Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3065-3076.doi: 10.3864/j.issn.0578-1752.2021.14.012


Response of Water Use and Yield of Dryland Winter Wheat to Nitrogen Application Under Different Rainfall Patterns

LIU PengZhao(),ZHOU Dong,GUO XingYu,YU Qi,ZHANG YuanHong,LI HaoYu,ZHANG Qi,WANG XuMin,WANG XiaoLi,WANG Rui,LI Jun()   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2020-08-27 Accepted:2020-10-14 Online:2021-07-16 Published:2021-07-26
  • Contact: Jun LI;


【Objective】Rainfall and nitrogen application are the main factors affecting winter wheat production in Weibei dryland, especially the interannual variability of rainfall is large. Therefore, their yield-increasing effects are significantly affected by the type of rainfall year. In this study, the effects of nitrogen rates on water use, grain yield and protein content in dryland wheat field under different rainfall patterns were analyzed, which provided a theoretical basis for “nitrogen applying according to rain” and ensuring stable yield and high quality of winter wheat in Weibei Dryland.【Method】A 3-year field experiment (2017-2020) of winter wheat (Jinmai 47) was performed with different nitrogen fertilization at five levels (0, 60, 120, 180 and 240 kg·hm-2, represented as N0, N60, N120, N180, and N240, respectively) in Heyang County, located in Weibei dryland of Shaanxi, and the effects of nitrogen application under different rainfall patterns on soil water dynamics, water use efficiency (WUE), wheat yield performance and grain protein content were evaluated. 【Result】Different rainfall patterns had significant impacts on soil water storage before sowing (SWSS), soil water content during growth period, ET, WUE, yield and protein content of winter wheat. (1) There was a linear correlation between rainfall in fallow period (from July to September) and SWSS, with an increment of 0.9 mm SWSS per 1 mm rainfall. In the humid and normal years with adequate rainfall during fallow stage, the SWSs in present winter wheat growth season was not significantly influenced by the increase of nitrogen fertilization in previous growth season. However, in the dry year with less rainfall in fallow stage, the SWSS in present winter wheat growth season decreased significantly by 15.4 mm when nitrogen fertilization in previous growth season was increased by each 100 kg·hm-2. Compared with dry and normal year, the soil water content of 0-200 cm soil layer during growth period of winter wheat could be increased in humid rainfall year, thus evapotranspiration (ET) was increased by 35.7% and 6.6%, respectively. The soil water accumulation of 0-120 cm soil depth during the growth period fluctuated greatly under the influence of rainfall and the growth of winter wheat. However, the soil water content in 160-200 cm deep soil depth showed a stable change trend. Compared with dry and normal year, the WUE in humid pattern was increased by 55.7% and 26.5%, the grain yield was increased by 112.3% and 39.1%, and protein content (PC) was decreased by 8.3% and 5.2%, respectively. (2) Compared with N0 treatment, soil water content in 0-200 cm soil depth was decreased by nitrogen applied during each growth period under humid, dry and normal years. The nitrogen fertilizer application increased ET by 4.6%-14.6%, 6.0%-8.6% and 2.2%-9.5%, increased WUE by 20.7%-39.8%, 4.7%-33.3%, 13.1%-35.4%, increased yield by 7.1%-28.1%, 1.5%-34.1%, 8.5%-28.9%, and increased PC by 5.6%-10.4%, 10.1%-17.7% and 8.5%-15.6%, respectively. (3) The effects of nitrogen rates on grain yield and protein yield followed a quadratic curve relationship, and the fitting equation showed that the optimal nitrogen application rates for stable yield and quality of winter wheat were 189-202, 116-124 and 161-174 kg·hm-2 in humid, dry and normal years, respectively. 【Conclusion】On the whole, the best nitrogen application schemes were 189-202, 116-124 and 161-174 kg·hm-2 in humid, dry and normal years, respectively. And the management model of “nitrogen applying according to rain” was adopted, which was “the amount of basic nitrogen fertilizer was determined by SWSs, while the top dressing of nitrogen fertilizer was determined by rainfall from sowing to jointing stage”. The model could not only meet the requirements of stable yield and high quality of winter wheat, but also ensure water high-efficient use.

Key words: dryland wheat, rainfall patterns, nitrogen fertilizer, water use, yield

Fig. 1

Monthly rainfall of winter wheat during fallow and growing stage"

Fig. 2

Effects of N treatments on soil water storage in 0-200 cm soil layer at different growth stages of winter wheat under different rainfall patterns"

Fig. 3

Dynamics of soil water content in 0-200 cm soil layer at different growth stages of winter wheat under different rainfall patterns"

Table 1

Effects of N treatments on water use efficiency and evapotranspiration of dryland winter wheat under different rainfall patterns"

N treatment
耗水量Evapotranspiration, ET (mm) 水分利用效率Water use efficiency (kg·hm-2·mm-1)
Humid year
Dry year
Normal year
Humid year
Dry year
Normal year
N0 285.9±6.2d 213.0±5.6c 277.3±7.5d 12.1±0.7d 8.5±0.7c 9.9±0.4c
N60 299.0±5.9c 225.7±1.8b 285.3±5.5c 14.6±1.2c 10.9±0.8b 11.2±0.8b
N120 311.8±6.3b 230.3±5.7a 283.5±3.4c 16.3±0.9b 11.2±1.2a 13.1±0.6a
N180 310.1±5.4b 231.4±8.3a 290.3±9.2b 16.9±0.3a 9.5±1.4b 13.4±0.5a
N240 327.6±9.6a 230.2±7.2a 303.5±4.4a 16.1±0.2b 8.2±0.5c 12.5±1.3b
施氮Nitrogen (N) 54.8** 59.2**
年型Year (Y) 1234*** 387.8***
施氮×年型N×Y 4.6* 14.7**

Table 2

Effects of N treatments on grain yield and its components, protein content of dryland winter wheat under different rainfall patterns"

Rainfall pattern
N treatment
SN (×104·hm-2)
TGW (g)
GY (kg·hm-2)
PC (%)
PY (kg·hm-2)
Humid year
N0 25.4±0.9c 477.3±21.7b 39.4±0.6c 4077±151c 12.5±0.3c 508±25d
N60 26.8±0.8c 503.0±25.5b 39.8±0.8c 4365±234c 13.2±0.3b 578±31c
N120 31.0±2.8b 512.7±38.8b 39.5±0.2c 5067±111a 13.4±0.2b 678±22b
N180 34.8±0.3a 537.4±16.7a 41.4±0.6a 5229±189a 13.8±0.3a 724±34a
N240 29.2±0.4b 544.9±14.7a 41.6± 0.2a 4959±235b 13.7±0.2a 679±24b
Dry year
N0 18.9±0.9c 308.6±24.2b 28.6± 0.6b 1927±85c 13.0±0.4c 250±34c
N60 21.9±0.8c 344.2±31.2a 31.3± 1.8a 2459±72a 14.9±0.6a 366±21b
N120 25.5±2.8a 357.5±21.6a 30.5± 0.2a 2584±68a 15.3±0.2a 390±25a
N180 22.2±0.3b 342.9±12.3a 30.5± 0.6a 2237±57b 15.2±0.3a 342±26b
N240 22.3±0.4b 316.0±45.9b 29.6± 0.4b 1956±49c 14.3±0.2b 281±32c
Normal year
N0 27.1±1.0c 480.4±24.2a 43.0± 0.8b 2952±89c 12.8±0.3c 353±13d
N60 28.4±1.7b 493.7±41.2a 44.1± 0.3a 3203±103b 13.9±0.2b 445±28c
N120 29.1±1.2b 533.1±31.6b 45.7± 0.6a 3804±267a 14.3±0.2ab 545±19a
N180 29.3±2.0b 563.9±50.3b 45.6± 1.4a 3788±112a 14.4±0.3a 546±12a
N240 30.7±1.8a 570.9±45.9b 45.3± 0.9a 3494±146b 14.5±0.2a 518±15b
施氮Nitrogen (N) 27.6*** 9.2** 5.8*** 57.6*** 69.4*** 411.0***
年型Year (Y) 158.7*** 747.8** 1210.3** 80.9*** 1223.3*** 3235.8***
施氮×年型 N×Y 8.1** 11.4** 3.6* 5.7** 10.7** 42.7***

Fig. 4

Grain yield and protein yield of dryland wheat and their relationships with nitrogen application rates under different rainfall patterns"

Fig. 5

Relationships among rainfall of fallow stage, soil water storage at sowing, rainfall of growing stage with grain yield"

Table 3

Correlation analysis between grain yield (GY), protein content (PC), water use efficiency (WUE) and rainfall at different growth stages"

各生育阶段降雨量 Rainfall in different growth stages
籽粒产量 GY 0.935** 0.036 0.933** 0.606* -0.011 -
蛋白质含量 PC -0.589* 0.024 -0.589* -0.344 -0.039 -0.341
水分利用效率 WUE 0.727* -0.323 0.733* 0.121 0.339 0.889**
[1] LI F C, WANG Z H, DAI J, LI Q, WANG X, XUE C, LIU H, HE G. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biology and Fertility of Soils, 2015, 51:769-780.
doi: 10.1007/s00374-015-1023-2
[2] LIU C A, LI F R, ZHOU, L M, ZHANG, R H, LIN, S L, WANG, L J, SIDDIQUE K H, LI F M. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agricultural Water Management, 2013, 117:123-132.
doi: 10.1016/j.agwat.2012.11.002
[3] 杨旸, 张树兰, 杨学云, 孙本华. 长期定位施肥对旱作塿土小麦产量、养分效率及养分平衡的影响. 土壤通报, 2017, 48(5):1162-1168.
YANG Y, ZHANG S L, YANG X Y, SUN B H. Effect of long-term fertilization on wheat yield, nutrient use efficiency and nutrient balance in rainfed Lou Soil. Chinese Journal of Soil Science, 2017, 48(5):1162-1168. (in Chinese)
[4] 张树兰, LARS L, 同延安. 渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率. 农业工程学报, 2005, 21(4):20-24.
ZHANG S L, LARS L, TONG Y A. Effects of different field management practices on winter wheat yield and water utilization efficiency in Weibei Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(4):20-24. (in Chinese)
[5] 于琦, 李军, 周栋, 王淑兰, 王浩, 李敖, 张元红, 宁芳, 王小利, 王瑞. 不同降水年型黄土旱塬冬小麦免耕与深松轮耕蓄墒增收效应. 中国农业科学, 2019, 52(11):1870-1882.
YU Q, LI J, ZHOU D, WANG S L, WANG H, LI A, ZHANG Y H, NING F, WANG X L, WANG R. Effects of no-tillage/subsoiling rotational tillage system on increasing soil water storage and crop yield under different precipitation patterns of winter wheat in the Loess Plateau. Scientia Agricultura Sinica, 2019, 52(11):1870-1882. (in Chinese)
[6] 张健龙, 易科, 张一岚, 赵一迪, 晁漫宁, 谈宏斌, 孙风丽, 奚亚军, 张超. 干旱胁迫对不同彩粒小麦苗期生长发育的影响. 西北农业学报, 2020, 29(6):842-850.
ZHANG J L, YI K, ZHANG Y L, ZHAO Y D, CHAO M N, TAN H B, SUN F L, XI Y J, ZHANG C. Effects of drought stress on development of different colored wheat at seedling stage. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(6):842-850. (in Chinese)
[7] 岳鹏莉, 王晨阳, 卢红芳, 刘卫星, 马耕, 王强, 胡阳阳. 灌浆期高温干旱胁迫对小麦籽粒淀粉积累的影响. 麦类作物学报, 2016, 36(11):1489-1496.
YUE P L, WANG C Y, LU H F, LIU W X, MA G, WANG Q, HU Y Y. Effect of heat and drought stress on starch accumulation during grain filling stage. Journal of Triticeae Crops, 2016, 36(11):1489-1496. (in Chinese)
[8] 黄正金, 丁锦峰, 李春燕, 朱新开, 彭永欣, 郭文善. 抽穗期干旱胁迫对小麦产量及生理特性的影响. 中国科技论文, 2017, 12(18):2141-2145.
HUANG Z J, DING J F, LI C Y, ZHU X K, PENG Y X, GUO W S. Effects of drought stress at heading stage on grain yield and physiological characteristics of wheat. China Sciencepaper, 2017, 12(18):2141-2145. (in Chinese)
[9] 付雪丽, 王晨阳, 郭天财, 朱云集, 马冬云, 王永华. 水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响. 应用生态学报, 2008(2):317-322.
FU X L, WANG C Y, GUO T C, ZHU Y J, MA D Y, WANG Y H. Effects of water-nitrogen interaction on the contents and components of protein and starch in wheat grains. Chinese Journal of Applied Ecology, 2008(2):317-322. (in Chinese)
[10] 何晓雁, 郝明德, 李慧成, 蔡志风. 黄土高原旱地小麦施肥对产量及水肥利用效率的影响. 植物营养与肥料学报, 2010, 16(6):1333-1340.
HE X Y, HAN M D, LI H C, CAI Z F. Effects of different fertilization on yield of wheat and water and fertilizer use efficiency in the Loess Plateau. Plant Nutrition and Fertilizer Science, 2010, 16(6):1333-1340. (in Chinese)
[11] 朱云鹏, 王霖, 党亚爱, 王国栋. 施氮对黄土高原半湿润区冬小麦产量和水分利用效率的影响. 麦类作物学报, 2019, 39(8):988-993.
ZHU Y P, WANG L, DANG Y A, WANG G D. Effects of nitrogen application on yield and water use efficiency of winter wheat in semi-humid area of the Loess Plateau. Journal of Triticeae Crops, 2019, 39(8):988-993. (in Chinese)
[12] 同延安, 赵营, 赵护兵, 樊红柱. 施氮量对冬小麦氮素吸收、转运及产量的影响. 植物营养与肥料学报, 2007(1):64-69.
TONG Y A, ZHAO Y, ZHAO H B, FAN H Z. Effect of N rates on N uptake, transformation and the yield of winter wheat. Plant Nutrition and Fertilizer Science, 2007(1):64-69. (in Chinese)
[13] 张昊青. 黄土高原旱地麦田有机无机配施减氮增效作用研究[D]. 杨凌: 西北农林科技大学, 2017.
ZHANG H Q. Reducing nitrogen fertilization rate and improving winter wheat yield through a combination of manure and chemical fertilizer in the Loess Plateau[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[14] WANG L L, PALTA J A, CHEN W, CHEN Y L, DENG X P. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, 2018, 197:41-53.
doi: 10.1016/j.agwat.2017.11.010
[15] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14):2758-2768.
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017, 50(14):2758-2768. (in Chinese)
[16] 王欢, 付威, 胡锦昇, 樊军, 郝明德. 渭北旱塬管理措施对冬小麦地土壤剖面物理性状的影响. 植物营养与肥料学报, 2019, 25(7):1097-1106.
WANG H, FU W, HU J S, FAN J, HAN M D. Effects of agricultural measures on soil profile physical properties of winter wheat field in Weibei highland, China. Plant Nutrition and Fertilizer Science, 2019, 25(7):1097-1106. (in Chinese)
[17] 刘朋召, 王旭敏, 宁芳, 雒文鹤, 张琦, 张元红, 李军. 减量施氮对渭北旱地春玉米产量、氮素利用及土壤硝态氮含量的影响. 应用生态学报, 2020, 31(8):2621-2639.
LIU P Z, WANG X M, NING F, LUO W H, ZHANG Q, ZHANG Y H, LI J. Effects of reduced nitrogen application on yield, nitrogen utilization of spring maize and soil nitrate content in Weibei dryland, Northwest China. Chinese Journal of Applied Ecology, 2020, 31(8):2621-2639. (in Chinese)
[18] 娄庭, 龙怀玉, 杨丽娟, 陈宝鸿, 周水亮, 穆真. 在过量施氮农田中减氮和有机无机配施对土壤质量及作物产量的影响. 中国土壤与肥料, 2010(2):11-15, 34.
LOU T, LONG H Y, YANG L J, CHEN B H, ZHOU S L, MU Z. The effect of fertilizer ratio and rate on soil quality and crop yields in the farmland of excessive use of nitrogenous fertilizers. Soil and Fertilizer Sciences in China, 2010(2):11-15, 34. (in Chinese)
[19] 惠晓丽, 马清霞, 王朝辉, 张翔, 罗来超. 基于旱地小麦高产优质的氮肥用量优化. 植物营养与肥料学报, 2020, 26(2):233-244.
HUI X L, MA Q X, WANG Z H, ZHANG X, LUO L C. Optimization of nitrogen rate based on grain yield and nutrient contents in dryland wheat production. Plant Nutrition and Fertilizer Science, 2020, 26(2):233-244. (in Chinese)
[20] 刘芬, 王小英, 赵业婷, 同延安. 渭北旱塬土壤养分时空变异与养分平衡研究. 农业机械学报, 2015, 46(2):110-119.
LIU F, WANG X Y, ZHAO Y T, TONG Y A. Spatial and temporal variation of soil nutrient and nutrient balance status in Weibei rainfed highland. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):110-119. (in Chinese)
[21] 刘艳妮, 马臣, 于昕阳, 梁路, 翟丙年, 王朝辉. 基于不同降水年型渭北旱塬小麦-土壤系统氮素表观平衡的氮肥用量研究. 植物营养与肥料学报, 2018, 24(3):569-578.
LIU Y N, MA C, YU X Y, LIANG L, ZHAI B N, WANG Z H. Nitrogen application rate for keeping nitrogen balance in wheat-soil system in Weibei rainfed areas under different rainfall years. Plant Nutrition and Fertilizer Science, 2018, 24(3):569-578. (in Chinese)
[22] GUO S L, ZHU H H, DANG T H, WU J S, LIU W Z, HAO M D, LI Y, SYERS J K. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semi-arid Loess Plateau in China. Geoderma, 2012, 189:442-450.
[23] WANG X B, CAI D X, HOOGMOED W B, PERDOK U D, OENEMA O. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I grain yields and nutrient use efficiencies. Nutrient Cycling in Agroecosystems, 2007, 79(1):1-16.
doi: 10.1007/s10705-007-9113-7
[24] 石玉, 张永丽, 于振文. 小麦籽粒蛋白质组分含量及其与加工品质的关系. 作物学报, 2009, 35(7):1306-1312.
doi: 10.3724/SP.J.1006.2009.01306
SHI Y, ZHANG Y L, YU Z W. Contents of grain protein components and their relationships to processing quality in wheat. Acta Agronomica Sinica, 2009, 35(7):1306-1312. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01306
[25] 马登科, 殷俐娜, 刘溢健, 杨文稼, 邓西平, 王仕稳. 施氮量对黄土高原旱地冬小麦产量和水分利用效率影响的整合分析. 中国农业科学, 2020, 53(3):486-499.
MA D K, YIN L N, LIU Y J, YANG W J, DENG X P, WANG S W. A meta-analysis of the effects of nitrogen application rates on yield and water use efficiency of winter wheat in dryland of Loess Plateau, Scientia Agricultura Sinica, 2020, 53(3):486-499. (in Chinese)
[26] 段文学, 于振文, 张永丽, 王东, 石玉. 施氮量对旱地小麦耗水特性和产量的影响. 作物学报, 2012, 38(9):1657-1664.
doi: 10.3724/SP.J.1006.2012.01657
DUAN W X, YU Z W, ZHANG Y L, WANG D, SHI Y. Effects of nitrogen application rate on water consumption characteristics and grain yield in rainfed wheat. Acta Agronomica Sinica, 2012, 38(9):1657-1664. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01657
[27] REN A X, SUN M, XUE L Z, DENG Y, WANG P R, LEI M M, XUE J F, LIN W, YANG Z P, GAO Z Q. Spatio-temporal dynamics in soil water storage reveals effects of nitrogen inputs on soil water consumption at different growth stages of winter wheat. Agricultural Water Management, 2019, 216:379-389.
doi: 10.1016/j.agwat.2019.01.023
[28] 郭栋, 党廷辉, 戚龙海. 黄土旱塬不同氮肥用量下冬小麦干物质累积和氮素吸收利用过程研究. 水土保持学报, 2008(5):138-141.
GUO D, DANG T H, QI L H. Process Study of dry matter accumulation and nitrogen absorption use of winter wheat under different n-fertilizer rates on dry highland of Loess Plateau. Journal of Soil and Water Conservation, 2008(5):138-141. (in Chinese)
[29] 史校艳, 王志强, 谷庆昊, 常明娟, 胡俊杰, 任永哲, 辛泽毓, 林同保. 施氮量对不同茬口冬小麦产量及氮肥利用率的影响. 生态学杂志, 2019, 38(7):2041-2048.
SHI X Y, WANG Z Q, GU Q H, CHANG M J, HU J J, REN Y Z, XIN Z Y, LIN T B. Effects of nitrogen application on yield and nitrogen use efficiency of winter wheat with different former crops. Chinese Journal of Ecology, 2019, 38(7):2041-2048. (in Chinese)
[30] 李亚静, 郭振清, 杨敏, 张敏, 刘添, 李翠平, 秦保平, 蔡瑞国. 施氮量对强筋小麦氮素积累和氮肥农学利用效率的影响. 麦类作物学报, 2020, 40(3):343-350.
LI Y J, GUO Z Q, YANG M, ZHANG M, LIU T, LI C P, QIN B P, CAI R G. Effect of nitrogen rate on nitrogen accumulation and agronomic efficiency in Strong Gluten Wheat. Journal of Triticeae Crops, 2020, 40(3):343-350. (in Chinese)
[31] 张礼军, 张耀辉, 鲁清林, 白玉龙, 周刚, 汪恒兴, 张文涛, 白斌, 周洁, 何春雨. 耕作方式和氮肥水平对旱地冬小麦籽粒品质的影响. 核农学报, 2017, 31(8):1567-1575.
ZHANG L J, ZHANG Y H, LU Q L, BAI Y L, ZHOU G, WANG H X, ZHANG W T, BAI B, ZHOU J, HE C Y. Effect of tillage model and nitrogen rate on grain quality of dryland winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(8):1567-1575. (in Chinese)
[32] ZHANG X D, LI Z M, SIDDIQUE K, SHAYAKHMETOVA, JIA Z K, HAN Q F. Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting. Agricultural Water Management, 2020, 241:106347.
doi: 10.1016/j.agwat.2020.106347
[33] CAO H B, WANG Z H, HE G, DAI J, HUANG M, WANG S, LUO L C, SADRASC V O, HOOGMOEDC M, MALHID S S. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Research, 2017, 209:88-95.
doi: 10.1016/j.fcr.2017.04.014
[34] 李晓州, 郝明德, 赵晶, 王哲, 付威, 刘增照. 不同降水年型下长期施肥的小麦产量效应. 应用生态学报, 2018, 29(10):3237-3244.
LI X Z, HAO M D, ZHAO J, WANG Z, FU W, LIU Z Z. Effect of long-term fertilization on wheat yield under different precipitation patterns. Chinese Journal of Applied Ecology, 2018, 29(10):3237-3244. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Full text



No Suggested Reading articles found!