rice were mainly contributed by amylose content. 【Conclusion】 The excellent eating quality characteristics of three Nanjing rice varieties have been mostly attributed to lower gelatinization and retrogradation, higher gel consistency and stickiness, shorter gelatinization time and greater breakdown. Lower amylose content was the main cause for high taste quality formation of cooked rice, whereas protein content and amylopectin branching ratio played roles in gelatinization and retrogradation.

Key words: rice, cooking and eating quality, amylose content, amylopectin chain length, RVA spectrum

Fig. 1

Differences of palatability of cooked rice of Nanjing rice varieties and their parents Different lowercase letters indicate significantly different (P <0.05) "

Table 1

The differences of main chemical compositions in milled rice of Nanjing rice varieties and their parents"

品种
Variety
水分含量
Moisture (%)
总淀粉含量
Total starch content (%)
蛋白质含量
Protein content (%)
脂肪含量
Lipid content (%)
直链淀粉含量
Amylose content (%)
胶稠度
Gel consistency (mm)
直链淀粉含量
AC (%)-2016
蛋白质含量
PC (%)-2016
南粳46 NJ46 13.0±0.3a 80.2±1.13a 7.25±0.06b 0.78±0.03b 10.49±0.18c 85.0±2.0a 9.97±0.14c 7.56±0.06b
南粳5055 NJ5055 12.8±0.2a 80.5±1.84a 7.91±0.03a 0.75±0.00b 9.51±0.21c 86.7±1.5a 9.74±0.18c 8.14±0.05a
南粳9108 NJ9108 12.6±0.3a 80.6±1.45a 7.80±0.14a 0.87±0.01a 9.90±0.12c 84.3±2.5a 9.56±0.17c 8.09±0.04a
关东194 Kanto194 12.6±0.2a 80.2±0.89a 7.39±0.04b 0.78±0.01b 7.57±0.21d 83.7±1.2a 8.42±0.24d 7.51±0.02b
武粳13 WJ13 12.7±0.3a 80.3±1.14a 8.00±0.26a 0.72±0.02b 16.45±0.38b 72.0±2.0b 16.88±0.21b 8.34±0.04a
武香粳14 WXJ14 12.5±0.3a 80.8±1.53a 7.87±0.19a 0.25±0.01c 17.98±0.13a 74.7±1.5b 18.32±0.31a 8.14±0.03a

Table 2

RVA profile characteristics in Nanjing rice varieties and their parents"

品种
Variety
峰值黏度
PV (cP)
热浆黏度
TV (cP)
最终黏度
FV (cP)
崩解值
BDV (cP)
消减值
SBV (cP)
回复值
CSV (cP)
成糊温度
PaT (℃)
峰值时间
PeT (min)
南粳46 NJ46 2495.0±128.7b 1304.5±67.2b 1892.5±61.5b 1190.5±61.5b -452.5±279.3b 588.0±5.7b 71.0±0.6c 6.3±0.2b
南粳5055 NJ5055 2577.5±111.0b 1605.0±129.0b 2099.0±108.9b 972.5±12.0b -478.5±2.1b 494.0±9.9b 72.0±0.3b 6.4±0.1b
南粳9108 NJ9108 2344.0±96.2b 1349.5±70.0b 1920.0±36.8b 1058.0±76.4b -424.0±132.9b 570.5±33.2b 71.0±0.8c 6.2±0.3b
关东194 Kanto194 2904.0±8.5a 1131.5±68.6c 1540.5±53.0c 1522.5±293.5a -1113.5±309.0c 409.0±15.6c 76.0±1.4a 5.2±0.1c
武粳13 WJ13 2835.5±132.2a 2110.5±224.2a 3108.5±41.7a 575.0±144.3c 273.0±90.5a 998.0±165.8a 72.5±1.0b 6.5±0.4a
武香粳14 WXJ14 2637.0±140.4b 1855.5±180.7a 2947.5±190.2a 831.5±30.4b 310.5±50.2a 1092.0±90.5a 72.1±0.2b 6.5±0.1a

Fig. 2

Rapid viscosity profiles of Nanjing rice varieties and their parents"

Table 3

Thermal properties of Nanjing rice varieties and their parents"

品种
Variety
起始温度
To (℃)
峰值温度
Tp (℃)
最终温度
Tc (℃)
糊化焓
?Hgel (J·G-1)
回生焓
?Hret (J·G-1)
回生度
R (%)
南粳46 NJ46 60.71±0.61d 67.52±0.77c 78.64±1.55ab 6.32±0.98b 0.41±0.01c 6.62±0.79c
南粳5055 NJ5055 63.09±0.21bc 70.04±1.74ab 79.67±3.22ab 7.36±0.78a 0.48±0.04c 6.62±1.28c
南粳9108 NJ9108 64.26±0.14ab 70.79±0.31ab 80.72±0.16a 7.96±0.96a 0.57±0.02c 7.19±1.18c
关东194 Kanto194 65.45±0.93a 72.82±2.90a 82.89±3.74a 8.05±0.64a 0.50±0.09c 6.32±1.58c
武粳13 WJ13 62.67±0.48bc 69.66±0.95ab 81.96±1.83a 5.88±0.05c 1.98±0.21a 33.6±3.93a
武香粳14 WXJ14 61.84±0.22cd 67.97±0.03b 77.79±0.70b 6.38±1.05b 0.88±0.08b 14.2±3.58b

Fig. 3

Amylopectin chain length distribution of Nanjing rice varieties and their parents a: The distribution of amylopectin chain length; b: The DP differences of three Nanjing rice varieties to Kanto 194; c: The DP differences of Nanjing 5055 to WJ13; d: The DP differences of Nanjing 46 and Nanjing9108 to WXJ14"

Table 4

Correlation between physicochemical properties and eating quality parameters of cooked rice of rice flours"

食味特性
Taste properties
直链淀粉含量
AC
蛋白质含量
PC
脂肪含量
LC
A链
A Chain
B1链
B1 Chain
胶稠度
GC
峰值黏度
PV
热浆黏度
TV
最终黏度
FV
崩解值
BDV
食味值Taste value -0.878** -0.570 0.712 0.827* -0.820* 0.924** -0.578 -0.874** -0.904** 0.701
硬度值Hardness 0.943** 0.558 -0.795* -0.742 0.703 -0.894** 0.402 0.894** 0.941** -0.757*
黏度值Stickiness -0.938** -0.566 0.781* 0.814* -0.772* 0.943** -0.467 -0.874** -0.929** 0.721
食味特性
Taste properties
消减值
SBV
回复值
CSV
成糊温度
PaT
峰值时间
PeT
起始温度
To
峰值温度
Tp
终止温度
Tc
糊化焓
?Hgel
回生焓
?Hret
回生度
R
食味值Taste value -0.762* -0.871** -0.131 -0.501 0.337 0.284 0.054 0.850* -0.791* -0.801*
硬度值Hardness 0.857* 0.930** -0.068 0.651 -0.521 -0.492 -0.278 -0.855* 0.716 0.737
黏度值Stickiness -0.826* -0.934** -0.033 -0.546 0.400 0.391 0.194 0.827* -0.758* -0.769*

Table 5

Correlation between main chemical components and amylopectin structure and physicochemical properties"

性状Characteristics 直链淀粉含量AC 蛋白质含量PC 脂肪含量LC A链∑DP 6-12 B1链∑DP 13-24
胶稠度GC -0.910** -0.519 0.599 0.941** -0.872*
峰值黏度PV 0.154 -0.004 -0.173 -0.515 0.616
热浆黏度TV 0.879** 0.794* -0.512 -0.795* 0.790*
最终黏度FV 0.963** 0.716 -0.637 -0.814* 0.762*
崩解值BDV -0.822* -0.818* 0.374 0.703 -0.674
消减值SBV 0.956** 0.666 -0.624 -0.686 0.588
回复值CSV 0.998** 0.555 -0.751 -0.775* 0.666
成糊温度PaT -0.292 -0.257 0.037 -0.115 0.230
峰值时间PeT 0.726 0.582 -0.417 -0.349 0.289
起始温度To -0.615 -0.124 0.382 0.169 -0.048
峰值温度Tp -0.649 -0.137 0.502 0.112 0.051
终止温度Tc -0.474 -0.119 0.528 -0.154 0.320
糊化焓?Hgel -0.818* -0.463 0.393 0.821* -0.793*
回生焓?Hret 0.712 0.592 -0.190 -0.970** 0.965**
回生度R 0.731 0.567 -0.209 -0.960** 0.950**
[1] 王才林, 张亚东, 朱镇, 赵凌, 陈涛, 林静 .优质水稻新品种南粳46的选育与应用. 中国稻米,2008(3):38-40.
doi: 10.3969/j.issn.1006-8082.2008.03.011
WANG C L, ZHANG Y D, ZHU Z, ZHAO L, CHEN T, LIN J .Breeding and application of a new high quality rice variety Nanjing 46.China Rice ,2008(3):38-40. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2008.03.011
[2] 王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌 . 优良食味粳稻新品种南粳9108的选育与利用. 江苏农业科学, 2013,41(9):86-88.
doi: 10.3969/j.issn.1002-1302.2013.09.032
WANG C L, ZHANG Y D, ZHU Z, YAO S, ZHAO Q Y, CHEN T, ZHOU L H, ZHAO L . Development of a new Japonica rice variety Nan-jing 9108 with good eating quality.Jiangsu Agricultural Sciences , 2013,41(9):86-88. (in Chinese)
doi: 10.3969/j.issn.1002-1302.2013.09.032
[3] 王才林, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝 .优良食味粳稻新品种南粳5055的选育及利用. 农业科技通讯,2012(2):84-87.
doi: 10.3969/j.issn.1000-6400.2012.02.039
WANG C L, ZHANG Y D, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, ZHOU L H, YAO S . Breeding and application of new good eating quality rice variety Nanjing 5055. Bulletin of Agriculture Science and Technology , 2012(2):84-87. (in Chinese)
doi: 10.3969/j.issn.1000-6400.2012.02.039
[4] ZHANG C Q, ZHOU L H, ZHU Z B, LU H W, ZHOU X Z, QIAN Y T, LI Q F, LU Y, GU M H, LIU Q Q . Characterization of grain quality and starch fine structure of two Japonica rice( Oryza Sativa ) varieties with good sensory properties at different temperatures during the filling stage. Journal of Agriculture and Food Chemistry , 2016,64:4048-4057.
[5] LI H Y, GILBERT R G . Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018,195:9-17.
doi: 10.1016/j.carbpol.2018.04.065
[6] ZHANG C Q, CHEN S J, REN X Y, LU Y, LIU D R, CAI X L, LI Q F, GAO J P, LIU Q Q . Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. Journal of Agriculture and Food Chemistry, 2017,65:2222-2232.
doi: 10.1021/acs.jafc.6b05448 pmid: 28241110
[7] WICKRAMASINGHE H A M, NODA T . Physicochemical properties of starches from Sri Lankan rice varieties.Food Science and Technology Research,2008,14(1):49-54.
doi: 10.3136/fstr.14.49
[8] BAO J S . Towards understanding of the genetic and molecular basis of eating and cooking quality of rice. Cereal Foods World, 2012,57:148-156.
doi: 10.1094/CFW-57-4-0148
[9] BAO J S, XIAO P, HIRATSUKA M, SUN M, UMEMOTO T . Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch, 2009,61(8):431-437.
doi: 10.1002/star.200800115
[10] CHUNG H J, LIU Q, LEE L, WEI D Z . Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 2011,25:968-975.
doi: 10.1016/j.foodhyd.2010.09.011
[11] NAKAMURA Y, SAKURAI A, INABA Y, KIMURA K, IWASAWA N, NAGAMINE T . The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch, 2002,54:117-131.
doi: 10.1002/1521-379X(200204)54:3/4&lt;117::AID-STAR117&gt;3.0.CO;2-2
[12] HANASHIRO I, ABE J I, HIZUKURI S . A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research, 1996,283:151-159.
doi: 10.1016/0008-6215(95)00408-4
[13] CHEETHAM N W H, TAO L . Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydrate Polymers, 1998,36(4):277-284.
doi: 10.1016/S0144-8617(98)00007-1
[14] 李丁鲁, 张建明, 王慧, 李茂柏, 朴钟泽 . 长江下游地区部分优质粳稻品种与越光稻米支链淀粉结构特征及品质性状比较. 中国水稻科学, 2010,24(4):379-384.
doi: 10.3969/j.issn.1001-7216.2010.04.008
LI D L, ZHANG J M, WANG H, LI M B, PIAO Z Z . Differences in amylopectin structure and grain quality of rice between some high-quality Japonica varieties from the lower Yangtze River region, China and Koshihikari from Niigata, Japan.China Journal of Rice Science , 2010,24(4):379-384. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2010.04.008
[15] NAKAMURA Y, SATO A, JULIANO B O . Short-chain-length distribution in debranched rice starches differing in gelatinization temperature or cooked rice hardness. Starch, 2006,58:155-60.
doi: 10.1002/star.200500463
[16] 蔡一霞, 王维, 朱智伟, 张祖建, 杨建昌, 朱庆森 . 不同类型水稻支链淀粉理化特性及其与米粉糊化特征的关系. 中国农业科学, 2006,39(6):1122-1129.
doi: 10.3321/j.issn:0578-1752.2006.06.005
CAI Y X, WANG W, ZHU Z W, ZHANG Z J, YANG J C, ZHU Q S . The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties. Scientia Agricultura Sinica , 2006,39(6):1122-1129. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2006.06.005
[17] 贺晓鹏, 朱昌兰, 刘玲珑, 王方, 傅军如, 江玲, 张文伟, 刘宜柏, 万建民 . 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010,36(2):276-284.
doi: 10.3724/SP.J.1006.2010.00276
HE X P, ZHU C L, LIU L L, WANG F, FU J R, JIANG L, ZHANG W W, LIU Y B, WAN J M . Difference of amylopectin structure among various rice genotypes differing in grain qualities and its relation to starch physicochemical properties. Acta Agronomica Sinica , 2010,36(2):276-284. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00276
[18] TONG C, CHEN Y, TANG F, XU F, HUANG Y, CHEN H, BAO J . Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chemistry, 2014,161(11):239-245.
doi: 10.1016/j.foodchem.2014.04.011 pmid: 24837946
[19] 李刚, 邓其明, 李双成, 王世全, 李平 . 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009,23(1):99-102.
doi: 10.3969/j.issn.1001-7216.2009.01.015
LI G, DENG Q M, LI S C, WANG S Q, LI P . Correlation analysis between RVA profile characteristics and quality in rice. China Journal of Rice Science , 2009,23(1):99-102. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2009.01.015
[20] LII C Y, TSAI M L, TSENG K H . Effect of amylose content on the rheological property of rice starch. Cereal Chemistry, 1996,73:415-420.
doi: 10.1021/bp960041s
[21] SINGH N, PAL N, MAHAJAN G, SINGH S, SHEVKANI K . Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydrate Polymers, 2011,86:219-225.
doi: 10.1016/j.carbpol.2011.04.039
[22] GU J F, CHEN J, CHEN L, WANG Z Q, ZHANG H, YANG J C . Grain quality changes and responses to nitrogen fertilizer of japonica rice varieties released in the Yangtze River Basin from the 1950s to 2000s. The Crop Journal , 2015,3(4):285-297.
[23] 谢黎虹, 罗炬, 唐绍清, 陈能, 焦桂爱, 绍高能, 魏详进, 胡培松 . 蛋白质影响水稻米饭食味品质的机理研究. 中国水稻科学, 2013,27(1):91-96.
doi: 10.3969/j.issn.10017216.2013.01.013
XIE L H, LUO J, TANG S Q, CHEN N, JIAO G A, SHAO G N, WEI X J, HU P S . Proteins affect rice eating quality properties and its mechanism. Chinese Journal of Rice Science , 2013,27(1):91-96. (in Chinese)
doi: 10.3969/j.issn.10017216.2013.01.013
[24] HAMAKER B R, GRIFFIN V K . Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chemistry, 1993,70:377-380.
[25] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪 . 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663.
doi: 10.3321/j.issn:0578-1752.2005.04.003
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H . Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica , 2005,38(4):657-663. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2005.04.003
[26] 朱满山, 汤述翥, 顾铭洪 . RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005,21(8):59-64.
doi: 10.3969/j.issn.1000-6850.2005.08.017
ZHU M S, TANG S Z, GU M H . Progresses in the study on the assessing, genetic and breeding of the rice starch RVA profile in rice eating quality. Chinese Agricultural Science Bulletin , 2005,21(8):59-64. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2005.08.017
[27] 吴殿星, 舒庆尧, 夏英武 . 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性. 中国水稻科学, 2001,15(1):57-59.
doi: 10.3321/j.issn:1001-7216.2001.01.011
WU D X, SHU Q Y, XIA Y W . Rapid identification of starch viscosity property of early Indica rice varieties with different apparent amylose content by RVA profile. China Journal of Rice Science , 2001,15(1):57-59. (in Chinese)
doi: 10.3321/j.issn:1001-7216.2001.01.011
[28] YAN C J, TIAN Z X, FANG Y W, YANG Y C, LI J . Genetic analysis of starch paste viscosity parameters in glutinous rice ( Oryza sativa L.). Theoretical and Applied Genetics , 2011,122(1):63-76.
doi: 10.1007/s00122-010-1423-5 pmid: 202020202020202020202020
[29] VANDEPUTTE G E, VERMEYLEN R, GEEROMS J, DELCOUR J A Rice starches. I . Structural aspects provide insight into crystallinity characteristics and gelatinization behavior of granular starch. Journal of Cereal Science, 2003,38:43-52.
doi: 10.1016/S0733-5210(02)00140-6
[30] LAI V M F, LU S, LII C Y . Molecular characteristics influencing retrogradation kinetics of rice amylopectins. Cereal Chemistry, 2000,77(3):272-278.
doi: 10.1094/CCHEM.2000.77.3.272
[31] UMEMOTO T, YANO M, SATOH H, SHOMURA A, NAKAMURA Y . Mapping of a gene responsible for the difference in amylopectin structure between japonica -type and indica -type rice varieties. Theoretical and Applied Genetics , 2002,104:1-8.
[32] SATOH H, NISHI A, YAMASHITA K, TAKEMOTO Y, TANAKA Y, HOSAKA Y, SAKURAI A, FUJITA N, NAKAMURA Y . Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology, 2003,133(3):1111.
doi: 10.1104/pp.103.021527 pmid: 14526120
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!