Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3945-3958.doi: 10.3864/j.issn.0578-1752.2021.18.013

• HORTICULTURE • Previous Articles     Next Articles

Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh

DIAO WeiNan(),YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2020-11-02 Accepted:2020-12-29 Online:2021-09-16 Published:2021-09-26
  • Contact: WenGe LIU E-mail:15239938134@163.com;liuwenge@caas.cn

Abstract:

【Objective】In order to find out the formation mechanism of watermelon canary yellow flesh color, the pigment composition, pigment contents, and the inheritance of white and canary yellow flesh watermelon color were studied in this study, and the candidate genes related to canary yellow flesh were predicted by BSA-seq. 【Method】Two six generations populations were constructed by crossing four materials, including Bingtangcui (white flesh) and Xihua (canary yellow flesh), as well as Sashengnaiyougua (white flesh) and Xinjinlanxuan (canary yellow flesh). High performance liquid chromatography (HPLC) was used to determine the carotenoid composition and content in flesh of four parents at four different development stages. Two BSA-seq populations (BSA-seq I and BSA-seq II) were initially located by using the bulked sergeant analysis (BSA), and then the candidate genes were screened according to the annotation information of watermelon reference genome ‘97103’ V2, and verified by real-time quantitative polymerase chain reaction (qRT-PCR).【Result】During the development of watermelon fruit, violaxanthin and lutein accumulated differently in both parents, and the content of violaxanthin was higher in canary yellow flesh than in white flesh. The content of violaxanthin in white and canary yellow flesh watermelon fruits were (10.96±4) μg·g -1DW and (22.84±2) μg·g-1DW, respectively. The content of lutein in white and canary yellow flesh watermelon fruits were (2.23±1) μg·g-1DW and (3.97±1) μg·g-1DW, respectively. The content of violaxanthin was about 7 times of lutein. Two six generations segregation populations were analyzed, and the results showed that the flesh color of F1 and Ⅰ BC1P1 and Ⅱ BC1P1 populations were non-canary yellow, the segregation ratio of non-canary yellow and canary yellow in F2 population were consistent with the Mendelian segregation ratio of 3:1, and the segregation ratio of non-canary yellow and canary yellow inⅠ F1, Ⅱ F1, Ⅰ BC1P2 and Ⅱ BC1P2 backcross populations were 1:1, so it could be concluded canary yellow was recessive to white in watermelon flesh. Through SNP and InDel association analysis of BSA-seq Ⅰ and BSA-seq Ⅱ data, the major locus which regulated canary yellow flesh color in watermelon fruit was mapped on chromosome 6 within a physical distance between 24.00 to 24.61 Mb, and there were 70 genes in this region. Combined with reference genomic annotation and qRT-PCR experiment, five genes that maybe related to canary yellow flesh color trait in watermelon fruit were obtained. Among them, Cla97C06G121680, Cla97C06G121700 and Cla97C06G121890 were all related to chloroplast biogenesis and chloroplast structure size. These three genes might affect fruit flesh color by affecting the formation of chromoplast; Cla97C06G121910 was an AP2 transcription factor in response to ethylene synthesis which related to watermelon fruit ripening, which might affect the accumulation of carotenoids in flesh by affecting fruit ripening and Cla97C06G122090 was described as a transmembrane transport effect, which played a role in the transmembrane transport of carotenoids.【Conclusion】The main pigments of white and canary yellow flesh watermelon were violaxanthin and lutein, and the pigment accumulation in canary yellow flesh was significantly higher than white flesh watermelon. Genetic analysis showed that canary yellow was recessive to white in watermelon flesh color. Based on BSA-seq analysis, a major locus was located in the region of 24.00 Mb to 24.61 Mb on chromosome 6, while Cla97C06G121680, Cla97C06G121700, Cla97C06G121890, Cla97C06G122090 and Cla97C06G121910 were predicted as candidate genes which related to canary yellow formation in watermelon flesh.

Key words: watermelon, flesh, canary yellow, carotenoids, gene mapping

Table 1

Primers for quantitative real PCR"

引物名称
Primer name
引物序列
Sequence of primer
葫芦科基因组数据库登录号
Cucurbits genomics database accession No.
G1 F: TTGCTGGATTCTTTGCAGCAT
R: GCTGCTCGTCTCAATTCCAC
Cla97C06G121680
G2 F: CAGGGCAGAGTTTGATGGCT
R: CTTCTGATGTGCGTCCTGGT
Cla97C06G121700
G3 F: GGCAATGGAAATATGACAGTGCT
R: GTGCTTGTACACAGGGACCA
Cla97C06G121890
G4 F: TACATCGGGTCGTTGAGAAGAA
R: GCGTCGCATATGTTCCAAGA
Cla97C06G121910
G5 F: TCAATTCAGTCTGGGTGCTG
R: TATCCAACACTCCACCCTTGC
Cla97C06G122090
G6 F: ACTCTGCAAGGAGAAATGGCA
R: AATTAACGATGGCACTGGCG
Cla97C06G122110
CIACT F: CCTACAACTCAATTATGAAGTGTG
R: GAAATCCACATCTGCTGGAAGGTG
Cla97C02G026960

Fig. 1

Changes of flesh color during fruit development of watermelon DAP: Days after pollination"

Fig. 2

Carotenoids compositions and contents in white and canary yellow fleshed watermelon fruits during fruit ripening Different lowercase letters indicate significantly different of pigment content in different color flesh (P<0.05). The same as below"

Table 2

Phenotypic statistics of flesh color in two six generation populations"

世代
Generation
植株总数
Number of total plants
非柠檬黄色果肉
Non-canary yellow flesh
柠檬黄色果肉
Canary yellow flesh
非柠檬黄色果肉﹕柠檬黄色果肉
Non-canary yellow flesh﹕Canary yellow flesh
卡方值
χ2 value
Ⅰ P1 冰糖脆×Ⅰ P2 喜华 Ⅰ P1 Bingtangcui×Ⅰ P2 Xihua
Ⅰ P1 8 8 -
Ⅰ P2 8 - 8
Ⅰ F1 10 10 -
Ⅰ F2 156 115 41 2.80:1 0.13
Ⅰ BC1P1 51 51 -
Ⅰ BC1P2 104 56 48 1.16:1 0.62
Ⅱ P1 萨省奶油瓜×Ⅱ P2 新金兰选 Ⅱ P1 Sashengnaiyougua×Ⅱ P2 Xinjinlanxuan
Ⅱ P1 10 10 -
Ⅱ P2 8 - 8
Ⅱ F1 10 10 -
Ⅱ F2 343 256 87 2.94:1 0.02
Ⅱ BC1P1 81 81 -
Ⅱ BC1P2 77 39 38 1.02:1 0.03

Fig. 3

ED and △(SNP-index)correlation analysis chart based on SNP and InDel of BSA-seq Ⅰ The red arrow points to the associated chromosome region. The same as below"

Fig. 4

ED and △(SNP-index)correlation analysis chart based on SNP and InDel of BSA-seq Ⅱ"

Table 3

BSA-seqⅠ and BSA-seq Ⅱ statistical table of candidate region"

BSA测序
BSA-seq
染色体
Chromosome_ID
开始
Start
结束
End
大小
Size (Mb)
基因数目
Gene numbers
BSA-seq Ⅰ Cla97Chr06 24000000 24610000 0.610 70
BSA-seq Ⅱ Cla97Chr06 23800000 26330000 2.530 264

Table 4

The statistical results of gene function annotation in candidate regions"

功能注释数据库
Annotated database
注释基因数目
Annotated gene numbers
存在非同义突变
的基因数
Number of genes
with nonsynonymous mutations
存在移码突变的
基因数
Number of genes
with frameshift
mutations
NT 69 8 1
NR 54 6 1
trEMBL 54 6 1
SwissProt 35 5 1
GO 30 2 1
KEGG 15 2 1
COG 20 1 0
合计 Total 70 8 1

Table 5

Functional annotation of candidate genes"

基因Gene ID 基因注释 Gene annotation
Cla97C06G121680 APO蛋白2 APO protein 2
Cla97C06G121700 核酸相关蛋白,叶绿体 Nucleoid-associated protein, chloroplastic
Cla97C06G121890 TPR类超家族蛋白亚型1 Tetratricopeptide repeat (TPR) like superfamily protein isoform 1
Cla97C06G121910 AP2类乙烯响应转录因子家族 AP2 like ethylene-responsive transcription factor family
Cla97C06G122090 TET 8 Tetraspanin-8-like
Cla97C06G122110 WAT 1相关蛋白 Wall are thin 1-WAT 1 related protein

Fig. 5

Relative gene expression of six candidate genes in white and canary yellow fleshed watermelon during fruits development"

[1] 刘文革, 何楠, 赵胜杰, 路绪强. 我国西瓜品种选育研究进展. 中国瓜菜, 2016, 29(1): 1-7.
LIU W G, HE N, ZHAO S J, LU X Q. Advances in watermelon breeding in China. China Cucurbits and Vegetables, 2016, 29(1): 1-7. (in Chinese)
[2] PERKINS-VEAZIE P, COLLINS J K, DAVIS A R, ROBERTS W. Carotenoid content of 50 watermelon cultivars. Journal of Agricultural and Food Chemistry, 2006, 54(7): 2593-2597.
doi: 10.1021/jf052066p
[3] FIEDOR J, BURDA K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, 6(2): 466-488.
doi: 10.3390/nu6020466
[4] SANDMANN G. Carotenoid biosynthesis and biotechnological application. Archives of Biochemistry and Biophysics, 2001, 385(1): 4-12.
doi: 10.1006/abbi.2000.2170
[5] 王玉萍, 刘庆昌, 翟红. 植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用. 分子植物育种, 2006, 4(1): 103-110.
WANG Y P, LIU Q C, ZHAI H. Expression and regulation of genes related to plant carotenoid biosynthesis and their application in plant gene engineering. Molecular Plant Breeding, 2006, 4(1): 103-110. (in Chinese)
[6] FANTINI E, FALCONE G, FRUSCIANTE S, GILIBERTO L, GIULIANO G. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiology, 2013, 163(2): 986-998.
doi: 10.1104/pp.113.224733
[7] MENDES A F S, CHEN C X, GMITTER F G, MOORE G A, COSTA M G C. Expression and phylogenetic analysis of two new lycopene β-cyclases from Citrus paradisi. Physiologia Plantarum, 2011, 141(1): 1-10.
doi: 10.1111/ppl.2011.141.issue-1
[8] LI L, WANG X G, ZHANG X H, GUO M, LIU T L. Unraveling the target genes of RIN transcription factor during tomato fruit ripening and softening. Journal of the Science of Food and Agriculture, 2017, 97(3): 991-1000.
doi: 10.1002/jsfa.2017.97.issue-3
[9] AMPOMAH-DWAMENA C, THRIMAWITHANA A H, DEJNOPRAT S, LEWIS D, ESPLEY R V, ALLAN A C. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. The New Phytologist, 2019, 221(1): 309-325.
doi: 10.1111/nph.15362
[10] ZHU F, LUO T, LIU C Y, WANG Y, YANG H B, YANG W, ZHENG L, XIAO X E, ZHANG M F, XU R W, XU J G, ZENG Y L, XU J, XU Q, GUO W W, LARKIN R M, DENG X X, CHENG Y J. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. The New Phytologist, 2017, 216(1): 178-192.
doi: 10.1111/nph.2017.216.issue-1
[11] LIU C H, ZHANG H Y, DAI Z Y, LIU X, LIU Y E, DENG X X, CHEN F, XU J A. Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Science and Biotechnology, 2012, 21(2): 531-541.
doi: 10.1007/s10068-012-0068-3
[12] 万学闪, 刘文革, 阎志红, 赵胜杰, 何楠, 刘鹏, 代军委. 西瓜果实发育过程中番茄红素、瓜氨酸和Vc等功能物质含量的变化. 中国农业科学, 2011, 44(13): 2738-2747.
WAN X S, LIU W G, YAN Z H, ZHAO S J, HE N, LIU P, DAI J W. Changes of the contents of functional substances including lycopene, citrulline and ascorbic acid during watermelon fruits development. Scientia Agricultura Sinica, 2011, 44(13): 2738-2747. (in Chinese)
[13] 林德佩. 西瓜果实瓤色基因及其表现型的研究进展. 中国瓜菜, 2017, 30(1): 1-2.
LIN D P. Advance in genes for fruit flesh color and their phenotypes of watermelon. China Cucurbits and Vegetables, 2017, 30(1): 1-2. (in Chinese)
[14] BANG H, DAVIS A R, KIM S, LESKOVAR D I, KING S R. Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. Journal of the American Society for Horticultural Science, 2010, 135(4): 362-368.
doi: 10.21273/JASHS.135.4.362
[15] SHIMOTSUMA M. Cytogenetical studies in the genus Citrullus. VII. Inheritance of several characters in watermelons. Japanese Journal of Breeding, 1963, 13(4): 235-240.
doi: 10.1270/jsbbs1951.13.235
[16] POOLE C F. Genetics of cultivated cucurbits. Journal Heredity, 1944, 35(4): 122-128.
doi: 10.1093/oxfordjournals.jhered.a105364
[17] BANG H, KIM S, LESKOVAR D, KING S. Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Molecular Breeding, 2007, 20(1): 63-72.
doi: 10.1007/s11032-006-9076-4
[18] 豆峻岭, 刘文革, 赵胜杰, 路绪强, 何楠, 朱红菊, 高磊. 三倍体无籽西瓜果实发育期番茄红素合成代谢酶基因的表达. 果树学报, 2014, 31(4): 589-595.
DOU J L, LIU W G, ZHAO S J, LU X Q, HE N, ZHU H J, GAO L. Expression of lycopene synthesis and metabolism genes during maturation of triploid seedless watermelon. Journal of Fruit Science, 2014, 31(4): 589-595. (in Chinese)
[19] BRANHAM S, VEXLER L, MEIR A, TZURI G, FRIEMAN Z, LEVI A, WECHTER W P, TADMOR Y, GUR A. Genetic mapping of a major codominant QTL associated with β-carotene accumulation in watermelon. Molecular Breeding, 2017, 37(12): 146.
doi: 10.1007/s11032-017-0747-0
[20] SCHWEIGGERT R M, CARLE R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Critical Reviews in Food Science and Nutrition, 2017, 57(9): 1807-1830.
[21] ZHANG J, GUO S G, REN Y, ZHANG H Y, GONG G Y, ZHOU M, WANG G Z, ZONG M, HE H J, LIU F, XU Y. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. The New Phytologist, 2017, 213(3): 1208-1221.
doi: 10.1111/nph.2017.213.issue-3
[22] 许芸梅, 李玉梅, 贾玉鑫, 张春芝, 李灿辉, 黄三文, 祝光涛. 马铃薯红色薯肉调控基因的精细定位与候选基因分析. 中国农业科学, 2019, 52(15): 2678-2685.
XU Y M, LI Y M, JIA Y X, ZHANG C Z, LI C H, HUANG S W, ZHU G T. Fine mapping and candidate genes analysis for regulatory gene of anthocyanin synthesis in red-colored tuber flesh. Scientia Agricultura Sinica, 2019, 52(15): 2678-2685. (in Chinese)
[23] LUO H F, DAI C, LI Y P, FENG J, LIU Z C, KANG C Y. RAP codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. Journal of Experimental Botany, 2018, 69(10): 2595-2608.
doi: 10.1093/jxb/ery096
[24] DOU J L, ZHAO S J, LU X Q, HE N, ZHANG L, ALI A, KUANG H, LIU W G. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theoretical and Applied Genetics, 2018, 131(4): 947-958.
doi: 10.1007/s00122-018-3050-5
[25] 李明月, 陈嘉景, 程运江, 徐娟. 木鳖果生物学性状观察及其类胡萝卜素组分分析. 中国南方果树, 2017, 46(5): 57-62.
LI M Y, CHEN J J, CHENG Y J, XU J. Observation on biological characteristics and analysis of carotenoid components in Momordica cochinchinensis (Lour.) Spreng. South China Fruits, 2017, 46(5): 57-62. (in Chinese)
[26] ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, ZHANG J H, ZHANG Z, MILLER W, LIPMAN D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.
doi: 10.1093/nar/25.17.3389
[27] ASHBURNER M, BALL C A, BLAKE J A, BOTSTEIN D, BUTLER H, CHERRY J M, DAVIS A P, DOLINSKI K, DWIGHT S S, EPPIG J T, HARRIS M A, HILL D P, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE J C, RICHARDSON J E, RINGWALD M, RUBIN G M, SHERLOCK G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 2000, 25(1): 25-29.
[28] KANEHISA M, GOTO S, KAWASHIMA S, OKUNO Y, HATTORI M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32:D277-D280.
doi: 10.1093/nar/gkh063
[29] TATUSOV R L, GALPERIN M Y, NATALE D A, KOONIN E V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1): 33-36.
doi: 10.1093/nar/28.1.33
[30] KONG Q S, YUAN J X, GAO L Y, ZHAO S, JIANG W, HUANG Y A, BIE Z L. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE, 2014, 9(2): e90612.
doi: 10.1371/journal.pone.0090612
[31] LI L, YUAN H. Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry and Biophysics, 2013, 539(2): 102-109.
doi: 10.1016/j.abb.2013.07.002
[32] RANOCHA P, DIMA O, NAGY R, FELTEN J, CORRATGE- FAILLIE C, NOVAK O, MORREEL K, LACOMBE B, MARTINEZ Y, PFRUNDER S, JIN X, RENOU J P, THIBAUD J B, LJUNG K, FISCHER U, MARTINOIA E, BOERJAN W, GOFFNER D. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications, 2013, 4(1): 2625.
doi: 10.1038/ncomms3625
[33] 高慧君, 明家琪, 张雅娟, 徐娟. 园艺植物中类胡萝卜素合成与调控的研究进展. 园艺学报, 2015, 42(9): 1633-1648.
GAO H J, MING J Q, ZHANG Y J, XU J. Regulation of carotenoids biosynthesis in horticultural crops. Acta Horticulturae Sinica, 2015, 42(9): 1633-1648. (in Chinese)
[34] XU C J, FRASER P D, WANG W J, BRAMLEY P M. Differences in the carotenoid content of ordinary Citrus and lycopene-accumulating mutants. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5474-5481.
doi: 10.1021/jf060702t
[35] 刘庆. ‘暗柳’甜橙红色突变体性状形成的分子机理研究[D]. 武汉: 华中农业大学, 2008.
LIU Q. Molecular mechanism for the altered traits of the red flesh bud sport of ‘anliu’ sweet orange[D]. Wuhan: Huazhong Agricultural Unversity, 2008. (in Chinese)
[36] SRIVASTAVA S, SRIVASTAVA A K. Lycopene; chemistry, biosynthesis, metabolism and degradation under various abiotic parameters. Journal of Food Science and Technology, 2015, 52(1): 41-53.
doi: 10.1007/s13197-012-0918-2
[37] CAO S F, LIANG M H, SHI L Y, SHAO J R, SONG C B, BIAN K, CHEN W, YANG Z F. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chemistry, 2017, 214:137-146.
doi: 10.1016/j.foodchem.2016.07.085
[38] TADMOR Y, KING S, LEVI A, DAVIS A, MEIR A, WASSERMAN B, HIRSCHBERG J, LEWINSOHN E. Comparative fruit colouration in watermelon and tomato. Food Research International, 2005, 38(8/9): 837-841.
doi: 10.1016/j.foodres.2004.07.011
[39] AMANN K, LEZHNEVA L, WANNER G, HERRMANN R G, MEURER J. ACCUMULATION OF PHOTOSYSTEM ONE1, a member of a novel gene family, is required for accumulation of [4Fe-4S] cluster-containing chloroplast complexes and antenna proteins. The Plant Cell, 2004, 16(11): 3084-3097.
doi: 10.1105/tpc.104.024935
[40] BÉDARD J, TRÖSCH R, WU F J, LING Q H, FLORES-PÉREZ Ú, TÖPEL M, NAWAZ F, JARVIS P. Suppressors of the chloroplast protein import mutant tic40 reveal a genetic link between protein import and thylakoid biogenesis. The Plant Cell, 2017, 29(7): 1726-1747.
doi: 10.1105/tpc.16.00962
[41] STANLEY L E, DING B Q, SUN W, MOU F J, HILL C, CHEN S L, YUAN Y W. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflowers (Mimulus). The Plant Cell, 2020, 32(5): 1536-1555.
doi: 10.1105/tpc.19.00755
[42] LLORENTE B, TORRES-MONTILLA S, MORELLI L, FLOREZ- SARASA I, MATUS J T, EZQUERRO M, D'ANDREA L, HOUHOU F, MAJER E, PICÓ B, CEBOLLA J, TRONCOSO A, FERNIE A R, DARÒS J A, RODRIGUEZ-CONCEPCION M. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. PNAS, 2020, 117(35): 21796-21803.
doi: 10.1073/pnas.2004405117
[43] KARLOVA R, ROSIN F M, BUSSCHER-LANGE J, PARAPUNOVA V, DO P T, FERNIE A R, FRASER P D, BAXTER C, ANGENENT G C, DE MAAGD R A. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell, 2011, 23(3): 923-941.
doi: 10.1105/tpc.110.081273
[44] LIU N J, WANG N, BAO J J, ZHU H X, WANG L J, CHEN X Y. Lipidomic analysis reveals the importance of GIPCs in Arabidopsis leaf extracellular vesicles. Molecular Plant, 2020, 13(10): 1523-1532.
doi: 10.1016/j.molp.2020.07.016
[1] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[2] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[3] WANG ZhaoHui, LI Yong, CAO Ke, ZHU GengRui, FANG WeiChao, CHEN ChangWen, WANG XinWei, WU JinLong, WANG LiRong. Genotype Identification and Combination Analysis of Loci Related to the Peach Flesh Texture Trait via 189 Peach Accessions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2367-2379.
[4] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[5] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[6] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[7] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[8] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[9] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[10] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[11] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[12] YaFei ZHANG,Jie PENG,YanSong ZHU,ShengNan YANG,Xu WANG,WanTong ZHAO,Dong JIANG. Genome Wide Identification of CCD Gene Family in Citrus and Effect of CcCCD4a on the Color of Citrus Flesh [J]. Scientia Agricultura Sinica, 2020, 53(9): 1874-1889.
[13] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[14] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[15] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!