Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3279-3294.doi: 10.3864/j.issn.0578-1752.2021.15.012

• HORTICULTURE • Previous Articles     Next Articles

The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors

WANG Hao(),YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng()   

  1. College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing 210095
  • Received:2020-09-09 Accepted:2020-12-18 Online:2021-08-01 Published:2021-08-10
  • Contact: AiSheng XIONG E-mail:2019104071@njau.edu.cn;xiongaisheng@njau.edu.cn

Abstract:

【Objective】 The genotype and relative expression level of carotenoid cleavage dioxygenases gene AgCCD4 in celery with different colors were revealed, and the roles of AgCCD4 gene on carotenoids accumulation in celery tissues were preliminarily analyzed combined with the corresponding carotenoids level, which laid a foundation for further study on the roles of CCD subfamily genes in the pigmentation of different colored celery tissues. 【Method】 The CCD family gene, AgCCD4, was obtained by homology search from genome of celery, and cloned from celery cvs. Jinnan Shiqin, Huangtaiji, Zigan NO.1, and Saixue, respectively. The composition of amino acids, physicochemical properties, genetic relationship, and spatial structure of proteins were analyzed by bioinformatics. The conservative domain and secondary structure were predicted and the tertiary structure model was established. Real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of AgCCD4 in different tissues of celery with different colors. The contents of lutein and β-carotene of leaf blades, petioles, and roots of celery were determined by ultra-performance liquid chromatography (UPLC). The subcellular localization of AgCCD4 protein in tobacco epidermal cells was performed by using Agrobacterium-mediated transient expression system. 【Result】 Sequence analysis results showed that AgCCD4 contained an open reading frame (ORF) with the length of 1 779 bp, encoding 592 amino acids. A total of 18 nucleotides and 9 amino acids sites of AgCCD4s differed in the Saixue and other three celery varieties. The relative molecular weights of AgCCD4 from Saixue and other three celeries were 65.07 and 65.12 kD, and the theoretical pIs were 6.03 and 5.95, respectively. Phylogenetic analysis demonstrated that the CCD4 in celery had the closest genetic relationship with sunflower and lettuce from Compositae family. The secondary structure of AgCCD4 contained multiple α helices and random coils, and the tertiary structure was mainly composed of β strands. Lutein and β-carotene were not detected in celery roots. The contents of lutein and β-carotene in the leaf blades were the highest in Jinnan Shiqin (1 102.58 μg∙g-1 DW and 241.92 μg∙g-1 DW, resptectivey), whereas the lowest in Zigan NO.1 (57.12 μg∙g-1 DW and 45.65 μg∙g-1 DW, respectively). In petioles, β-carotene was detected only in Huangtaiji, lutein only existed in Jinnan Shiqin and Huangtaiji. The expression level of AgCCD4 was highest in celery leaf blades and lowest in roots, respectively. In leaf blades, the relative expression levels of AgCCD4 in Zigan NO.1 shared similar rhythm change with that Saixue, which were significantly higher than that in others. 【Conclusion】 In this study, AgCCD4 gene was cloned from four celery varieties respectively, while the gene sequence of Saixue was different with other three varieties. AgCCD4 protein contained a RPE65 conserved domain. The expression of AgCCD4 was remarkably varied in different celery tissues and was negatively correlated with the carotenoids content. The content and types of carotenoids affected the plants’ color, and AgCCD4 might regulate the pigmentation of celery tissues by degrading carotenoids.

Key words: Apium graveolens, carotenoid cleavage dioxygenases gene, subcellular localization, gene expression, carotenoids

Fig. 1

60-day-old celeries with different colors a: Jinnan Shiqin; b: Huangtaiji; c: Zigan NO.1; d: Saixue"

Fig. 2

Prediction of the conserved domain of AgCCD4 from celery (a) and multiple alignment in amino acid sequences of CCD4 from celery and other species (b) The underline in the diagram represents the RPE65 domain"

Table 1

cis-acting regulatory elements characteristic of promoters sequences by Plant CARE"

顺式元件
cis-element
序列
Sequence
元件数量
Number of cis-element
功能
Function
ACE CTAACGTATT 1 光调控元件 Cis-acting element involved in light responsiveness
ARE AAACCA 1 厌氧诱导必需顺式作用元件
Cis-acting regulatory element essential for the anaerobic induction
Box 4 ATTAAT 2 光应答部分保守DNA模块
Part of a conserved DNA module involved in light responsiveness
CAAT-box CAAT/CCAAT/CAAAT 42 启动子和增强子区域的共同顺式作用元件
Common cis-acting element in promoter and enhancer regions
ERE ATTTTAAA 6 乙烯应答元件 Ethylene responsive element
F-box CTATTCTCATT 1 赤霉素响应元件 Gibberellin response element
GT1-motif GGTTAA 1 光响应要素 Light responsive element
RY-element CATGCATG 1 顺式作用的调控要素涉及种子特异性调控
Cis-acting regulatory element involved in seed-specific regulation
STRE AGGGG 3 渗透压胁迫应答元件 Osmotic stress response element
TC-rich repeats GTTTTCTTAC 1 顺式作用元素参与防御和应激反应
Cis-acting element involved in defense and stress responsiveness
TCT-motif TCTTAC 3 光响应元件的一部分Part of a light responsive element
WUN-motif AAATTACT 1 创伤诱导响应元件 Trauma induced response element

Fig. 3

Sequence of AgCCD4 gene promoter"

Fig. 4

Phylogenetic tree of the CCD4 proteins from celery and other plants"

Table 2

Amino acid composition and physicochemical properties of CCD4 in celery and other plants"

植物
Plant
氨基酸数Number of amino acid 理论分子质量 Relative molecular mass (kD) 等电点
pI
氨基酸比例 Ratio of amino acid (%) 总平均疏水性Grand average of hydrophobicity
脂肪族Aliphatic 芳香族Aromatic 酸性Positive 碱性Negative
芹菜 Apium graveolens
赛雪 Saixue 592 65.07 6.03 19 10 12 11 -0.269
津南实芹 Jinnan Shiqin 592 65.12 5.95 19 10 12 11 -0.297
胡萝卜 Daucus carota 588 64.68 6.21 19 10 12 11 -0.284
哥伦比亚锦葵 Herrania umbratica 606 66.72 6.55 21 9 12 11 -0.224
矮牵牛 Petunia hybrida 603 66.01 6.25 20 10 12 11 -0.223
烟草 Nicotiana tabacum 601 65.99 7.16 20 10 13 11 -0.218
枸杞 Lycium chinense 599 65.71 6.34 20 9 13 11 -0.252
欧洲甜樱桃 Prunus avium 597 65.70 6.21 20 10 12 11 -0.238
银白杨 Populus alba 611 66.64 6.26 21 9 12 11 -0.189
黄连木 Pistacia vera 616 67.69 6.44 21 9 12 10 -0.176
甘薯 Ipomoea batatas 594 67.66 5.76 21 9 12 11 -0.171
中华辣椒 Capsicum chinense 603 66.04 6.34 21 9 12 11 -0.248
杨梅 Morella rubra 623 68.40 6.72 20 9 13 11 -0.259
向日葵 Helianthus annuus 592 64.80 5.70 20 10 12 12 -0.155
莴苣 Lactuca sativa 592 65.36 6.05 19 10 13 11 -0.263
山杜鹃 Rhododendron kaempferi 600 65.65 6.17 20 10 12 11 -0.187
克莱门柚 Citrus clementina 603 66.45 6.87 21 9 13 11 -0.236
芜菁 Brassica rapa 595 65.60 6.19 21 9 13 12 -0.230
盐芥 Eutrema salsugineum 602 66.41 7.02 21 8 14 11 -0.255
蓖麻 Ricinus communis 618 68.07 6.85 21 9 12 11 -0.133

Fig. 5

Hydrophilic and hydrophobic analysis of amino acid sequences of AgCCD4 from Saixue and Jinnan Shiqin"

Fig. 6

Tertiary structure of celery (a, b), carrot (c) and banana (d) CCD4 protein"

Fig. 7

Subcellular localization of AgCCD4 protein a: GFP flouorescence; b: Chloroplast; c: Bright field; d: Merged"

Fig. 8

Carotenoids content in leaf blades, petioles, and roots of celeries with different colors a: Lutein content; b: β-carotene contents; c: Carotenoid chromatogram determined by UPLC"

Fig. 9

Expression levels of AgCCD4 in celery leaf blades, petioles, and roots"

[1] 应初衍. 植物着色色素的代谢. 植物生理学通讯, 1985(6):1-7, 31.
YING C Y. Metabolism of pigmented pigments in plants. Plant Physiology Communications, 1985(6):1-7, 31. (in Chinese)
[2] 由淑贞, 杨洪强. 类胡萝卜素裂解双加氧酶及其生理功能. 西北植物学报, 2008, 28(3):630-637.
YOU S Z, YANG H Q. Carotenoid cleavage dioxygenases and their physiological function. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(3):630-637. (in Chinese)
[3] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[4] 刘玉成, 张超, 董彬, 赵宏波. 高等植物CCD亚家族基因研究进展. 农业生物技术学报, 2019, 27(4):720-734.
LIU Y C, ZHANG C, DONG B, ZHAO H B. Advances of CCD subfamily in higher plants. Journal of Agricultural Biotechnology, 2019, 27(4):720-734. (in Chinese)
[5] 韦艳萍, 庞欣, 刘云飞, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 杨悦俭, 万红建. 植物类胡萝卜素裂解氧化酶研究进展. 核农学报, 2014, 28(11):2071-2078.
WEI Y P, PANG X, LIU Y F, LI Z M, YE Q J, WANG R Q, RUAN M Y, YAO Z P, ZHOU G Z, YANG Y J, WAN H J. Research progress of carotenoid cleavage oxygenases in plants. Journal of Nuclear Agricultural Sciences, 2014, 28(11):2071-2078. (in Chinese)
[6] SCHMIDT H, KURTZER R, EISENREICH W, SCHWAB W. The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. The Journal of Biological Chemistry, 2006, 281(15):9845-9851.
doi: 10.1074/jbc.M511668200
[7] VOGEL J T, TAN B C, MCCARTY D R, KLEE H J. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. The Journal of Biological Chemistry, 2008, 283(17):11364-11373.
doi: 10.1074/jbc.M710106200
[8] OHMIYA A. Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnology, 2009, 26(4):351-358.
doi: 10.5511/plantbiotechnology.26.351
[9] AHRAZEM O, TRAPERO A, GÓMEZ M D, RUBIO-MORAGA A, GÓMEZ-GÓMEZ L. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: A deeper study in Crocus sativus and its allies. Genomics, 2010, 96(4):239-250.
doi: 10.1016/j.ygeno.2010.07.003
[10] FLOSS D S, WALTER M H. Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signaling & Behavior, 2009, 4(3):172-175.
[11] UMEHARA M, HANADA A, YOSHIDA S, AKIYAMA K, ARITE T, KAMIYA N T, MAGOME H, KAMIYA Y, SHIRASU K, YONEYAMA K, KYOZUKA J, YAMAGUCHI S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210):195-200.
doi: 10.1038/nature07272
[12] RUBIO A, RAMBLA J L, SANTAELLA M, GÓMEZ M D, ORZAEZ D, GRANELL A, GÓMEZ-GÓMEZ L. Cytosolic and plastoglobule- targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. The Journal of Biological Chemistry, 2008, 283(36):24816-24825.
doi: 10.1074/jbc.M804000200
[13] ROTTET S, DEVILLERS J, GLAUSER G, DOUET V, BESAGNI C, KESSLER F. Identification of plastoglobules as a site of carotenoid cleavage. Frontiers in Plant Science, 2016, 7:1855.
[14] OHMIYA A, KISHIMOTO S, AIDA R, YOSHIOKA S, SUMITOMO K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology, 2006, 142(3):1193-1201.
doi: 10.1104/pp.106.087130
[15] CAMPBELL R, DUCREUX L J M, MORRIS W L, MORRIS J A, SUTTLE J C, RAMSAY G, BRYAN G J, HEDLEY P E, TAYLOR M A. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiology, 2010, 154(2):656-664.
doi: 10.1104/pp.110.158733
[16] BABA S A, JAIN D, ABBAS N, ASHRAF N. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. Journal of Plant Physiology, 2015, 189:114-125.
doi: 10.1016/j.jplph.2015.11.001
[17] LI M Y, HOU X L, WANG F, TAN G F, XU Z S, XIONG A S. Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology, 2018, 38(2):172-183.
doi: 10.1080/07388551.2017.1312275
[18] 沈迪, 陈龙正, 陶建平, 刘洁霞, 冯凯, 尹莲, 徐志胜, 熊爱生. 芹菜bZIP转录因子基因AgbZIP16的逆境响应分析. 植物生理学报, 2019, 55(12):1817-1826.
SHEN D, CHEN L Z, TAO J P, LIU J X, FENG K, YIN L, XU Z S, XIONG A S. Stress response analysis of AgbZIP16, a bZIP transcription factor gene, in Apium graveolens. Plant Physiology Journal, 2019, 55(12):1817-1826. (in Chinese)
[19] 尹莲, 刘洁霞, 陈龙正, 沈迪, 段奥奇, 冯凯, 徐志胜, 熊爱生. 芹菜AgHAT4的克隆与表达模式分析. 园艺学报, 2020, 47(1):143-152.
YIN L, LIU J X, CHEN L Z, SHEN D, DUAN A Q, FENG K, XU Z S, XIONG A S. Cloning and expression profiles analysis of AgHAT4 gene in Apium graveolens. Acta Horticulturae Sinica, 2020, 47(1):143-152. (in Chinese)
[20] LI M Y, FENG K, HOU X L, JIANG Q, XIONG A S. The genome sequence of celery (Apium graveolens L.), an important leaf vegetable crop rich in apigenin in the Apiaceae family. Horticulture Research, 2020, 7(1):223-253.
[21] FENG K, HOU X L, LI M Y, JIANG Q, XU Z S, LIU J X, XIONG A S. CeleryDB: A genomic database for celery. Database (Oxford), 2018: bay070.
[22] FENG K, LIU J X, XING G M, SUN S, LI S, DUAN A Q, WANG F, LI M Y, XU Z S, XIONG A S. Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ, 2019, 7:e7925.
doi: 10.7717/peerj.7925
[23] PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29(9):e45.
doi: 10.1093/nar/29.9.e45
[24] 李静文, 马静, 却枫, 王枫, 徐志胜, 熊爱生. 芹菜中类胡萝卜素合成相关番茄红素ε-环化酶基因AgLCYE的克隆与表达分析. 园艺学报, 2018, 45(2):341-350.
LI J W, MA J, QUE F, WANG F, XU Z S, XIONG A S. Cloning and expression profiles analysis of carotenoid biosynthesis related gene AgLCYE from celery. Acta Horticulturae Sinica, 2018, 45(2):341-350.(in Chinese)
[25] MA J, XU Z S, TAN G F, WANG F, XIONG A S. Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Acta Biochimica et Biophysica Sinica, 2017, 49(9):817-826.
doi: 10.1093/abbs/gmx081
[26] LI T, WANG Y H, HUANG Y, LIU J X, XING G M, SUN S, LI S, XU Z S, XIONG A S. A novel plant protein-disulfide isomerase participates in resistance response against the TYLCV in tomato. Planta, 2020, 252(2):25.
doi: 10.1007/s00425-020-03430-1
[27] 刘晓丛, 曾丽, 张邀月, 彭勇政, 陶懿伟, 王梦茹. 万寿菊类胡萝卜素裂解双加氧酶基因CCD4b的克隆与表达分析. 上海交通大学学报(农业科学版), 2018, 36(2):1-8, 21.
LIU X C, ZENG L, ZHANG Y Y, PENG Y Z, TAO Y W, WANG M R. Cloning and expression analysis of carotenoid cleavage dioxygenase gene CCD4b in Tagetes erecta L. Journal of Shanghai Jiao Tong University (Agricultural Science), 2018, 36(2):1-8, 21. (in Chinese)
[28] 王赞, 岳川, 曹红利, 郭雅玲. 茶树CsCCD1CsCCD4基因的克隆和表达分析. 西北植物学报, 2018, 38(9):1605-1612.
WANG Z, YUE C, CAO H L, GUO Y L. Cloning and expression analysis of CsCCD1 and CsCCD4 gene in tea plant (Camellia sinensis). Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(9):1605-1612. (in Chinese)
[29] 岳远征, 王晰, 丁文杰, 李娅, 刘家伟, 王良桂. 长筒石蒜类胡萝卜素裂解双加氧酶基因LlCCD4的克隆与表达. 分子植物育种, 2019, 17(3):796-802.
YUE Y Z, WANG X, DING W J, LI Y, LIU J W, WANG L G. Cloning and expression of carotenoid cleavage dioxygenase 4 gene (LlCCD4) in Lycoris radiata. Molecular Plant Breeding, 2019, 17(3):796-802. (in Chinese)
[30] 陶静静. 蜡梅八氢番茄红素脱氢酶基因CpPds的克隆与表达分析[D]. 重庆: 西南大学, 2013.
TAO J J. Cloning and expression analysis of CpPds from Chimonanthus praecox Link[D]. Chongqing: Southwest University, 2013. (in Chinese)
[31] 张朋. 小麦TaD27TaCCD8基因克隆与表达分析[D]. 杨凌: 西北农林科技大学, 2016.
ZHANG P. Cloning and expression of TaD27 and TaCCD8 in wheat[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[32] 王晓云, 陈蓉, 张恩慧. 栀子类胡萝卜素剪切双加氧酶基因GjCCD4的克隆与原核表达. 生物技术, 2016, 26(1):34-41.
WANG X Y, CHEN R, ZHANG E H. Cloning and prokaryotic expression of carotenoid cleavage dioxygenase gene 4 from Gardenia jasminoid. Biotechnology, 2016, 26(1):34-41. (in Chinese)
[33] ROTTET S, DEVILLERS J, GLAUSER G, DOUET V, BESAGNI C, KESSLER F. Identification of plastoglobules as a site of carotenoid cleavage. Frontiers in Plant Science, 2016, 7:1855.
[34] ZHOU Q Q, LI Q C, LI P, ZHANG S T, LIU C, JIN J J, CAO P J, YANG Y X. Carotenoid cleavage dioxygenases: identification, expression, and evolutionary analysis of this gene family in tobacco. International Journal of Molecular Sciences, 2019, 20(22):5796.
doi: 10.3390/ijms20225796
[35] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[36] TADMOR Y, KING S, LEVI A, DAVIS A, MEIR A, WASSEMAN B, HIRSCHBERG J, LEWINSOHN E. Comparative fruit colouration in watermelon and tomato. Food Research Internationa, 2005, 38(8):837-841.
[37] WANG S B, TIAN S L, SHAH S N M, PAN B G, DIAO W P, GONG Z H. Cloning and characterization of the CarbcL gene related to chlorophyll in pepper (Capsicum annuum L.) under fruit shade stress. Frontiers in Plant Science, 2015, 6:850.
[38] QI Y Y, LOU Q A, QUAN Y H, LIU Y L, WANG Y J. Flower-specific expression of the Phalaenopsis flavonoid 3', 5'-hydoxylase modifies flower color pigmentation in Petunia and Lilium. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(2):263-273.
doi: 10.1007/s11240-013-0359-2
[39] GAO J M, SUN X M, ZONG Y A, YANG S P, WANG L H, LIU B L. Functional MYB transcription factor gene HtMYB2 is associated with anthocyanin biosynthesis in Helianthus tuberosus L. BMC Plant Biology, 2020, 20(1):247.
doi: 10.1186/s12870-020-02463-8
[40] WEN L, WANG Y Q, DENG Q X, HONG M, SHI S, HE S S, HUANG Y, ZHANG H, PAN C P, YANG Z W, CHI Z H, YANG Y M. Identifying a carotenoid cleavage dioxygenase (CCD4) gene controlling yellow/white fruit flesh color of “piqiutao” (white fruit flesh) and its mutant (yellow fruit flesh). Plant Molecular Biology Reporter, 2020, 38(4):513-520.
doi: 10.1007/s11105-020-01213-2
[41] URESHINO K, NAKAYAMA M, MIYAJIMA I. Contribution made by the carotenoid cleavage dioxygenase 4 gene to yellow colour fade in Azalea petals. Euphytica, 2016, 207(2):401-417.
doi: 10.1007/s10681-015-1557-2
[42] TAN G F, MA J, ZHANG X Y, XU Z S, XIONG A S. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. Plant Science, 2017, 263:31-38.
doi: 10.1016/j.plantsci.2017.07.001
[43] FENG K, XU Z S, LIU J X, LI J W, WANG F, XIONG A S. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Planta, 2018, 247(6):1363-1375.
doi: 10.1007/s00425-018-2870-5
[44] 谭国飞, 王枫, 马静, 张馨月, 熊爱生. 紫色与非紫色芹菜花青素和芹菜素含量及合成基因表达分析. 园艺学报, 2017, 44(7):1327-1334.
TAN G F, WANG F, MA J, ZHANG X Y, XIONG A S. Analysis of anthocyanin and apigenin contents and the expression profiles of biosynthesis-related genes in the purple and non-purple varieties of celery. Acta Horticulturae Sinica, 2017, 44(7):1327-1334.(in Chinese)
[45] RUBIO A, RAMBLA J L, SANTAELLA M, GÓMEZ M D, ORZAEZ D, GRANELL A, GÓMEZ-GÓMEZ L. Cytosolic and plastoglobule- targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. The Journal of Biological Chemistry, 2008, 283(36):24816-24825.
doi: 10.1074/jbc.M804000200
[46] ZHENG X J, XIE Z Z, ZHU K J, XU Q A, DENG X X, PAN Z Y. Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different Citrus species. Molecular Genetics and Genomics, 2015, 290(4):1589-1603.
doi: 10.1007/s00438-015-1016-8
[47] ZHANG B, LIU C, WANG Y Q, YAO X A, WANG F, WU J S, KING G J, LIU K D. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. The New Phytologist, 2015, 206(4):1513-1526.
doi: 10.1111/nph.2015.206.issue-4
[48] BRANDI F, BAR E, MOURGUES F, HORVÁTH G, TURCSI E, GIULIANO G, LIVERANI A, TARTARINI S, LEWINSOHN E, ROSATI C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 2011, 11:24.
doi: 10.1186/1471-2229-11-24
[49] 曾祥玲. 桂花TPS和CCD功能分析及其对花瓣色香形成的影响研究[D]. 武汉: 华中农业大学, 2016.
ZENG X L. Research of TPS and CCD function analysis and their influence on petal color and scent in Osmanthus fragrans Lour[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[50] 刘晓丛, 曾丽, 刘国锋, 彭勇政, 陶懿伟, 张邀月, 王梦茹. 万寿菊类胡萝卜素裂解双加氧酶基因CCD1克隆与表达分析. 中国农业科学, 2017, 50(10):1930-1940.
LIU X C, ZENG L, LIU G F, PENG Y Z, TAO Y W, ZHANG Y Y, WANG M R. Cloning and expression analysis of carotenoid cleavage dioxygenase 1 (CCD1) gene in Tagetes erecta L. Scientia Agricultura Sinica, 2017, 50(10):1930-1940. (in Chinese)
[51] 田芳, 姚兆群, 陈美秀, 徐瑛, 赵思峰. 番茄独脚金内酯合成关键基因CCD7CCD8 RNA沉默载体的构建. 湖北农业科学, 2016, 55(21):5668-5671.
TIAN F, YAO Z Q, CHEN M X, XU Y, ZHAO S F. Construction of strigolactones key genes CCD7, CCD8 of tomato RNA silencing expression vector. Hubei Agricultural Sciences, 2016, 55(21):5668-5671. (in Chinese)
[52] GAO J P, ZHANG T, XU B X, JIA L, XIAO B G, LIU H, LIU L J, YAN H, XIA Q Y. CRISPR/Cas9-Mediated mutagenesis of carotenoid cleavage dioxygenase 8 (CCD8) in tobacco affects shoot and root architecture. International Journal of Molecular Sciences, 2018, 19(4):1062.
doi: 10.3390/ijms19041062
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[6] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[10] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[11] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[12] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[13] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!