Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2814-2827.doi: 10.3864/j.issn.0578-1752.2020.14.006

• SPECIAL FOCUS: SORGHUM BREEDING AND CULTIVATION • Previous Articles     Next Articles

Dwarfing Effect and Molecular Mechanism of An Elite Sorghum Male Sterile Line 01-26A in Its Hybrids

ZOU JianQiu(),WANG YanQiu,LI JinHong,ZHU Kai()   

  1. Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
  • Received:2019-07-31 Accepted:2019-09-22 Online:2020-07-16 Published:2020-08-10
  • Contact: Kai ZHU E-mail:jianqiuzou@126.com;zhukai72@163.com

Abstract:

【Objective】The mechanized production of sorghum is the inevitable direction of future development, and the ideal plant type is the basis and key factor for mechanized production. The dwarf male sterile line 01-26A was found a unique effect in reducing the plant height in F1 generation when crossed with available grain sorghum restorer lines. Therefore, a study was conducted to determine the genetic mechanism and regulation mechanism of plant height dwarfing by its genetic effects and regulatory gene loci. 【Method】This study used sorghum male sterile line 01-26A (A1 cytoplasm) with dwarf plant height effect and sorghum male sterile line 7050A (A2 cytoplasm) without dwarf plant height effect as the test material, focusing on 7 restorer lines, including 6 grain restorer lines and 1 sweet sorghum restorer line, and their cross F1 generation hybrids, the genetic effects of plant height, number of nodes, the total internode length under peduncle, the peduncle length and the head length were analyzed, the gene loci of Dw1 to Dw3 related with the plant height were also measured and analyzed. Dw4 was not included because it had not been cloned.【Result】the male sterile line 01-26A had a significant dwarf effect on the plant height of grain sorghum, and its hybrids is 15.8% lower than that of the 7050A, generally, the absolute value of plant height did not exceed 160 cm. The plant height of F1 generation derived from 01-26A with sweet sorghum restorer line had not been obviously reduced, so it had not dwarf effect on sweet sorghum hybrid. The genetic dwarf effect of 01-26A was mainly manifested in the shortening of the internode length under peduncle, and the internode length under peduncle has more correlated with the plant height variation. The peduncle length reduction of F1 crossed by 01-26A with restorer lines is another reason of plant becoming shorter, but the effect was less than that of the internode length under peduncle. While the head length had much little effect on plant height variation. The dwarf genotype (Dw1 to Dw3) of 01-26A was determined by PCR and sequencing of Dw1 to Dw3 genes. And combined the analysis of plant height genetic data of multiple cross combinations, the plant height genotype of 01-26A was deduced to be dw1dw1Dw2 Dw2dw3dw3dw4dw4, a 3-dwarf sorghum sterile line. In addition, by the analysis of plant height regulation genes, we found that the dw1 and dw3 of 01-26A may had a greater effect on the plant height of grain sorghum, while the presence of DW2 was the immanent cause for not dwarfing on sweet sorghum F1.【Conclusion】 01-26A was likely to be a 3-dwarf sorghum male sterile line with the genotype of dw1dw1Dw2Dw2dw3dw3dw4dw4. It could achieve dwarf regulation of its F1 by reducing the internode length (main effect) and the peduncle length (secondary effect). However, 01-26A, had not been found obvious dwarfing effect when crossed with sweet sorghum, which may be due to the presence of Dw2.

Key words: sorghum, plant height, genetic effect, gene locus

Table 1

The pedigree of two sorghum male sterile lines and seven sorghum restorer lines"

材料Material 系谱 Pedigree
01-26A 以7050B×P932065B为母本,以天变624B×296B×428B为父本去雄杂交,育成01-26B并经过多代回交转育而成
Take 7050B×P932065B as female parent, and Tianbian 624B×296B×428B was used as male parent to cross, the developed 01-26B was transformed into 01-26A by multiple backcross
7050A 以421B(SPL–132B)为母本,以TAM428B为父本去雄杂交,育成7050B并经过多代回交转育而成
The 421B (SPL-132B) was used as the female parent, and the TAM428B was used as the male parent to cross, the developed 7050B was transformed into by multiple backcross
LNR-4 以9544为母本,7037为父本杂交 Take 9544 as the female parent and 7037 as the male parent to cross
NK1 以LR9198为母本,0-01为父本杂交 Take LR9198 as the female parent and 0-01 as the male parent to cross
0-01 以4003×忻粱52为母本,116为父本杂交 Take 4003×Xinliang 52 as the female parent and 116 as the male parent to cross
3535 以T719为母本,0-01为父本杂交 Take T719 as the female parent and 0-01 as the male parent to cross
3550 以矮大穗为母本,LR625为父本杂交 Take short stigma as the female parent and LR625 as the male parent to cross
BR92 以F15为母本,LR9198为父本杂交 Take F15 as the female parent and LR9198 as the male parent to cross
LTR168 以辽宁地方农家品种为母本,ICSV111为父本杂交 Take Liaoning local variety as the female parent and ICSV111 as the male parent to cross

Table 2

PCR primer amplification sequence"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
Dw1-F TGGCGGTCCAACGTCTAAT
Dw1-R CCTGAAGTATGGCGTGTCT
Dw2-F CAGTTCAAATCAACGAGGAG
Dw2-R TCCGTCGTGAAATGAGAATA
Dw3-F CGTCATCGTCCAGAACTCGG
Dw3-R GACCCTTGCTCCACCACCTT

Table 3

Genetic effects of plant height of sterile lines, restorer lines and F1 hybrids"

品种类型
Variety type
组合(母本×父本)
Cross (♀×♂)
株高Plant height (cm) F1株高
平均值
F1 X (cm)
F1株高变
异系数
CV (%)
F1株高与亲本关联 F1 PH associated with the parent
平均值
Average
小于低亲
PH<PH (Min)
双亲间
Between parents
大于高亲
PH> PH(Max)
01-26A/LNR-4 103.5 145.3 124.4 141.3 13.6 +
粒用
Grain sorghum
01-26A/3550 103.5 164.8 134.2 152.5 17.4 +
01-26A/0-01 103.5 139.2 121.4 141.9 18.7 +
01-26A/BR92 103.5 162.4 133.0 146.6 15.3 +
01-26A/NK1 103.5 139.1 121.3 159.7 22.9 +
01-26A/3535 103.5 145.5 124.5 144.8 10.3 +
均值Average 103.5 149.4 126.5 147.8 16.4
7050A/LNR-4 136.7 145.3 141.0 173.1 18.4 +
7050A/3550 136.7 164.8 150.8 185.7 23.7 +
7050A/0-01 136.7 139.2 138.0 178.4 15.7 +
7050A/BR92 136.7 162.4 149.6 179.2 16.3 +
7050A/NK1 136.7 139.1 137.9 177.6 14.9 +
7050A/3535 136.7 145.5 141.1 159.6 10.9 +
均值Average 136.7 149.4 143.1 175.6 16.7
T检验T test * ns ** ns
甜高粱
Sweet sorghum
01-26A/LTR168 103.5 247.3 175.4 341.7 21.4 +
7050A/LTR168 136.7 247.3 192.0 355.3 20.8 +
T检验 T test * ns * ns

Table 4

Genetic effects of stalk height under the peduncle of male sterile lines, restorer lines and F1 hybrids"

品种类型
Variety type
组合(母本×父本)
Cross (♀×♂)
穗柄下茎秆高度
Stalk height under peduncle(cm)
F1穗柄下
茎秆高度
平均值
F1 X (cm)
F1穗柄下茎秆高度变异系数
CV(%)
F1穗柄下茎秆高度与亲本关联
F1 SP associated with the parent
平均值Average 小于低亲
SP<SP(Min)
双亲间
Between parents
大于高亲
SP> SP(Max)
01-26A/LNR-4 47.6 82.2 64.9 75.3 14.7 +
粒用
Grain sorghum
01-26A/3550 47.6 97.4 72.5 81.6 16.9 +
01-26A/0-01 47.6 83.3 65.5 78.1 22.1 +
01-26A/BR92 47.6 105.6 76.6 80.6 12.9 +
01-26A/NK1 47.6 86.9 67.3 92.7 17.4 +
01-26A/3535 47.6 86.5 67.1 80.4 16.5 +
均值 Average 47.6 90.3 69.0 81.5 16.8
7050A/LNR-4 74.3 82.2 78.3 92.6 13.3 +
7050A/3550 74.3 97.4 85.9 115.3 21.6 +
7050A/0-01 74.3 83.3 78.8 107.7 19.5 +
7050A/BR92 74.3 105.6 90.0 103.4 28.7 +
7050A/NK1 74.3 86.9 80.6 101.8 23.1 +
7050A/3535 74.3 86.5 80.4 89.7 15.4 +
均值 Average 74.3 90.3 82.3 101.8 20.3
T检验 T test * ns ** ns
甜高粱
Sweet sorghum
01-26A/LTR168 47.6 183.4 115.5 264.6 25.2 +
7050A/LTR168 74.3 183.4 128.9 277.2 25.6 +
T检验 T test * ns * ns

Table 5

Genetic effects of peduncle length of male sterile lines, restorer lines and F1 hybrids"

品种类型
Variety type
组合(母本×父本)
Cross(♀×♂)
穗柄长 Peduncle length (cm) F1穗柄长
平均值
F1 X(cm)
F1穗柄长
变异系数
CV (%)
F1穗柄长与亲本关联 F1 PL associated with the parent
平均值Average 小于低亲
PL<PL(Min)
双亲间
Between parents
大于高亲
PL> PL(Max)
01-26A/LNR-4 29.7 35.5 32.6 38.1 6.5 +
粒用
Grain sorghum
01-26A/3550 29.7 39.1 34.4 41.5 12.3 +
01-26A/0-01 29.7 29.2 29.5 33.7 11.1 +
01-26A/BR92 29.7 32.8 31.3 38.2 7.6 +
01-26A/NK1 29.7 27.4 28.6 40.9 4.8 +
01-26A/3535 29.7 31.6 30.7 36.5 8.5 +
均值 Average 29.7 32.6 31.2 38.2 8.5
7050A/LNR-4 33.1 35.5 34.3 49.7 6.5 +
7050A/3550 33.1 39.1 36.1 40.3 8.7 +
7050A/0-01 33.1 29.2 31.2 36.9 11.3 +
7050A/BR92 33.1 32.8 33.0 46.5 7.2 +
7050A/NK1 33.1 27.4 30.3 40.6 6.2 +
7050A/3535 33.1 31.6 32.4 42.8 8.7 +
均值 Average 33.1 32.6 32.9 42.8 8.1
T检验 T test ns ns * ns
甜高粱
Sweet sorghum
01-26A/LTR168 29.7 37.3 33.5 49.9 8.1 +
7050A/LTR168 33.1 37.3 35.2 52.1 6.5 +
T检验 T test ns ns ns ns

Table 6

Genetic effects of head length of male sterile lines, restorer lines and F1 hybrids"

品种类型
Variety type
组合(母本×父本)
Cross (♀×♂)
穗长 Head length (cm) F1代穗长
平均值
F1 X (cm)
F1代穗长
变异系数
CV (%)
F1穗长与亲本关联 F1 HL associated with the parent
平均值Average 小于低亲
HL<HL(Min)
双亲间
Between parents
大于高亲
HL> HL(Max)
01-26A/LNR-4 26.2 27.6 26.9 27.9 2.1 +
粒用
Grain sorghum
01-26A/3550 26.2 28.3 27.3 29.4 1.4 +
01-26A/0-01 26.2 26.7 26.4 30.1 4.5 +
01-26A/BR92 26.2 24.0 25.1 27.8 5.3 +
01-26A/NK1 26.2 24.8 25.4 26.1 2.9 +
01-26A/3535 26.2 27.4 26.7 27.9 3.2 +
均值 Average 26.2 26.5 26.3 28.2 3.2
7050A/LNR-4 29.3 27.6 28.5 30.8 4.2 +
7050A/3550 29.3 28.3 28.8 30.1 2.6 +
7050A/0-01 29.3 26.7 28.0 33.8 3.9 +
7050A/BR92 29.3 24.0 26.7 29.3 7.8 +
7050A/NK1 29.3 24.8 27.1 35.2 5.2 +
7050A/3535 29.3 27.4 28.4 27.1 3.1 +
均值 Average 29.3 26.5 27.9 31.1 4.5 +
T检验 T test ns ns ns *
甜高粱Sweet sorghum 01-26A/LTR168 26.2 26.6 26.4 27.2 3.7 +
7050A/LTR168 29.3 26.6 27.9 26.0 2.9 +
T检验 T test ns ns ns *

Table 7

Genetic effect of relevant parameters of stalk to plant height of F1 hybrids"

品种类型
Variety type
组合(母本×父本)
Cross (♀×♂)
与株高相关系数R Correlation coefficient with plant height R (%)
节间长Internode length 节数
Internode number
下层Lower 中下层Lower middle 中层Middle 中上层Up middle 上层Upper
粒用
Grain sorghum
01-26A/LNR-4 15.3 65.2* 52.6* 18.7 22.3 75.3*
01-26A/3550 -3.6 42.6 63.2* 55.6* 45.2* 64.2*
01-26A/0-01 34.5 51.8* 71.8** 23.4 12.7 26.9
01-26A/BR92 -12.4 63.2* 51.4* 42.3* 26.9 65.8*
01-26A/NK1 12.3 68.2* 76.3** 9.8 23.7 69.7*
01-26A/3535 23.5 42.3 55.2* 48.5 14.3 54.8*
7050A/LNR-4 5.3 29.7 38.5 68.9* 24.1 76.7*
7050A/3550 -2.9 15.4 25.6 45.6* 82.5** 72.3*
7050A/0-01 14.3 42.4 42.1 68.7** 43.6 71.9*
7050A/BR92 21.6 28.5 23.6 76.3* 67.1* 52.3*
7050A/NK1 12.3 9.7 -9.7 77.9** 69.9** 88.9**
7050A/3535 18.5 41.2 45.3 56.2* 48.7 65.3*
甜高粱
Sweet sorghum
01-26A/LTR168 8.4 31.4 55.9* 75.3** 42.1 61.5*
7050A/LTR168 9.7 15.6 58.4* 65.3* 28.6 65.3*

Fig. 1

Verification of the dwarf effect of F1 hybrids"

Fig. 2

Analysis of Dw1 in sorghum"

Fig. 3

Analysis of Dw2 gene locus in sorghum **: Gene deletion; ··: Heterozygosity"

Fig. 4

Analysis of Dw3 in sorghum 1, 2, 3, 7, 9, 10, 12, 13, 14, 20, 21 and 23 are 1263 bp in size and the other fragments are 2145 bp in size"

Table 8

Dw3 test serial number and its combination"

序号
Serial number
品系或组合
Line or combination
基因型
Genotype
序号
Serial number
品系或组合
Line or combination
基因型
Genotype
1 LNR-4 Dw3Dw3 13 7050A/LNR-4 Dw3dw3
2 3550 Dw3Dw3 14 7050A/BR92 Dw3dw3
3 BR92 Dw3Dw3 15 7050A/NK1 dw3dw3
4 3535 dw3dw3 16 7050A/3535 dw3dw3
5 0-01 dw3dw3 17 01-26A dw3dw3
6 NK1 dw3dw3 18 01-26A/0-01 dw3dw3
7 LTR168 Dw3Dw3 19 01-26A/NK1 dw3dw3
8 7050A dw3dw3 20 01-26A/3550 Dw3dw3
9 7050A/LTR168 Dw3dw3 21 01-26A/BR92 Dw3Dw3
10 01-26A/LTR168 Dw3dw3 22 01-26A/3535 dw3dw3
11 7050A/0-01 dw3dw3 23 01-26A/LNR-4 Dw3dw3
12 7050A/3550 Dw3dw3

Table 9

Dwarf genotypes and their average plant height"

品系或组合Line or combination 基因型Genotype 平均株高Average plant height (cm)
LNR-4 Dw1Dw1Dw2Dw2Dw3Dw3 145.3
3550 dw1dw1Dw2Dw2Dw3Dw3 164.8
BR92 Dw1Dw1Dw2Dw2Dw3Dw3 162.4
3535 Dw1Dw1Dw2Dw2dw3dw3 145.5
0-01 Dw1Dw1dw2dw2dw3dw3 139.2
NK1 Dw1Dw1Dw2Dw2dw3dw3 139.1
LTR168 Dw1Dw1Dw2Dw2Dw3Dw3 247.3
7050A Dw1Dw1Dw2Dw2dw3dw3 136.7
7050A/LTR168 Dw1Dw1Dw2Dw2Dw3dw3 355.3
01-26A/LTR168 Dw1dw1Dw2Dw2Dw3dw3 341.7
7050A/0-01 Dw1Dw1Dw2dw2dw3dw3 178.4
7050A/3550 Dw1dw1Dw2Dw2Dw3dw3 185.7
7050A/LNR-4 Dw1Dw1Dw2Dw2Dw3dw3 173.1
7050A/BR92 Dw1Dw1Dw2Dw2Dw3dw3 179.2
7050A/NK1 Dw1Dw1Dw2Dw2dw3dw3 177.6
7050A/3535 Dw1Dw1Dw2Dw2dw3dw3 159.6
01-26A dw1dw1Dw2Dw2dw3dw3 103.5
01-26A/0-01 Dw1dw1Dw2dw2dw3dw3 141.9
01-26A/NK1 Dw1dw1Dw2Dw2dw3dw3 159.7
01-26A/3550 dw1dw1Dw2Dw2Dw3dw3 152.5
01-26A/BR92 Dw1dw1Dw2Dw2Dw3Dw3 146.6
01-26A/3535 Dw1dw1Dw2Dw2dw3dw3 144.8
01-26A/LNR-4 Dw1dw1Dw2Dw2Dw3dw3 141.3
[1] MORRIS G P, RAMU P, DESHPANDE S P, HASH C T, SHAH T, UPADHYAYA H D. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the USA, 2013,110(2):453-458.
doi: 10.1073/pnas.1215985110 pmid: 23267105
[2] 王劲松, 焦晓燕, 董二伟, 王彬, 武爱莲, 韩雄, 郭珺, 王立革. 不同灌溉时期和施氮量对高粱水分利用及产量的影响. 山西农业科学, 2016,44(6):777-783.
WANG J S, JIAO X Y, DONG E W, WANG B, WU A L, HAN X, GUO J, WANG L G. Effects of different irrigation periods and nitrogen application rates on sorghum water use and yield. Shanxi Agricultural Sciences, 2016,44(6):777-783. (in Chinese)
[3] 王平, 丛玲, 朱振兴, 张丽霞, 张曦. 高粱化基因Dw3/dw3对株高及其它农艺性状的影响. 辽宁农业科学, 2019(5):12-15.
WANG P, CONG L, ZHU Z X, ZHANG L X, ZHANG X. Effects of sorghum dwarfing geneDw3/dw3 on plant height and other agronomic traits. Liaoning Agricultural Sciences, 2019(5):12-15. (in Chinese)
[4] 李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018,51(2):246-256.
LI S B, TANG C C, CHEN F, XIE G H. The spatio-temporal changes of yield and quality traits of improved grain sorghum varieties in China. Scientia Agricultura Sinica, 2018,51(2):246-256. (in Chinese)
[5] 杨慧勇, 赵文博, 王花云, 张福耀. 高粱丝黑穗病菌4号生理小种抗性基因的定位. 中国农业科学, 2015,48(8):1484-1491.
YANG H Y, ZHAO W B, WANG H Y, ZHANG F Y. Location of the resistance gene of sorghum silk smut No. 4 physiological race. Scientia Agricultura Sinica, 2015,48(8):1484-1491. (in Chinese)
[6] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018,51(22):4264-4276.
XIAO J B, LIU Z, KONG F X, XIN Z X, WU H S. Effects of planting methods and density on sorghum population structure and yield. Scientia Agricultura Sinica, 2018,51(22):4264-4276. (in Chinese)
[7] HIGGINS R H, THURBER C S, ASSARANURAK I, BROWN P J. Multiparental mapping of plant height and flowering time QTL in partially isogenic sorghum families. Genomes, 2014,4(9):1593-602.
[8] 黄瑞冬, 高悦, 周宇飞, 吴奇, 张姣, 尚培培, 张壮, 高铭悦, 韩熠, 许文娟. 矮秆高粱辽杂35光合特性与产量构成因素. 中国农业科学, 2017,50(5):822-829.
HUANG R D, GAO Y, ZHOU Y F, WU Q, ZHANG J, SHANG P P, ZHANG Z, GAO M Y, HAN Y, XU W J. Photosynthetic characteristics and yield components of dwarf sorghum Liaoza 35. Scientia Agricultura Sinica, 2017,50(5):822-829. (in Chinese)
[9] 王劲松, 焦晓燕, 丁玉川, 董二伟, 白文斌, 王立革, 武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015,41(8):1269-1278.
WANG J S, JIAO X Y, DING Y C, DONG E W, BAI W B, WANG L G, WU A L. Response of nutrient absorption, yield and quality of grain sorghum to nitrogen, phosphorus and potassium nutrition. Acta Agronomica Sinica, 2015,41(8):1269-1278. (in Chinese)
[10] MURPHY R L, KLEIN R R, MORISHIGE D T, BRADY J A, ROONEY W L, MILLER F R. Coincident light and clock regulation of pseudo response regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proceedings of the National Academy of Sciences of the USA, 2011,108(39):16469-16474.
pmid: 21930910
[11] ROSS W M, KOFOID K D, Identification of granules for harvesting with Dw1 dominant gene. Crop Science, 1979,19(3):339-344.
[12] 卢庆善, 孙毅. 杂交高粱遗传改良. 北京: 中国农业科学技术出版社, 2005:37-38.
LU Q S, SUN Y. Genetic Improvement of Hybrid Sorghum. Beijing: China Agricultural Science and Technology Press, 2005:37-38. (in Chinese)
[13] YAMAGUCHI M, FUJIMOTO H, HIRANO K, ARAKI-NAKAMURA S, OHMAE-SHINOHARA K, FUJII A. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Scientific Reports, 2016,6(1):28366.
doi: 10.1038/srep28366
[14] LI X, LI X, FRIDMAN E, TESSO T T, YU J. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proceedings of the National Academy of Sciences of the USA, 2015,112(38):11823.
pmid: 26351684
[15] BROWN P, ROONEY W L, FRANKS C, KRESOVICH S. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics, 2008,18(1):629-637.
[16] 李欣禹, 罗峰, 刘惠芬, 裴忠有, 高建明, 姜亦巍, 孙守钧. 不同类型高粱与环境的相互作用关系. 江苏农业科学, 2017,45(4):59-63.
LI X Y, LUO F, LIU H F, PEI Z Y, GAO J M, JIANG Y W, SUN S Q. The interaction between different types of sorghum and the environment. Jiangsu Agricultural Science, 2017,45(4):59-63. (in Chinese)
[17] 管延安, 张华文, 樊庆琪, 杨延兵, 秦岭, 王海莲, 王洪刚. 普通高粱与甜高粱杂交组合株高、糖度的主基因多基因模型遗传效应分析. 核农学报, 2012,26(1):36-42.
GUAN Y A, ZHANG H W, FAN Q Q, YANG Y B, QIN L, WANG H L, WANG H G. Genetic effects analysis of the main gene polygenic model of plant height and sugar content of common sorghum and sweet sorghum hybrids. Journal of Nuclear Agricultural Sciences, 2012,26(1):36-42. (in Chinese)
[18] 李延玲, 白晓倩, 于澎湃, 高建明, 裴忠有, 罗峰, 孙守钧. 高粱株型性状数量遗传分析. 华北农学报, 2018,33(1):143-149.
LI Y L, BAI X Q, YU P P, GAO J M, PEI Z Y, LUO F, SUN S J. Quantitative genetic analysis of plant type traits in sorghum. Journal of North China Agricultural University, 2018,33(1):143-149. (in Chinese)
[19] OLSON S N, RITTER K, ROONEY W, KEMANIAN A, MCCARL B A, ZHANG Y. High biomass yield energy sorghum: Developing a genetic model for C4 grass bioenergy crops. Biofuels, 2012(1):640-655.
[20] MULTANI D S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302(5642):81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[21] ORDONIO R L, ITO Y, HATAKEYAMA A, OHMAE-SHINOHARA K, KASUGA S, TOKUNAGA T. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Scientific Reports, 2014,4(1):5287.
[22] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦株高及其构成因素的遗传及相关性分析. 麦类作物学报, 2011,31(4):604-610.
YAO J B, REN L J, ZHANG P P, YANG X M, MA H X, YAO G C, ZHANG P, ZHOU M P. Analysis of genetics and correlation of plant height and its component factors in wheat. Journal of Triticeae Crops, 2011,31(4):604-610. (in Chinese)
[23] MIZUNO H, KAWAHIGASHI H, KAWAHARA Y, KANAMORI H, MATSUMOTO T. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum- Bipolaris sorghicola interaction. BMC Plant Biology, 2012,12(1):121.
[24] BROWN P J, PATERSON A H. Bridging classical and molecular genetics of sorghum plant stature and maturity. Genomics of the Saccharinae, 2013,11(1):333-345.
[25] KLEIN R R, MULLET J E, JORDAN D R, MILLER F R, ROONEY W L, MENZ M A. The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high resolution genotyping. Crop Science, 2008,48(1):12-26.
[26] CASSADY A J, Klein P E, HILLEY J L, SAHRAEIAN S M E, SHARMA A, MULLET J E. Effect of a single height (Dw) gene of sorghum on grain yield, grain yield components, and test weight. Crop Science, 1965,5(5):385-388.
[27] MORISHIGE D T, KLEIN P E, HILLEY J L, SAHRAEIAN S M E, SHARMA A, MULLET J E. Digital genotyping of sorghum-A diverse plant species with a large repeat-rich genome. BMC Genomics, 2013,14(1):448.
[28] WU E, LENDERTS B, GLASSMAN K, BEREZOWSKA-KANIEWSKA M, ZHAO Z Y. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cellular & Developmental Biology-Plant, 2014,50(1):9-18.
pmid: 26316679
[29] JIA Q, ZHANG J, WESTCOTT S, ZHANG X Q, BELLGARD M, LANCE R. GA-20 oxidase as a candidate for the semi dwarf gene sdw1 denso in barley. Functional Integrative Genomics, 2009,9(1):255-262.
[30] THURBER C S, MA J M, HIGGINS R H, BROWN P J. Retrospective genomic analysis of sorghum adaptation to temperate- zone grain production. Genome Biology, 2013,14(6):68.
[31] YANG S, WEERS B D, MORISHIGE D T, MULLET J E. CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biology, 2014,14(1):148.
doi: 10.1186/1471-2229-14-148
[1] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[2] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[3] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[4] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[5] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[8] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[9] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[10] GUO ShuQing,SONG Hui,YANG QingHua,GAO JinFeng,GAO XiaoLi,FENG BaiLi,YANG Pu. Analyzing Genetic Effects for Plant Height and Panicle Traits by Means of the Mixed Inheritance Model of Major Gene Plus Polygene in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(24): 5177-5193.
[11] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[12] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[13] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[14] WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2020, 53(3): 474-485.
[15] HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum [J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!