Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3959-3969.doi: 10.3864/j.issn.0578-1752.2021.18.014

• HORTICULTURE • Previous Articles     Next Articles

Effects of Tea-Litsea Cubeba Intrercropping on Soil Microbial Community Structure in Tea Plantation

HAO HaiPing1,2(),BAI HongTong1,XIA Fei1,HAO YuanPeng1,LI Hui1,CUI HongXia1,XIE XiaoMing3,SHI Lei1()   

  1. 1Key Laboratory of Plant Resources/Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2Department of Life Sciences, Langfang Normal University, Langfang 065000, Hebei
    3Qianxin Town Experimental Base, Institute of Botany, Chinese Academy of Sciences, Jiangxi I Chan Eco-Agriculture Co., Ltd, Longnan 341708, Jiangxi
  • Received:2020-11-23 Accepted:2021-01-07 Online:2021-09-16 Published:2021-09-26
  • Contact: Lei SHI E-mail:haohaiping2014@126.com;shilei@ibcas.ac.cn

Abstract:

【Objective】 The aim of this study was to analyze the changes of soil microbial community structure and its driving factors, so as to provide data support for soil ecological effect evaluation of Tea-Litsea cubeba intercropping. 【Method】GS-MS, ICP-MS, 16S and ITS sequence analysis were used to determine the soil extract composition, soil mineral element content, soil bacteria and soil fungi community structure.【Result】 The soil microbial community structure was significantly affected by the model of Tea-Litsea cubeba intercropping. The abundance of soil functional bacteria related to N, P and Mn transformation increased significantly, while the abundance of plant pathogenic bacteria and fungi was significantly decreased. In the root distribution layer, the abundance of Burkholderia paraburkholderia was 86 times compared to control, and the abundance of Fusarium graminearum was 73.13% lower than that of the control. Tea-Litsea cubeba intercropping increased the P content of tea plantation soil. In the root distribution layer, P content increased by 76.42%. The soil of Tea-Litsea cubeba intercropping contained some antibacterial substance, including 12.80% camphor, 6.72% Alpha-terpineol, and 12.65% citronellol. Redundancy analysis (RDA) showed that the soil extraction and P in the intercropping area were the main environmental factors affecting the community structure of soil microbes.【Conclusion】 Tea-Litsea cubeba intercropping changed the abundance and community structure of soil microbes, and the camphor, Alpha-terpineol, citronellol and P were the main ecological factors that affected the soil microbial community. The selection of intercropping plants in tea plantations and other farmland systems should pay attention to the secondary metabolites that enter the soil, especially those with killing or antibacterial functional components.

Key words: Litsea cubeba, tea, intercropping, soil microbes, soil properties

Table 1

List of controls and experimental treatments"

处理编号
Treatment number
土层 Soil layer
表土层
Top soil layer
(0—10 cm)
根系分布层
Root distribution layer
(10—30 cm)
1 CK.1 CK.2
2 Lit.1 Lit.2

Fig. 1

Rarefaction curves of all samples were generated for microbial OTUS which contained unique sequences and were defined at 97% sequence similarities A: Rarefaction curves of soil bacteria; B: Rarefaction curves of soil fungi"

Fig. 2

Estimated number of observed OTU counts, Shannon index, Chao 1 index of soil microbiome of tea plantation across all the intercropping with Litsea cubeba plots A, B, C: The index of bacterial; D, E, F: The index of Fungi. n=3. * indicate significant difference (P<0.05). The same as below"

Fig. 3

The NMDS analysis of soil microbials A: Bacterial; B: Fungi"

Fig. 4

The relative abundance of phyla of soil microbiome in the tea-Litsea cubeba intrercropping plots A: Bacterial; B: Fungi"

Table 2

List of microbe’s functions"

微生物
Microbes
潜在功能
Potential functions
丰度 OTU number
CK.1 Lit.1 CK.2 Lit.2
细菌
Bacteria
黄单胞杆菌Norank xanthomonadales 植物病原菌 Plant pathogens 218 0 493 0
伯克氏菌
Burkholderia paraburkholderia
溶解磷;生物降解
Decomposition and release P; Biodegradation
1 63 0 86
黄色菌 Norank xanthobacteraceae 五氯硝基苯降解 Pentachloronitrobenzene degradation 2 1523 8 851
慢生根瘤菌 Bradyrhizobium 固氮 Nitrogen fixation 269 662 315 385
土微菌 Pedomicrobium 锰氧化 Manganese oxidantion 0 241 1 214
真杆菌 Norank acidobacteria 还原硝酸盐 Nitrate reduction 1 484 3 604
栖热菌属 Acidothermus 还原硝酸盐 Nitrate reduction 18 84 121 49
浮霉状菌属
Planctomyces
缺氧条件下氧化铵生成氮气
Amine generates nitrogen in anoxic environment
0 78 2 63
真菌
Fungi
镰刀霉 Fusarium graminearum 致病菌 Pathogenic bacteria 4729 695 3122 839
毛壳菌 Chaetomium 纤维素分解 Cellulose breakdown 1 624 4 255
拟康宁木霉 Trichoderma koningiopsis 生物防治菌 Biocontrol bacteria 41 1589 29 6942
山野壳菌 Paraphaeosphaeria 病原真菌 Pathogenic fungi 145 14 216 33

Table 3

Soil extract of Litsea cubeba intercropping treatment"

峰 Peak 时间 RT 面积 Area 峰面积比例 Peak area ratio (%) 名称 Name
1 4.42 108958 3.01 苯乙烯 Phenylethylene
2 6.01 135087 3.73 桉叶油醇 Cineole
3 7.17 463228 12.80 樟脑 (+)-2-Bornanone
4 7.64 243391 6.72 Alpha-松油醇 Alpha-Terpineol
5 7.99 457853 12.65 香茅醇 Citronellol
6 8.30 90066 2.49 乙酸冰片酯 Bornyl acetate
7 8.74 103561 2.86 乙酸香茅酯 Citronellol acetate
8 9.00 61857 1.71 丙酸 Propanoic acid
9 9.35 293552 8.11 羟基香茅醛 4-Octene-2,7-diol
10 11.08 48177 1.33 2-甲基十七烷 Dibuyl phthalate
11 12.10 132366 3.66 邻苯二甲酸二异丁酯 1,2-Benzenedicarboxylic acid
12 12.68 280323 7.74 邻苯二甲酸二正丁酯 Dibuyl phthalate
13 14.37 167173 4.62 棕榈酰胺 Hexadecanamide
14 16.13 1034060 28.57 油酸酰胺 Oleamide

Fig. 5

Effects of of Litsea cubeba intercroping on soil mineral nutriments"

Fig. 6

Redundancy analysis of soil microbial and environmental factors In the plot, red hollow arrows represent environmental factors; solid arrows stand for microbial community structure information; cosine of the angle between the extension lines of environmental factor and microbial species equals to the correlation coefficient between the two in numerical value"

Table 4

Redundancy analysis of soil microorganisms and environment factors"

环境因子
Name
关联度
Explain
Pseudo -F值
Pseudo-F
P
P
Ci
桉叶油醇 Cineole
48.4 3.7 0.03*
Alp
Alpha-松油醇 Alpha-Terpineol
48.1 3.7 0.01*
Ph
苯乙烯 Phenylethylene
48.0 3.7 0.018*
Bo
樟脑 (+)-2-Bornanone
48.0 3.7 0.034*
Cit
香茅醇 Citronellol
47.8 3.7 0.028*
P
磷 Phosphorus
47.8 3.7 0.04*
Fe
铁 Iron
46.7 3.5 0.068
Zn
锌 Zinc
46.1 3.4 0.06
Mn
锰 Manganese
44.4 3.2 0.112
Mg
镁 Magnesium
43.5 3.1 0.06
Cu
铜 Copper
36.1 2.3 0.114
[1] 邓欣, 谭济才, 尹丽蓉, 任佑华, 刘红艳. 不同茶园土壤微生物数量状况调查初报. 茶叶通讯, 2005, 32(2): 7-9.
DENG X, TAN J C, YIN L R, REN Y H, LIU H Y. Investigation on the quantitative condition of soil microbes in different tea garden. Tea Communication, 2005, 32(2): 7-9. (in Chinese)
[2] BHATTACHARYYA P N, SARMAH S R, SATYA R S. The role of microbes in tea cultivation. In: Sharma VS, Kumudini MT. Global tea science//Global Tea Science. Burleigh Dodds Science Publishing. India, 2018: 135-167.
[3] 周才碧, 陈文品. 茶园土壤微生物的研究进展. 中国茶叶, 2014, 36(3): 14-15.
ZHOU C B, CHEN W P. Research progress on soil microorganisms in tea gardens. China Tea, 2014, 36(3): 14-15. (in Chinese)
[4] 张正群, 田月月, 高树文, 许永玉, 黄晓琴, 张丽霞. 茶园间作芳香植物罗勒和紫苏对茶园生态系统影响的研究.
Ecological effects of intercropping tea with aromatic plant basil and perill in young tea plantation. Journal of Tea Science, 2016, 36(4): 389-395. (in Chinese)
[5] CULLINGTON J E. WALKER A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biology Biochemistry, 1999, 31(5): 677-686.
doi: 10.1016/S0038-0717(98)00156-4
[6] 李秀英, 赵秉强, 李絮花, 李燕婷, 孙瑞莲, 朱鲁生, 徐晶, 王丽霞, 李小平, 张夫道. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系. 中国农业科学, 2005, 38(8): 1591-1599.
LI X Y, ZHAO B Q, LI X H, LI Y T, SUN R L, ZHU L S, XU J, WANG L X, LI X P, ZHANG F D. Effects of different fertilization systems on soil microbe and its relation to soil fertility. Scientia Agricultura Sinica, 2005, 38(8): 1591-1599. (in Chinese)
[7] 钱玮, 陈宏伟, 张铭连, 金琎, 邱劲, 胡翠英. 不同施肥处理对茶树根际微生物群落结构的影响. 基因组学与应用生物学, 2019(3): 1205-1210.
QIAN W, CHEN H W, ZHANG M L, JIN J, QIU J, HU C Y. Effects of different fertilization treatments on community structure of rhizosphere microbe of camellia sinensis. Genomics and Applied Biology, 2019(3): 1205-1210. (in Chinese)
[8] 刁晓平, 孙英健, 孙振钧, 沈建忠. 安普霉素对不同土壤中微生物活动的影响. 生态环境, 2004, 13(4): 565-568.
DIAO X P, SUN Y J, SUN Z J, SHEN J Z. Effects of apramycin on microbial activity in different type of soil. Ecology and Environment, 2004, 13(4): 565-568. (in Chinese)
[9] 吴红英, 孔云, 姚允聪, 毕宁宁, 亓丽萍, 付占国. 间作芳香植物对沙地梨园土壤微生物数量与土壤养分的影响. 中国农业科学, 2010, 43(1): 140-150.
WU H Y, KONG Y, YAO Y C, BI N N, QI L P, FU Z G. Effects of intercropping aromatic plants on soil microbial quantity and soil nutrients in pear orchard. Scientia Agricultura Sinica, 2010, 43(1): 140-150. (in Chinese)
[10] 朱庆松, 刘松虎, 赵海英. 不同覆盖措施对信阳毛尖茶园土壤微生物量动态变化的影响. 河南农业科学, 2010, 39(7): 53-55.
ZHU Q S, LIU S H, ZHAO H Y. Study of different mulching measures on the dynamic changes of microbial biomass in the tea garden of Xinyang. Journal of Henan Agricultural Sciences, 2010, 39(7): 53-55. (in Chinese)
[11] 杨清平, 毛清黎, 杨新河. 不同生态茶园土壤微生物及脲酶活性研究. 湖北大学学报(自然科学版), 2014, 36(4): 300-302, 306.
YANG Q P, MAO Q L, YANG X H. The studying of soil microorganism and urease activity of different types of ecological tea garden. Journal of Hubei University (Natural Science Edition), 2014, 36(4): 300-302, 306. (in Chinese)
[12] 徐晨光, 张奇春, 侯昌萍. 外源抗生素对茶园土壤微生物群落结构的影响. 浙江大学学报(农业与生命科学版), 2014, 40(1): 75-84.
XU C G, ZHANG Q C, HOU C P. Effect of exogenous antibiotics on soil microbial community structure in tea garden. Journal of Zhejiang University (Agriculture & Life Sciences), 2014, 40(1): 75-84. (in Chinese)
[13] 王慧敏. 间作芳香植物对茶园土壤肥力状况的影响[D]. 山东农业大学, 2016.
WANG H M. Effects of intercropping aromatic plants on the soil fertility in tea plantation[D]. Shandong Agricultural University, 2016. (in Chinese)
[14] CHEN X X, SONG B Z, YAO Y C, WU H Y, HU J H, ZHAO L L. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem. The Science of the Total Environment, 2014, 472:939-946.
doi: 10.1016/j.scitotenv.2013.11.117
[15] SACCHETTI G, MAIETTI S, MUZZOLI M, SCAGLIANTI M, MANFREDINI S, RADICE M, BRUNI R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 2005, 91(4): 621-632.
doi: 10.1016/j.foodchem.2004.06.031
[16] LIANG Q, LI W R, SHI Q S, ZHANG W M. Antifungal activity of Litsea cubeba oil against candida albicans. Biotechnology Bulletin, 2015, 31(10): 205-210.
[17] LUO M, JIANG L K, ZOU G L. Acute and genetic toxicity of essential oil extracted from Litsea cubeba (Lour.) Pers. Journal of Food Protection, 2005, 68(3): 581-588.
doi: 10.4315/0362-028X-68.3.581
[18] 郝海平. 间作山苍子和红豆杉对茶园土壤微生物和微量元素的影响. 博士后出站报告,中国科学院植物研究所, 2019.
HAO H P. Effects of intercropping Listsea cubeba and Taxus chinensis on soil microbes and trace element in tea plantation. Institute of Botany, The Chinese Academy of Sciences, 2019. (in Chinese)
[19] HAO H P, LI H, JIANG C D, TANG Y D, SHI L. Ion micro-distribution in varying aged leaves in salt-treated cucumber seedlings. Plant Physiology and Biochemistry, 2018, 129:71-76.
doi: 10.1016/j.plaphy.2018.05.022
[20] 汪华. 茶园土壤微生物群落结构对植茶年限、施肥和高温条件的响应研究[D]. 杭州: 浙江大学, 2015.
WANG H. The response of soil microbial community structure to cultivating age, fertilization and high temperature in tea orchard. Hangzhou: Zhejiang University, 2015. (in Chinese)
[21] 黄伟, 黄欠如, 胡锋, 吴洪生, 李辉信. 红壤溶磷菌的筛选及溶磷能力的比较. 生态与农村环境学报, 2006, 22(3): 37-40.
HUANG W, HUANG Q R, HU F, WU H S, LI H X. Screening and comparing of phosphorus solubilizing bacteria in red soil. Journal of Ecology and Rural Environment, 2006, 22(3): 37-40.(in Chinese)
[22] KHAN A A, JILANI G, AKHTAR M S, SAQLAN S M, RASHEED M. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences, 2009, 1(1): 48-58.
[23] BEBBER D P, RICHARDS V R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. BioRxiv, 2020. doi: doi.org/10.1101/2020.10.04.325373.
doi: doi.org/10.1101/2020.10.04.325373
[24] ENEBE M C, BABALOLA O O. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Annals of Microbiology, 2020, 70(1): 49.
doi: 10.1186/s13213-020-01591-8
[25] SHIV P, LAL C M, JAIRAM C, SUDHA K, MONIKA K, SANDEEP K, AJAR N Y. Soil Microbiomes for Healthy Nutrient Recycling// YADAV A N, SINGH J, SINGH C, YADAV N. Current Trends in Microbial Biotechnology for Sustainable Agriculture. Environmental and Microbial Biotechnology. Springer, Singapore, 2021.
[26] SHRIDHAR B S. Nitrogen Fixing Microorganisms. International Journal of Microbiological Research, 2012, 3(1): 46-52.
[27] 赵兴鸽, 张世挺, 牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系. 应用与环境生物学报, 2020, 26(1): 1-9.
ZHAO X G, ZHANG S T, NIU K C. Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows. Chinese Journal of Applied & Environmental Biology, 2020, 26(1): 1-9. (in Chinese)
[28] 吴晓宗, 王岩. 生物有机肥防治烟草青枯病及对土壤微生物多样性的影响. 中国土壤与肥料, 2019(4): 193-199.
WU X Z, WANG Y. Research of bio-organic fertilizer on prevention of tobacco bacterial wilt and its effects on soil microbial diversity. Soil and Fertilizer Sciences in China, 2019(4): 193-199. (in Chinese)
[29] 史芳芳, 李向泉. 葡萄根际土壤真菌群落多样性分析. 中国农业科技导报, 2019, 21(7): 47-58.
SHI F F, LI X Q. Diversity analysis of fungus community in rhizosphere soil of grape. Journal of Agricultural Science and Technology, 2019, 21(7): 47-58. (in Chinese)
[30] BULGARELLI D, ROTT M, SCHLAEPPE K, THEMAAT E V L, AHMADINEJAD N, ASSENZA F, RAUF P, HUETTEL B, REINHARDT R, SCHMELZER E, PEPLIES J, GLOECHNER F O, AMANN R, EICKHORST T, LEFERT P S. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488(7409): 91-95.
doi: 10.1038/nature11336
[31] 李萃邦. 十种植物提取物对茶树叶部病原菌生物活性的研究[D]. 武汉: 华中农业大学, 2017.
LI C B. Research on biological activities of the extracts from 10 kinds of plants against camellia sinensis pathogens[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[32] SOUZA C M C, PEREIRA JUNIOR S A, MORAES T D S, DAMASCENO J L, AMORIM MENDES S, DIAS H J, STEFANI R, TAVARES D C, MARTINS C H G, CROTTI A E M, MENDES- GIANNINI M J S, PIRES R H. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Medical Mycology, 2016, 54(5): 515-523.
doi: 10.1093/mmy/myw003
[33] PARK S N, LIM Y K, FREIRE M O, CHO E, JIN D C, KOOK J K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe, 2012, 18(3): 369-372.
doi: 10.1016/j.anaerobe.2012.04.001
[1] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[2] ZHOU MingXing, DAI ZiJun, FAN Jun, FU Wei, HAO MingDe. Effect of No-Tillage Combined with Mulching on the Structure and Organic Carbon Content of Aggregates in Heilu Soil of the Weibei Dry Plateau [J]. Scientia Agricultura Sinica, 2023, 56(12): 2329-2340.
[3] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[4] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
[5] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[8] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[9] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[10] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[11] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[12] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[13] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[14] XIAO ShanShan, ZHANG YiFei, YANG KeJun, MING LiWei, DU JiaRui, XU RongQiong, SUN YiShan, LI WeiQing, LI GuiBin, LI ZeSong, LI JiaYu. Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310.
[15] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!