Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3702-3711.doi: 10.3864/j.issn.0578-1752.2021.17.012

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Chemical Control of Ear Borers on Reducing Fusarium verticillioides Ear Rot and Fumonisin Level

LI QinCheng1(),SHI Jie2,HE KangLai1,WANG ZhenYing1()   

  1. 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071030, Hebei
  • Received:2020-12-05 Accepted:2020-12-28 Online:2021-09-01 Published:2021-09-09
  • Contact: ZhenYing WANG E-mail:ashofmournhold@163.com;zywang@ippcaas.cn

Abstract:

【Background】 Fusarium verticillioides is responsible for ear rot occurrence and quality degradation in maize. It gives rise to the production of fumonisin and poses a threat on food security. Ear borers inculding Ostrinia furnacalis and Conogethes punctiferalis can cause severe yield loss and lead to an increase in ear rot occurrence. 【Objective】 The objective of this study is to evaluate the efficacy of two insecticides (emamectin benzoate and chlorantraniliprole) combined with three fungicides (phenamacril, tebuconazole and difenoconazole) in promoting yield, reducing ear rot severity and fumonisin kernel contamination under natural conditions, clarify the effect of artificial inoculation of F. verticillioides on insecticide efficacy, define an effective schedule for the control of maize pests and provide a theoretical basis for the pesticide field application. 【Method】 Hybrid Zhengdan 958 typically cultivated in China was selected in this study. Field experiments were conducted in Langfang, Hebei Province. Pesticide treatments were conducted 5 d and 20 d after silking, and artificial inoculation of F. verticillioides was conducted 7 d after silking. Insect damage, ear rot occurrence, ear length, kernels per row, 100-grain weight and ear weight were investigated and recorded at harvest phenological stage. Fumonisins B1 and B2 level in kernels was analyzed by LC-MS/MS. 【Result】 Compared with controls, emamectin benzoate and chlorantraniliprole application could significantly reduce borer damage, ear rot occurrence and fumonisins level. While insecticides have been shown to give advantages in their application, adding a fungicide didn’t lead to a significant lower insect damage, ear rot occurrence or fumonisins level. Additional fungicide didn’t lead a significant higher control effect or yield. After inoculating F. verticillioides, chlorantraniliprole application led to a significant decrease in fumonisins level, ear rot incidence and severity. Control effect of 25 g·hm -2 chlorantraniliprole and its combinations on insect damage was 82.1%-92.7% and 94.2%-95.0% in spring and summer maize, respectively. Control effect of 30 g·hm-2 emamectin benzoate was significantly lower, at the level of 57.8%-78.0% in spring maize and 83.1%-89.9% in summer maize. Control effect on ear rot occurrence was >60% in spring maize and >88% in summer maize. No significant difference was found among pesticide treatments. Regarding yield, insecticide application had no significant effect on ear length or kernels per row, while significantly promoted ear weight compared with controls. No significant difference was found among insecticide treatments and mixture treatments. Artificial inoculation of F. verticillioides had no significant impact on yield after insecticide application. The yield of spring and summer maize increased by 5.49%-13.49% and 9.20%-13.95% after applying insecticides or mixture of insecticides with fungicides, respectively. Kernel fumonisins level was lower than 500 μg·kg -1 after insecticide or mixture of insecticides with fungicides application, while the level in controls was 2 817 μg·kg -1. Kernel fumonisins level after inoculating F. verticillioides reached up to 8 710 μg·kg-1, while the number could be reduced to 1 500 μg·kg -1 after insecticide application. 【Conclusion】 These results indicated that 25 g·hm-2 chlorantraniliprole and 30 g·hm-2 emamectin benzoate application can reduce ear rot occurrence and fumonisin level, improve maize yield and quality by controlling insect damage. No significant difference was found in insecticide treatments and mixture of insecticide with fungicide treatments. Insect infestation plays a decisive role in the F. verticillioides infection. Taking all aspects into consideration, 25 g·hm -2 chlorantraniliprole is relative ideal in maize pest control.

Key words: chemical control, pest, Fusarium verticillioides, maize ear rot, yield, fumonisin

Table 1

List of insecticides and fungicides used in the experiments"

编号
Number
药剂
Pesticide
剂型
Dosage form
有效成分用量
Dosage
(g·hm-2 or mL·hm-2)
生产厂家
Manufacturer
1 5%甲维盐
5% Emamectin benzoate
水分散粒剂
Water dispersible granule
30 中国农业科学院植物保护研究所廊坊农药中试厂
Langfang Pesticide Factory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences
2 200 g·L-1氯虫苯甲酰胺
200 g·L-1 Chlorantraniliprole
悬浮剂
Suspension concentrate
25 中国农业科学院植物保护研究所廊坊农药中试厂
Langfang Pesticide Factory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences
3 25%氰烯菌酯
25% Phenamacril
悬浮剂
Suspension concentrate
500 江苏省农药研究所股份有限公司
Jiangsu Pesticide Research Institute Company Limited
4 430 g·L-1戊唑醇
430g·L-1 Tebuconazole
悬浮剂
Suspension concentrate
250 拜耳(中国)有限公司
Bayer (China) Company Limited
5 10%苯醚甲环唑
10% Difenoconazole
微乳剂
Microemulsion
22.5 中国农业科学院植物保护研究所廊坊农药中试厂
Langfang Pesticide Factory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences

Table 2

Effects of insecticide and fungicide combination on the occurrence and control of borer damage and F. verticillioides ear rot"

种植季节
Sowing season
药剂处理
Formulation
蛀穗率
Insect damage incidence (%)
平均虫害级别
Average insect damage severity
病情指数
Disease index
发病率
Ear rot incidence (%)
伏马毒素B1+B2含量
Fumonisin B1 + B2 content (μg·kg-1)
虫害防治效果
Insect damage control effect (%)
病害防治效果
Ear rot control effect (%)
春玉米
Spring maize
氯虫苯甲酰胺 Chlorantraniliprole 4.2e 0.042d 0.3b 2.9bc 101b 92.7a 75.3a
氯虫苯甲酰胺+戊唑醇
Chlorantraniliprole + Tebuconazole
14.4cd 0.160cd 0.5b 1.7bc 457b 82.1bc 84.2a
氯虫苯甲酰胺+苯醚甲环唑
Chlorantraniliprole + Difenoconazole
9.7de 0.097d 0.8b 6.3b 208b 90.8ab 64.8a
氯虫苯甲酰胺+氰烯菌酯
Chlorantraniliprole + Phenamacril
11.1de 0.121d 0.2b 2.2bc 187b 86.5ab 83.0a
甲维盐 Emamectin benzoate 26.8bc 0.307bc 0.3b 2.9bc 293b 63.6cd 60.1a
甲维盐+戊唑醇
Emamectin benzoate + Tebuconazole
28.2bc 0.310bc 0.5b 3.7bc 277b 62.4cd 60.4a
甲维盐+苯醚甲环唑
Emamectin benzoate + Difenoconazole
33.6b 0.388b 0.6b 5.3bc 330b 57.8d 63.4a
甲维盐+氰烯菌酯
Emamectin benzoate + Phenamacril
15.2d 0.165cd 0.2b 0.5c 127b 78.0ab 83.4a
CK 71.7a 0.902a 2.7a 17.2a 2817a - -
夏玉米
Summer maize
氯虫苯甲酰胺 Chlorantraniliprole 4.3b 0.048bc 0b 0b 85b 94.7a 100.0a
氯虫苯甲酰胺+戊唑醇
Chlorantraniliprole + Tebuconazole
4.9b 0.045c 0b 0b 85b 95.0a 100.0a
氯虫苯甲酰胺+苯醚甲环唑
Chlorantraniliprole + Difenoconazole
3.3b 0.048bc 0b 0b 39b 94.6a 100.0a
氯虫苯甲酰胺+氰烯菌酯
Chlorantraniliprole + Phenamacril
3.0b 0.053bc 0.4b 1.6b 30b 94.2a 89.6a
甲维盐 Emamectin benzoate 8.0b 0.092bc 0.2b 1.5b 89b 89.9a 96.0a
甲维盐+戊唑醇
Emamectin benzoate + Tebuconazole
12.7b 0.132bc 0.5b 2.7b 24b 85.5a 88.2a
甲维盐+苯醚甲环唑
Emamectin benzoate + Difenoconazole
10.1b 0.132bc 0.2b 1.0b 73b 85.4a 95.0a
甲维盐+氰烯菌酯
Emamectin benzoate + Phenamacril
15.9b 0.153b 0.1b 0.5b 55b 83.1a 98.6a
CK 80.8a 0.900a 4.2a 21.9a 1670a - -

Table 3

Effects of insecticide application before fungal inoculation on the occurrence of F. verticillioides ear rot and severity of borer damage"

种植季节
Sowing season
药剂处理
Formulation
蛀穗率
Insect damage incidence
(%)
平均虫害级别
Average insect damage severity
病情指数
Disease
index
发病率
Ear rot incidence
(%)
伏马毒素B1+B2含量Fumonisin B1+ B2 content (μg·kg-1)
春玉米
Spring maize
氯虫苯甲酰胺+接菌
Chlorantraniliprole + F. verticillioides inoculation
6.9c 0.069d 0.4c 3.5c 711c
甲维盐+接菌
Emamectin benzoate + F. verticillioides inoculation
32.8b 0.376c 1.9b 8.5bc 1454bc
仅接菌F. verticillioides inoculation 60.8a 0.752b 9.4a 50.0a 8710a
CK 71.7a 0.902a 2.7b 17.2b 2817b
夏玉米
Summer maize
氯虫苯甲酰胺+接菌
Chlorantraniliprole + F. verticillioides inoculation
4.6c 0.046d 0b 0b 59b
甲维盐+接菌
Emamectin benzoate + F. verticillioides inoculation
16.6b 0.166c 0.3b 2.7b 186b
仅接菌F. verticillioides inoculation 88.9a 1.177a 6.2a 31.0a 3119a
CK 82.0a 0.900b 4.2a 21.9a 1670a

Table 4

Effects of agrochemical treatments on maize yield"

种植季节
Sowing season
药剂处理
Formulation
穗长
Ear length (cm)
行粒数
Kernels per row
百粒重
100-grain weight
(g)
籽粒损失率
Percent of unconsumable kernels (%)
单穗重
Ear weight
(g)
单穗增产率
Percent of yield growth (%)
春玉米
Spring maize
氯虫苯甲酰胺 Chlorantraniliprole 19.67±0.69a 39.31±0.28a 35.59±0.64a 0.33b 213.52±9.22ab 9.38
氯虫苯甲酰胺+戊唑醇
Chlorantraniliprole + Tebuconazole
19.57±0.63a 39.12±0.10a 35.71±0.97a 0.11b 216.04±5.92ab 10.67
氯虫苯甲酰胺+苯醚甲环唑
Chlorantraniliprole + Difenoconazole
19.48±0.59a 38.55±0.28a 35.68±0.69a 0.22b 221.53±4.61a 13.49
氯虫苯甲酰胺+氰烯菌酯
Chlorantraniliprole + Phenamacril
19.34±0.55a 39.2±0.19a 35.73±0.79a 0.06b 210.54±7.6b 7.86
氯虫苯甲酰胺+接菌
Chlorantraniliprole + F. verticillioides inoculation
19.17±0.74a 38.27±0.18a 35.07±0.87a 0.50b 205.93±6.23b 5.49
甲维盐 Emamectin benzoate 19.52±0.73a 39.25±0.39a 35.07±0.69a 0.22b 209.73±5.65b 7.44
甲维盐+戊唑醇
Emamectin benzoate + Tebuconazole
19.57±0.38a 38.94±0.11a 35.48±0.42a 0.28b 211.81±10.76b 8.50
甲维盐+苯醚甲环唑
Emamectin benzoate + Difenoconazole
19.32±0.54a 39.29±0.19a 36.02±0.66a 0.72b 208.07±4.30b 6.59
甲维盐+氰烯菌酯
Emamectin benzoate + Phenamacril
19.33±0.51a 38.83±0.21a 34.82±0.65a 0.17b 206.96±6.17b 6.02
甲维盐+接菌
Emamectin benzoate + F. verticillioides inoculation
19.27±0.57a 38.84±0.28a 34.74±0.67a 0.83b 213.30±7.53ab 9.27
CK 19.33±0.62a 38.56±0.23a 33.57±0.41b 1.67a 195.21±8.25c -
夏玉米
Summer maize
氯虫苯甲酰胺 Chlorantraniliprole 16.37±0.62a 32.76±1.58a 33.92±0.53ab 0.17b 199.03±14.98a 11.37
氯虫苯甲酰胺+戊唑醇
Chlorantraniliprole + Tebuconazole
16.51±0.93a 33.06±2.02a 34.49±0.89ab 0b 199.38±14.61a 11.41
氯虫苯甲酰胺+苯醚甲环唑
Chlorantraniliprole + Difenoconazole
16.82±0.91a 33.50±2.35a 34.20±1.15ab 0.17b 195.42±14.01a 9.20
氯虫苯甲酰胺+氰烯菌酯
Chlorantraniliprole + Phenamacril
16.42±1.12a 32.07±2.58a 34.40±1.39ab 0b 201.09±17.5a 12.37
氯虫苯甲酰胺+接菌
Chlorantraniliprole + F. verticillioides inoculation
16.88±0.83a 33.74±2.65a 34.34±1.08ab 0b 197.08±11.26a 10.12
甲维盐 Emamectin benzoate 16.36±0.89a 31.96±2.21a 34.47±1.52ab 0b 195.66±14.84a 9.33
甲维盐+戊唑醇
Emamectin benzoate + Tebuconazole
16.42±0.67a 32.32±1.59a 34.56±1.82ab 0b 198.17±16.24a 10.74
甲维盐+苯醚甲环唑
Emamectin benzoate + Difenoconazole
17.01±0.23a 34.24±1.31a 35.25±1.01a 0.11b 203.93±9.45a 13.95
甲维盐+氰烯菌酯
Emamectin benzoate + Phenamacril
16.45±0.76a 33.04±1.65a 34.95±1.41a 0b 201.62±16.16a 12.66
甲维盐+接菌
Emamectin benzoate + F. verticillioides inoculation
16.73±0.47a 33.37±1.31a 33.96±1.45ab 0.17b 198.58±23.37a 10.96
CK 16.60±0.68a 32.50±1.98a 32.79±1.10b 3.39a 178.96±12.30b -
[1] PRESELLO D A, BOTTA G, IGLESIAS J, EYHÉRABIDE G H. Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with Fusarium verticillioides. Crop Protection, 2008, 27(3/5): 572-576.
doi: 10.1016/j.cropro.2007.08.015
[2] PIENAAR J G, KELLERMAN T S, MARASAS W F. Field outbreaks of leukoencephalomalacia in horses consuming maize infected by Fusarium verticillioides (= F. moniliforme) in South Africa. Journal of the South African Veterinary Association, 1981, 52(1): 21-24.
[3] ROSS P F, NELSON P E, RICHARD J L, OSWEILER G D, RICE L G, PLATTNER R D, WILSON T M. Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Applied and Environmental Microbiology, 1990, 56(10): 3225-3226.
doi: 10.1128/aem.56.10.3225-3226.1990
[4] WILSON T M, ROSS P F, RICE L G, OSWEILER G D, NELSON H A, OWENS D L, PLATTNER R D, REGGIARDO C, NOON T H, PICKRELL J W. Fumonisin B1 levels associated with an epizootic of equine leukoencephalomalacia. Journal of Veterinary Diagnostic Investigation, 1990, 2(3): 213-216.
doi: 10.1177/104063879000200311
[5] MARIN S, RAMOS A J, CANO-SANCHO G, SANCHIS V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 2013, 60: 218-237.
doi: 10.1016/j.fct.2013.07.047
[6] FRANCESCHI S, BIDOLI E, BARÓN A E, LA VECCHIA C. Maize and risk of cancers of the oral cavity, pharynx, and esophagus in northeastern Italy. Journal of the National Cancer Institute, 1990, 82(17): 1407-1411.
doi: 10.1093/jnci/82.17.1407
[7] CHU F S, LI G Y. Simultaneous occurrence of fumonisin B1 and other mycotoxins in moldy corn collected from the People’s Republic of China in regions with high incidences of esophageal cancer. Applied and Environmental Microbiology, 1994, 60(3): 847-852.
doi: 10.1128/aem.60.3.847-852.1994
[8] THIEL P G, MARASAS W F, SYDENHAM E W, SHEPHARD G S, GELDERBLOM W C. The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia, 1992, 117(1/2): 3-9.
doi: 10.1007/BF00497272
[9] ALIZADEH A M, ROHANDEL G, ROUDBARMOHAMMADI S, ROUDBARY M, SOHANAKI H, GHIASIAN S A, TAHERKHANI A, SEMNANI S, AGHASI M. Fumonisin B1 contamination of cereals and risk of esophageal cancer in a high risk area in northeastern Iran. Asian Pacific Journal of Cancer Prevention, 2012, 13(6): 2625-2628.
doi: 10.7314/APJCP.2012.13.6.2625
[10] 刘玥, 李荣荣, 何康来, 白树雄, 张天涛, 丛斌, 王振营. 桃蛀螟为害对春玉米镰孢穗腐病发生及产量损失的影响. 昆虫学报, 2017, 60(5): 576-581.
LIU Y, LI R R, HE K L, BAI S X, ZHANG T T, CONG B, WANG Z Y. Effects of Conogethes punctiferalis (Lepidopteran: Crambidae) infestation on the occurrence of Fusarium ear rot and yield loss of spring corn. Acta Entomologica Sinica, 2017, 60(5): 576-581. (in Chinese)
[11] 宋立秋, 石洁, 王振营, 何康来, 丛斌. 亚洲玉米螟为害对玉米镰孢穗腐病发生程度的影响. 植物保护, 2012, 38(6): 50-53, 58.
SONG L Q, SHI J, WANG Z Y, HE K L, CONG B. Effects of the Asian corn borer injury on the incidence of Fusarium ear rot caused by Fusarium verticillioides at different developmental stages of corn ear. Plant Protection, 2012, 38(6): 50-53, 58. (in Chinese)
[12] NCUBE E, FLETT B C, VAN DEN BERG J, ERASMUS A, VILJOEN A. The effect of Busseola fusca infestation, fungal inoculation and mechanical wounding on Fusarium ear rot development and fumonisin production in maize. Crop Protection, 2017, 99: 177-183.
doi: 10.1016/j.cropro.2017.05.024
[13] SCHULTHESS F, CARDWELL K F, GOUNOU S. The effect of endophytic Fusarium verticillioides on infestation of two maize varieties by lepidopterous stemborers and coleopteran grain feeders. Phytopathology, 2002, 92(2): 120-128.
doi: 10.1094/PHYTO.2002.92.2.120
[14] CHRISTENSEN J J, SCHNEIDER C L. European corn borer (Pyrausta nubilalis Hbn.) in relation to shank, stalk and ear rots of corn. Phytopathology, 1950, 40(3): 284-291.
[15] AVANTAGGIATO G, QUARANTA F, DESIDERIO E, VISCONTI A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. Journal of the Science of Food and Agriculture, 2003, 83(1): 13-18.
doi: 10.1002/(ISSN)1097-0010
[16] BLANDINO M, SCARPINO V, VANARA F, SULYOK M, KRSKA R, REYNERI A. Role of the European corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins. Food Additives and Contaminants Part A: Chemistry, Analysis, Control Exposure and Risk Assessment, 2015, 32(4): 533-543.
[17] MADEGE R R, LANDSCHOOT S, KIMANYA M, TIISEKWA B, DE MEULENAER B, BEKAERT B, AUDENAERT K, HAESAERT G. Early sowing and harvesting as effective measures to reduce stalk borer injury, Fusarium verticillioides incidence and associated fumonisin production in maize. Tropical Plant Pathology, 2019, 44(2): 151-161.
doi: 10.1007/s40858-018-0233-1
[18] FOLCHER L, JARRY M, WEISSENBERGER A, GÉRAULT F, EYCHENNE N, DELOS M, REGNAULT-ROGER C. Comparative activity of agrochemical treatments on mycotoxin levels with regard to corn borers and Fusarium mycoflora in maize (Zea mays L.) fields. Crop Protection, 2009, 28(4): 302-308.
doi: 10.1016/j.cropro.2008.11.007
[19] MAZZONI E, SCANDOLARA A, GIORNI P, PIETRI A, BATTILANI P. Field control of Fusarium ear rot, Ostrinia nubilalis (Hübner), and fumonisins in maize kernels. Pest Management Science, 2011, 67(4): 458-465.
doi: 10.1002/ps.2084
[20] DARVAS B, BÁNÁTI H, TAKÁCS E, LAUBER É, SZÉCSI Á, SZÉKÁCS A. Relationships of Helicoverpa armigera, Ostrinia nubilalis and Fusarium verticillioides on MON 810 maize. Insects, 2011, 2(1): 1-11.
doi: 10.3390/insects2010001
[21] BOWERS E, HELLMICH R, MUNKVOLD G. Comparison of fumonisin contamination using HPLC and ELISA methods in bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm. Journal of Agricultural and Food Chemistry, 2014, 62(27): 6463-6472.
doi: 10.1021/jf5011897
[22] BOWERS E, HELLMICH R, MUNKVOLD G. Vip3Aa and Cry1Ab proteins in maize reduce Fusarium ear rot and fumonisins by deterring kernel injury from multiple Lepidopteran pests. World Mycotoxin Journal, 2013, 6(2): 127-135.
doi: 10.3920/WMJ2012.1510
[23] HAMMOND B G, CAMPBELL K W, PILCHER C D, DEGOOYER T A, ROBINSON A E, MCMILLEN B L, SPANGLER S M, RIORDAN S G, RICE L G, RICHARD J L. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000-2002. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1390-1397.
doi: 10.1021/jf030441c
[24] ALMA A, LESSIO F, REYNERI A, BLANDINO M. Relationships between Ostrinia nubilalis (Lepidoptera: Crambidae) feeding activity, crop technique and mycotoxin contamination of corn kernel in northwestern Italy. International Journal of Pest Management, 2005, 51(3): 165-173.
doi: 10.1080/09670870500179698
[25] BLANDINO M, REYNERI A, VANARA F, PASCALE M, HAIDUKOWSKI M, CAMPAGNA C. Managing fumonisin contamination in maize kernels through the timing of insecticide application against European corn borer Ostrinia nubilalis Hübner. ood Additives and Contaminants Part A: Chemistry, Analysis, Control Exposure and Risk Assessment, 2009, 26(11): 1501-1514.
[26] DE CURTIS F, DE CICCO V, HAIDUKOWSKI M, PASCALE M, SOMMA S, MORETTI A. Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. Field Crops Research, 2011, 123(2): 161-169.
doi: 10.1016/j.fcr.2011.05.012
[27] 尚艳娥, 杨卫民. CAC、欧盟、美国与中国粮食中真菌毒素限量标准的差异分析. 食品科学技术学报, 2019, 37(1): 10-15.
SHANG Y E, YANG W M. Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA, and China. Journal of Food Science and Technology, 2019, 37(1): 10-15. (in Chinese)
[28] WINDHAM G L, WILLIAMS W P, DAVIS F M. Effects of the southwestern corn borer on Aspergillus flavus kernel infection and aflatoxin accumulation in maize hybrids. Plant Disease, 1999, 83(6): 535-540.
doi: 10.1094/PDIS.1999.83.6.535
[29] 中华人民共和国农业农村部. 转基因玉米环境安全检测技术规范: NY/T720.1-720.3, 2003.
Ministry of Agriculture and Rural Affairs, The People’s Republic of China. Environmental impact testing of genetically modified maize: NY/T720.1-720.3, 2003. (in Chinese)
[30] KUSHIRO M, NAGATA R, NAKAGAWA H, NAGASHIMA H. Liquid chromatographic detection of fumonisins in rice seed. Report of National Food Research Institute, 2008, 72: 37-44.
[31] SCARPINO V, REYNERI A, VANARA F, SCOPEL C, CAUSIN R, BLANDINO M. Relationship between European corn borer injury, Fusarium proliferatum and F. subglutinans infection and moniliformin contamination in maize. Field Crops Research, 2015, 183: 69-78.
doi: 10.1016/j.fcr.2015.07.014
[32] BLANDINO M, PEILA A, REYNERI A. Timing clorpirifos + cypermethrin and indoxacarb applications to control European corn borer damage and fumonisin contamination in maize kernels. Journal of the Science of Food and Agriculture, 2010, 90(3): 521-529.
doi: 10.1002/jsfa.v90:3
[33] PARSONS M W, MUNKVOLD G P. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Additives and Contaminants Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27(5): 591-607.
[34] BLANDINO M, REYNERI A, VANARA F, PASCALE M, HAIDUKOWSKI M, SAPORITI M. Effect of sowing date and insecticide application against European corn borer (Lepidoptera: Crambidae) on fumonisin contamination in maize kernels. Crop Protection, 2008, 27(11): 1432-1436.
doi: 10.1016/j.cropro.2008.06.005
[35] PAPST C, UTZ H F, MELCHINGER A E, EDER J, MAGG T, KLEIN D, BOHN M. Mycotoxins produced by Fusarium spp. in isogenic Bt vs. non-Bt maize hybrids under European corn borer pressure. Agronomy Journal, 2005, 97(1): 219-224.
[36] BAKAN B, MELCION D, RICHARD-MOLARD D, CAHAGNIER B. Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Journal of Agricultural and Food Chemistry, 2002, 50(4): 728-731.
doi: 10.1021/jf0108258
[37] MAGG T, MELCHINGER A E, KLEIN D, BOHN M. Relationship between European corn borer resistance and concentration of mycotoxins produced by Fusarium spp. in grains of transgenic Bt maize hybrids, their isogenic counterparts, and commercial varieties. Plant Breeding, 2002, 121(2): 146-154.
doi: 10.1046/j.1439-0523.2002.00659.x
[38] NCUBE E, FLETT B C, VAN DEN BERG J, ERASMUS A, VILJOEN A. Fusarium ear rot and fumonisins in maize kernels when comparing a Bt hybrid with its non-Bt isohybrid and under conventional insecticide control of Busseola fusca infestations. Crop Protection, 2018, 110: 183-190.
doi: 10.1016/j.cropro.2017.09.015
[39] SANTIAGO R, CAO A, MALVAR R A, BUTRON A. Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean corn borer?. Journal of Economic Entomology, 2013, 106(5): 2241-2246.
doi: 10.1603/EC13084
[40] CLEMENTS M J, CAMPBELL K W, MARAGOS C M, PILCHER C, HEADRICK J M, PATAKY J K, WHITE D G. Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and Fusarium ear rot of corn. Crop Science, 2003, 43(4): 1283-1293.
doi: 10.2135/cropsci2003.1283
[41] PARKER N S, ANDERSON N R, RICHMOND D S, LONG E Y, WISE K A, KRUPKE C H. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn. Pest Management Science, 2017, 73(3): 546-553.
doi: 10.1002/ps.2017.73.issue-3
[42] MUNKVOLD G P. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 2003, 109(7): 705-713.
doi: 10.1023/A:1026078324268
[43] MUNKVOLD G P, MCGEE D C, CARLTON W M. Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology, 1997, 87(2): 209-217.
doi: 10.1094/PHYTO.1997.87.2.209
[44] DUNCAN K E, HOWARD R J. Biology of maize kernel infection by Fusarium verticillioides. Molecular Plant-Microbe Interactions, 2010, 23(1): 6-16.
doi: 10.1094/MPMI-23-1-0006
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] LI Hui,YIN ShiCai,GUO ZongXiang,MA HaoYun,REN ZiQi,SHE DongMei,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Protoschinia scutosa [J]. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!