Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (11): 2227-2238.doi: 10.3864/j.issn.0578-1752.2022.11.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Cellulose Replacing Starch on the Gel Properties of Myofibrillar Protein

WANG LiJian(),LUO Cheng,PAN XueFeng,CHEN Xia,CHEN YinJi()   

  1. College of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023
  • Received:2021-09-02 Accepted:2021-11-30 Online:2022-06-01 Published:2022-06-16
  • Contact: YinJi CHEN E-mail:wlj9704@163.com;chenyinji@nufe.edu.cn

Abstract:

【Objective】 The effects of replacing starch with cellulose on the gel properties of myofibrillar protein were investigated to provide a theoretical basis for the application of replacing starch with cellulose in sausage.【Method】 Different proportions starch/cellulose-myofibrillar protein were set as the simulation system to study the water holding capacity, color, texture properties, and stress and strain during fracture deformation, to analyze the dynamic rheological properties and creep recovery properties, and to observe the spatial distribution and three-dimensional network structure of starch/cellulose-myofibrillar protein.【Result】 By increasing the proportion of starch and cellulose, the water holding capacity and storage modulus of the composite gel were improved. When the addition proportion of starch and cellulose increased from 0 to 2.0%, the hardness and chewiness of composite gel gradually increased to the maximum; compared with the control group, the hardness was increased by 29.47% and 43.69% respectively, and the chewiness was increased by 34.82% and 41.58%, respectively; however, L* and whiteness had a tendency to decrease. The maximum stress (9 681.86 Pa) and the minimum strain (1.14) were obtained when 2.0% cellulose was added. The value of the creep modulus of the composite gel decreased gradually with the increase of the proportion of starch and cellulose, while the value of the composite gel in the cellulose group decreased more obviously under the same proportion. Paraffin sections showed that starch and cellulose were simply embedded in the gel network structure, but did not cross-link with the protein, and the cellulose formed larger irregular regions in the myofibrillar protein gel system. Based on microstructure analysis, the surface of the control group was rough and there were more cavities. When starch and cellulose were added, the composite gel became uniform and compact, and the cavities were reduced. The protein network structure of cellulose group had better uniformity and compactness under the same addition ratio.【Conclusion】 The addition of starch and cellulose to myofibrillar protein could improve the water holding capacity, color, texture properties, stress and strain during fracture deformation, rheological properties and microstructure of the composite gel, but cellulose had a more significant improvement effect on the composite gel. Therefore, the application of cellulose as starch substitutes in gelatinous sausage was feasible.

Key words: myofibrillar protein, starch, cellulose, gelation property

Fig. 1

Effects of starch and cellulose on water holding capacity of myofibrillar protein gels"

Table 1

Effects of starch and cellulose on color of myofibrillar protein gels"

处理组 Treatment L* a* b* W
0 72.01±0.20a -2.91±0.03c -0.91±0.10e 71.85±0.20a
0.5%淀粉 0.5% starch 70.59±0.09c -2.98±0.02d -1.47±0.14f 70.41±0.09c
1.0%淀粉 1.0% starch 69.73±0.14d -3.01±0.00d -1.73±0.06g 69.54±0.14d
1.5%淀粉 1.5% starch 69.17±0.17e -3.02±0.02d -1.97±0.08h 68.96±0.17e
2.0%淀粉 2.0% starch 68.35±0.26f -3.12±0.04e -2.39±0.04i 68.11±0.26f
0.5%纤维素 0.5% cellulose 71.32±0.19b -2.88±0.01bc 0.10±0.16d 71.18±0.19b
1.0%纤维素 1.0% cellulose 71.16±0.17b -2.88±0.03bc 0.54±0.01c 71.01±0.18b
1.5%纤维素 1.5% cellulose 71.10±0.22b -2.86±0.01b 1.24±0.15b 70.93±0.21b
2.0%纤维素 2.0% cellulose 70.73±0.28c -2.81±0.05a 1.64±0.09a 70.55±0.28c

Table 2

Effects of starch and cellulose on texture of myofibrillar protein gels"

处理组
Treatment
硬度
Hardness (g)
弹性
Springiness
粘聚性
Cohesiveness
咀嚼度
Chewiness
回复性
Resilience
0 106.73±2.89e 0.87±0.03a 0.77±0.01ab 71.36±2.31e 0.46±0.01a
0.5%淀粉 0.5% starch 117.99±5.85d 0.90±0.02a 0.77±0.00ab 81.42±5.71d 0.46±0.01a
1.0%淀粉 1.0% starch 123.38±3.08cd 0.91±0.02a 0.77±0.02ab 86.33±5.85cd 0.45±0.02a
1.5%淀粉 1.5% starch 133.64±3.39b 0.91±0.03a 0.77±0.00a 94.05±4.17abc 0.46±0.01a
2.0%淀粉 2.0% starch 138.18±5.92b 0.91±0.01a 0.77±0.02a 96.21±3.32ab 0.45±0.01a
0.5%纤维素 0.5% cellulose 129.84±11.65bc 0.89±0.02a 0.74±0.02b 86.34±8.55cd 0.41±0.00b
1.0%纤维素 1.0% cellulose 135.19±1.70b 0.88±0.01a 0.75±0.00ab 89.74±0.98bcd 0.41±0.00b
1.5%纤维素 1.5% cellulose 147.19±1.92a 0.88±0.00a 0.74±0.01b 96.18±3.13ab 0.38±0.01c
2.0%纤维素 2.0% cellulose 153.36±2.63a 0.89±0.01a 0.74±0.01b 101.03±2.16a 0.37±0.01c

Fig. 2

Effects of starch and cellulose on stress and strain during fracture deformation of myofibrillar protein gels"

Fig. 3

Effects of starch and cellulose on the storage modulus of myofibrillar protein during hot gelation"

Fig. 4

Effects of starch and cellulose on the creep-recovery properties of myofibrillar protein gels"

Table 3

Effects of starch and cellulose on parameters of myofibrillar protein gels in creep test"

处理组 Treatment J0 (×10-3) Pa-1 J1 (×10-4) Pa-1 Jmax (×10-3) Pa-1 λ (s) R (%)
0 1.17±0.12a 2.94±0.46a 1.82±0.11a 46.71±2.20a 88.87±5.05ab
0.5%淀粉 0.5% starch 0.98±0.05b 2.61±0.22ab 1.32±0.03b 46.57±9.44a 90.11±3.19ab
1.0%淀粉 1.0% starch 0.79±0.05c 2.22±0.35bc 1.13±0.12cd 45.60±6.96a 91.55±1.77a
1.5%淀粉 1.5% starch 0.70±0.06cde 2.04±0.17bcd 0.98±0.01e 44.47±7.07a 92.23±3.00a
2.0%淀粉 2.0% starch 0.59±0.07ef 1.68±0.03cde 0.82±0.09f 36.76±1.39a 93.04±1.70a
0.5%纤维素 0.5% cellulose 0.77±0.05cd 2.28±0.07bc 1.18±0.03c 43.77±2.52a 90.19±0.41ab
1.0%纤维素 1.0% cellulose 0.67±0.02de 2.09±0.34bcd 1.03±0.05de 44.57±1.66a 89.39±2.17ab
1.5%纤维素 1.5% cellulose 0.52±0.02f 1.59±0.53de 0.78±0.03f 45.30±11.91a 87.85±5.51ab
2.0%纤维素 2.0% cellulose 0.36±0.04g 1.24±0.33e 0.63±0.09g 37.48±3.13a 84.22±1.84b

Fig. 5

Effects of starch and cellulose on microstructure of myofibrillar protein gels (paraffin section) A: Control; B: 0.5% starch; C: 1.0% starch; D: 1.5% starch; E: 2.0% starch; F: 0.5% cellulose; G: 1.0% cellulose; H: 1.5% cellulose; I: 2.0% cellulose. The same as below"

Fig. 6

Effects of starch and cellulose on microstructure of myofibrillar protein gels (SEM)"

[1] 吴菊清, 魏朝贵, 韩敏义, 徐幸莲, 周光宏. NaCl对猪肉肌原纤维蛋白乳化体系加工特性的影响. 南京农业大学学报, 2014, 37(6): 83-88.
WU J Q, WEI C G, HAN M Y, XU X L, ZHOU G H. Effect of NaCl on processing properties of pork myofibrillar protein emulsion. Journal of Nanjing Agricultural University, 2014, 37(6): 83-88. (in Chinese)
[2] MI H B, WANG C, SU Q, LI X P, YI S M, LI J R. The effect of modified starches on the gel properties and protein conformation of Nemipterus virgatus surimi. Journal of Texture Studies, 2019, 50(6): 571-581. doi: 10.1111/jtxs.12466.
doi: 10.1111/jtxs.12466
[3] 罗登林, 武延辉, 徐宝成. 菊粉取代玉米磷酸酯双淀粉对香肠质构和感官特性的影响. 现代食品科技, 2015, 31(7): 211-217, 210. doi: 10.13982/j.mfst.1673-9078.2015.7.033.
doi: 10.13982/j.mfst.1673-9078.2015.7.033
LUO D L, WU Y H, XU B C. Effect of different substitution ratios of inulin for maize distarch phosphate on sensory and textural properties of sausages. Modern Food Science and Technology, 2015, 31(7): 211-217, 210. doi: 10.13982/j.mfst.1673-9078.2015.7.033. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2015.7.033
[4] MUDGIL D, BARAK S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 2013, 61: 1-6. doi: 10.1016/j.ijbiomac.2013.06.044.
doi: 10.1016/j.ijbiomac.2013.06.044
[5] 荣良燕, 蔺艳婷, 何青, 张明成, 刘登勇, 李儒仁. 复配膳食纤维对低盐香肠食用品质的影响. 肉类研究, 2019, 33(7): 30-35. doi: 10.7506/rlyj1001-8123-20190505-098.
doi: 10.7506/rlyj1001-8123-20190505-098
RONG L Y, LIN Y T, HE Q, ZHANG M C, LIU D Y, LI R R. Effect of dietary fiber mixture on eating quality of low-salt sausage. Meat Research, 2019, 33(7): 30-35. doi: 10.7506/rlyj1001-8123-20190505-098. (in Chinese)
doi: 10.7506/rlyj1001-8123-20190505-098
[6] HAM Y K, HWANG K E, SONG D H, KIM Y J, SHIN D J, KIM K I, LEE H J, KIM N R, KIM C J. Lotus (Nelumbo nucifera) rhizome as an antioxidant dietary fiber in cooked sausage: Effects on physicochemical and sensory characteristics. Korean Journal for Food Science of Animal Resources, 2017, 37(2): 219-227. doi: 10.5851/ kosfa.2017.37.2.219.
doi: 10.5851/ kosfa.2017.37.2.219
[7] SELANI M M, SHIRADO G A N, MARGIOTTA G B, RASERA M L, MARABESI A C, PIEDADE S M S, CONTRERAS-CASTILLO C J, CANNIATTI-BRAZACA S G. Pineapple by-product and canola oil as partial fat replacers in low-fat beef burger: Effects on oxidative stability, cholesterol content and fatty acid profile. Meat Science, 2016, 115: 9-15. doi: 10.1016/j.meatsci.2016.01.002.
doi: 10.1016/j.meatsci.2016.01.002
[8] KEHLET U, PAGTER M, AASLYNG M D, RABEN A. Meatballs with 3% and 6% dietary fibre from rye bran or pea fibre - Effects on sensory quality and subjective appetite sensations. Meat Science, 2017, 125: 66-75. doi: 10.1016/j.meatsci.2016.11.007.
doi: 10.1016/j.meatsci.2016.11.007
[9] HAM Y K, HWANG K E, KIM H W, SONG D H, KIM Y J, CHOI Y S, KIM C J. Effects of fat replacement with a mixture of collagen and dietary fibre on small calibre fermented sausages. International Journal of Food Science & Technology, 2016, 51(1): 96-104.
[10] HAN M Y, WANG P, XU X L, ZHOU G H. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Research International, 2014, 62: 1175-1182.
doi: 10.1016/j.foodres.2014.05.062
[11] HU H Y, PEREIRA J, XING L J, ZHOU G H, ZHANG W G. Thermal gelation and microstructural properties of myofibrillar protein gel with the incorporation of regenerated cellulose. LWT, 2017, 86: 14-19.
doi: 10.1016/j.lwt.2017.07.015
[12] 庄昕波, 陈银基, 周光宏. 改性甘蔗膳食纤维对猪肉肌原纤维蛋白凝胶特性的影响. 中国农业科学, 2021, 54(15): 3320-3330. doi: 10.3864/j.issn.0578-1752.2021.15.015.
doi: 10.3864/j.issn.0578-1752.2021.15.015
ZHUANG X B, CHEN Y J, ZHOU G H. The mechanism of myofibrillar protein gel functionality influenced by modified sugarcane dietary fiber. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330. doi: 10.3864/j.issn.0578-1752.2021.15.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.15.015
[13] JIANG Y, LI D H, TU J C, ZHONG Y J, ZHANG D, WANG Z M, TAO X Q. Mechanisms of change in gel water-holding capacity of myofibrillar proteins affected by lipid oxidation: The role of protein unfolding and cross-linking. Food Chemistry, 2021, 344: 128587. doi: 10.1016/j.foodchem.2020.128587.
doi: 10.1016/j.foodchem.2020.128587
[14] 李颖畅, 宋素珍, 杨钟燕, 杨贤庆, 魏涯, 王晓, 仇长璐, 沈琳, 励建荣. 甲醛对鱿鱼肌原纤维蛋白凝胶特性的影响. 中国食品学报, 2019, 19(8): 60-69. doi: 10.16429/j.1009-7848.2019.08.007.
doi: 10.16429/j.1009-7848.2019.08.007
LI Y C, SONG S Z, YANG Z Y, YANG X Q, WEI Y, WANG X, CHOU C L, SHEN L, LI J R. Effects of formaldehyde on the myofibrillar protein gel properties of Peru squid. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 60-69. doi: 10.16429/j.1009-7848.2019.08.007. (in Chinese)
doi: 10.16429/j.1009-7848.2019.08.007
[15] 胡爱军, 于辉, 郑捷, 李川. 木薯淀粉对泥鳅肌原纤维蛋白凝胶特性的影响. 天津科技大学学报, 2020, 35(4): 21-25, 30. doi: 10.13364/j.issn.1672-6510.20190255.
doi: 10.13364/j.issn.1672-6510.20190255
HU A J, YU H, ZHENG J, LI C. Effect of cassava starch on gel properties of loach myofibrillar protein. Journal of Tianjin University of Science & Technology, 2020, 35(4): 21-25, 30. doi: 10.13364/j.issn.1672-6510.20190255. (in Chinese)
doi: 10.13364/j.issn.1672-6510.20190255
[16] 孙攀. 超声波处理对金枪鱼肌原纤维蛋白理化特性、结构和凝胶特性的影响[D]. 锦州: 渤海大学, 2019.
SUN P. Effects of ultrasonic treatment on physico-chemical properties, structure and gel properties of tuna(Thunnus tonggol) myofibrillar protein[D]. Jinzhou: Bohai University, 2019. (in Chinese)
[17] 胡方洋, 陈金玉, 张坤生, 任云霞, 曲金萍. 薯类淀粉与卡拉胶共混体系特性及其对肌原纤维蛋白凝胶特性的影响. 食品工业科技, 2020, 41(2): 1-8, 15. doi: 10.13386/j.issn1002-0306.2020.02.001.
doi: 10.13386/j.issn1002-0306.2020.02.001
HU F Y, CHEN J Y, ZHANG K S, REN Y X, QU J P. Characteristics of the mixed systems of tuber starch and carrageenan and its effect on the gel properties of myofibrillar protein. Science and Technology of Food Industry, 2020, 41(2): 1-8, 15. doi: 10.13386/j.issn1002-0306.2020.02.001. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020.02.001
[18] 刘旺, 冯美琴, 孙健, 徐幸莲, 周光宏. 超高压条件下亚麻籽胶对猪肉肌原纤维蛋白凝胶特性的影响. 食品科学, 2019, 40(7): 101-107.
doi: 10.1111/j.1365-2621.1975.tb03746.x
LIU W, FENG M Q, SUN J, XU X L, ZHOU G H. Influence of ultra high pressure treatment on the effect of flaxseed gum on the properties of pork myofibrillar protein gel. Food Science, 2019, 40(7): 101-107. (in Chinese)
doi: 10.1111/j.1365-2621.1975.tb03746.x
[19] 李懿璇, 王悦, 鲁小川, 康梦瑶, 尚永彪. 红曲红添加量对猪肉肌原纤维蛋白功能性质和结构的影响. 食品与发酵工业, 2020, 46(2): 173-179. doi: 10.13995/j.cnki.11-1802/ts.021983.
doi: 10.13995/j.cnki.11-1802/ts.021983
LI Y X, WANG Y, LU X C, KANG M Y, SHANG Y B. Effect of the amount of red yeast red on the functional properties and structure of pork myofibrillar protein. Food and Fermentation Industries, 2020, 46(2): 173-179. doi: 10.13995/j.cnki.11-1802/ts.021983. (in Chinese)
doi: 10.13995/j.cnki.11-1802/ts.021983
[20] WU F, SHI X J, ZOU H N, ZHANG T Y, DONG X R, ZHU R, YU C P. Effects of high-pressure homogenization on physicochemical, rheological and emulsifying properties of myofibrillar protein. Journal of food engineering, 2019, 263: 272-279.
doi: 10.1016/j.jfoodeng.2019.07.009
[21] 邝婉湄. 流变学分析在搅打奶油品质评价中的应用[D]. 广州: 华南理工大学, 2014.
KUANG W M. Application of rheological analysis in quality evaluation of whipped cream[D]. Guangzhou: South China University of Technology, 2014. (in Chinese)
[22] 吴伟都, 朱慧, 王雅琼, 欧凯, 李言郡. 搅拌型酸乳蠕变恢复性能的研究. 食品科技, 2018, 43(7): 90-93. doi: 10.13684/j.cnki.spkj.2018.07.017.
doi: 10.13684/j.cnki.spkj.2018.07.017
WU W D, ZHU H, WANG Y Q, OU K, LI Y J. Study on the creep and recovery properties of stirred yoghurt. Food Science and Technology, 2018, 43(7): 90-93. doi: 10.13684/j.cnki.spkj.2018.07.017. (in Chinese)
doi: 10.13684/j.cnki.spkj.2018.07.017
[23] 陈前, 李娜, 贺晓光, 乔芦, 禹文杰. 瓜尔豆胶对马铃薯-小麦混合粉面团质构和流变特性的影响. 食品工业科技, 2020, 41(6): 198-203. doi: 10.13386/j.issn1002-0306.2020.06.033.
doi: 10.13386/j.issn1002-0306.2020.06.033
CHEN Q, LI N, HE X G, QIAO L, YU W J. Effect of guar gum on texture and rheology property of potato-wheat dough. Science and Technology of Food Industry, 2020, 41(6): 198-203. doi: 10.13386/j.issn1002-0306.2020.06.033. (in Chinese)
doi: 10.13386/j.issn1002-0306.2020.06.033
[24] GIBIS M, SCHUH V, WEISS J. Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocolloids, 2015, 45: 236-246.
doi: 10.1016/j.foodhyd.2014.11.021
[25] ZHUANG X B, WANG L J, JIANG X P, CHEN Y J, ZHOU G H. The effects of three polysaccharides on the gelation properties of myofibrillar protein: Phase behaviour and moisture stability. Meat Science, 2020, 170: 108228.
doi: 10.1016/j.meatsci.2020.108228
[26] 李立敏, 杨豫菘, 成立新, 姜昕禹, 高爱武. 茶多酚对羊肉肌原纤维蛋白凝胶特性的影响. 肉类研究, 2020, 34(3): 8-13. doi: 10.7506/rlyj1001-8123-20200131-030.
doi: 10.7506/rlyj1001-8123-20200131-030
LI L M, YANG Y S, CHENG L X, JIANG X Y, GAO A W. Effect of tea polyphenols on gelation properties of mutton myofibrillar protein. Meat Research, 2020, 34(3): 8-13. doi: 10.7506/rlyj1001-8123-20200131-030. (in Chinese)
doi: 10.7506/rlyj1001-8123-20200131-030
[27] 夏秀芳, 王博, 伊东, 潘男, 孔保华. 转谷氨酰胺酶和淀粉复配对肌原纤维蛋白凝胶特性的影响. 中国食品学报, 2016, 16(6): 51-56. doi: 10.16429/j.1009-7848.2016.06.008.
doi: 10.16429/j.1009-7848.2016.06.008
XIA X F, WANG B, YI D, PAN N, KONG B H. Effects of transglutaminase and potato starch compound on the gel properties of common carp myofibrillar protein. Journal of Chinese Institute of Food Science and Technology, 2016, 16(6): 51-56. doi: 10.16429/j.1009-7848.2016.06.008. (in Chinese)
doi: 10.16429/j.1009-7848.2016.06.008
[28] FAN M C, HU T, ZHAO S M, XIONG S B, XIE J, HUANG Q L. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chemistry, 2017, 218: 221-230. doi: 10.1016/j.foodchem.2016.09.068.
doi: 10.1016/j.foodchem.2016.09.068
[29] GRAVELLE A J, MARANGONI A G, BARBUT S. Insight into the mechanism of myofibrillar protein gel stability: Influencing texture and microstructure using a model hydrophilic filler. Food Hydrocolloids, 2016, 60: 415-424.
doi: 10.1016/j.foodhyd.2016.04.014
[30] ZHUANG X B, JIANG X P, ZHOU H Y, CHEN Y J, ZHAO Y Y, YANG H S, ZHOU G H. Insight into the mechanism of physicochemical influence by three polysaccharides on myofibrillar protein gelation. Carbohydrate Polymers, 2020, 229: 115449. doi: 10.1016/j.carbpol.2019.115449.
doi: 10.1016/j.carbpol.2019.115449
[31] 吴满刚. 脂肪和淀粉对肌原纤维蛋白凝胶性能的影响机理[D]. 无锡: 江南大学, 2010.
WU M G. Mechanism of gelation of myofibrillar protein composites containing emulsified lipid droplets and starch granules[D]. Wuxi: Jiangnan University, 2010. (in Chinese)
[32] ZHAO Y Y, HOU Q, ZHUANG X B, WANG Y, ZHOU G H, ZHANG W G. Effect of regenerated cellulose fiber on the physicochemical properties and sensory characteristics of fat-reduced emulsified sausage. LWT, 2018, 97: 157-163.
doi: 10.1016/j.lwt.2018.06.053
[33] DEBUSCA A, TAHERGORABI R, BEAMER S K, MATAK K E, JACZYNSKI J. Physicochemical properties of surimi gels fortified with dietary fiber. Food Chemistry, 2014, 148: 70-76. doi: 10.1016/j.foodchem.2013.10.010.
doi: 10.1016/j.foodchem.2013.10.010
[34] 杨玉玲, 周磊, 游远, 汤晓智, 魏苏萌. 氧化对肌原纤维蛋白热诱导凝胶质构特性及保水性的影响. 中国农业科学, 2018, 51(18): 3570-3581. doi: 10.3864/j.issn.0578-1752.2018.18.013.
doi: 10.3864/j.issn.0578-1752.2018.18.013
YANG Y L, ZHOU L, YOU Y, TANG X Z, WEI S M. The effects of oxidation on textural properties and water holding capacity of heat-induced myofibrillar protein gel. Scientia Agricultura Sinica, 2018, 51(18): 3570-3581. doi: 10.3864/j.issn.0578-1752.2018.18.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.18.013
[1] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[2] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[3] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[4] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[5] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[6] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[7] NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
[8] HAN KeYing,FENG Xiao,YANG YuLing,LI ShanShan,WEI SuMeng,CHEN YuMin. Effects of Camellia Oil on the Properties of Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2021, 54(20): 4446-4455.
[9] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[10] LI BaoLing,LI Ying,FAN Xin,MA WenHui,CAO YunGang. Synergistic Enhancement of Gelling Properties of Oxidatively Damaged Myofibrillar Protein by Sodium Pyrophosphate and Transglutaminase [J]. Scientia Agricultura Sinica, 2021, 54(16): 3527-3536.
[11] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[12] GAO FengQin,JING YuanYuan,DE Ying,WAN QiHao,LIU YingHao, . Effects of Dilute Sulfuric Acid Pretreatment on Chemical Composition and Characterization Structure of Hybrid Pennisetum (Pennisetum americanum×P.purpureum) Lignocellulose [J]. Scientia Agricultura Sinica, 2020, 53(21): 4516-4526.
[13] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[14] ZOU JianQiu. New Research Progress on Sorghum Breeding and Cultivation Techniques [J]. Scientia Agricultura Sinica, 2020, 53(14): 2769-2773.
[15] KE FuLai,ZHU Kai,LI ZhiHua,SHI YongShun,ZOU JianQiu,WANG YanQiu. Formation Regulating and Micro-Structure of Sorghum Starch with Different Types of Endosperm [J]. Scientia Agricultura Sinica, 2020, 53(14): 2774-2785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!