Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2487-2498.doi: 10.3864/j.issn.0578-1752.2021.12.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG XiangYu(),GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong()
[1] |
TANKSLEY S D. Mapping polygenes. Annual Review of Genetics, 1993,27(1):205-233.
doi: 10.1146/annurev.ge.27.120193.001225 |
[2] |
YANO M. Genetic and molecular dissection of naturally occurring variation. Current Opinion in Plant Biology, 2001,4(2):130-135.
doi: 10.1016/S1369-5266(00)00148-5 |
[3] |
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39(5):623-630.
doi: 10.1038/ng2014 |
[4] |
SHOMURA A, IZAWA T, EBANA K, EBITANI T, KANEGAE H, KONISHI S, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008,40(8):1023-1028.
doi: 10.1038/ng.169 |
[5] |
WENG J F, GU S H, WAN X Y, GAO H, GUO T, SU N, LEI C L, ZHANG X, CHENG Z J, GUO X P, WANG J L, JIANG L, ZHAI H Q, WAN J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008,18(12):1199-1209.
doi: 10.1038/cr.2008.307 |
[6] |
LI Y B, FAN C C, XING Y Z, JIANG Y H, LUO L J, SUN L, SHAO D, XU C J, LI X H, XIAO J H, HE Y Q, ZHANG Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011,43(12):1266-1269.
doi: 10.1038/ng.977 |
[7] |
XU C J, LIU Y, LI Y B, XU X D, XU C G, LI X H, XIAO J H, ZHANG Q F. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,66(9):2611-2623.
doi: 10.1093/jxb/erv058 |
[8] |
WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012,44(8):950-954.
doi: 10.1038/ng.2327 |
[9] |
WANG S K, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO C X, WANG F, HUANG H X, FU X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015,47(8):949-954.
doi: 10.1038/ng.3352 |
[10] |
TONG H N, CHU C C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science, 2018,23(11):1016-1028.
doi: 10.1016/j.tplants.2018.08.007 |
[11] | PLANAS-RIVEROLA A, GUPTA A, BETEGÓN-PUTZE I, BOSCH N, IBAÑES M, CAÑO-DELGADO A I. Brassinosteroid signaling in plant development and adaptation to stress. Development,2019,146, dev151894. |
[12] |
SAKAMOTO T, MORINAKA Y, OHNISHI T, SUNOHARA H, FUJIOKA S, UEGUCHI-TANAKA M, MIZUTANI M, SAKATA K, TAKATSUTO S, YOSHIDA S, TANAKA H, KITANO H, MATSUOKA M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 2006,24(1):105-109.
doi: 10.1038/nbt1173 |
[13] |
HONG Z, UEGUCHI-TANAKA M, UMEMURA K, UOZU S, FUJIOKA S, TAKATSUTO S, YOSHIDA S, ASHIKARI M, KITANO H, MATSUOKA M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell, 2003,15(12):2900-2910.
doi: 10.1105/tpc.014712 |
[14] |
TANABE S, ASHIKARI M, FUJIOKA S, TAKATSUTO S, YOSHIDA S, YANO M, YOSHIMURA A, KITANO H, MATSUOKA M, FUJISAWA Y, KATO H, IWASAKI Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. The Plant Cell, 2005,17(3):776-790.
doi: 10.1105/tpc.104.024950 |
[15] |
HONG Z, UEGUCHI-TANAKA M, SHIMIZU-SATO S, INUKAI Y, FUJIOKA S, SHIMADA Y, TAKATSUTO S, AGETSUMA M, YOSHIDA S, WATANABE Y, UOZU S, KITANO H, ASHIKARI M, MATSUOKA M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal, 2002,32(4):495-508.
doi: 10.1046/j.1365-313X.2002.01438.x |
[16] |
LIU X, FENG Z M, ZHOU C L, REN Y K, MOU C L, WU T, YANG C Y, LIU S J, JIANG L, WAN J M. Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.). Plant Cell Reports, 2016,35(2):357-368.
doi: 10.1007/s00299-015-1889-3 |
[17] |
YAMAMURO C, IHARA Y, WU X, NOGUCHI T, FUJIOKA S, TAKATSUTO S, ASHIKARI M, KITANO H, MATSUOKA M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 2000,12(9):1591-1605.
doi: 10.1105/tpc.12.9.1591 |
[18] |
MORINAKA Y, SAKAMOTO T, INUKAI Y, AGETSUMA M, KITANO H, ASHIKARI M, MATSUOKA M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 2006,141:924-931.
doi: 10.1104/pp.106.077081 |
[19] |
CHE R H, TONG H N, SHI B H, LIU Y Q, FANG S R, LIU D P, XIAO Y H, HU B, LIU L C, WANG H R, ZHAO M F, CHU C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2015,2(1):15195.
doi: 10.1038/nplants.2015.195 |
[20] |
TONG H N, LIU L C, JIN Y, DU L, YIN Y H, QIAN Q, ZHU L H, CHU C C. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell, 2012,24(6):2562-2577.
doi: 10.1105/tpc.112.097394 |
[21] |
SUN L J, LI X J, FU Y C, ZHU Z F, TAN L B, LIU F X, SUN X Y, SUN X W, SUN C Q. GS6, a member of the gras gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology, 2013,55(10):938-949.
doi: 10.1111/jipb.12062 |
[22] |
QIAO S L, SUN S Y, WANG L L, WU Z H, LI C X, LI X M, WANG T, LENG L N, TIAN W S, LU T G, WANG X L. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. The Plant Cell, 2017,29(2):292-309.
doi: 10.1105/tpc.16.00611 |
[23] |
AYA K, HOBO T, SATO-IZAWA K, UEGUCHI-TANAKA M, KITANO H, MATSUOKA M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant and Cell Physiology, 2014,55(5):897-912.
doi: 10.1093/pcp/pcu023 |
[24] |
HIRANO K, YOSHIDA H, AYA K, KAWAMURA M, HAYASHI M, HOBO T, SATO-IZAWA K, KITANO H, UEGUCHI-TANAKA M, MATSUOKA M. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice. Molecular Plant, 2017,10(4):590-604.
doi: 10.1016/j.molp.2016.12.013 |
[25] | TONG H N, CHU C C. Physiological analysis of brassinosteroid responses and sensitivity in rice. Methods in Molecular Biology, 2017,1564:23-29. |
[26] |
LICHTENTHALER H K, WELLBURN A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983,11(5):591-592.
doi: 10.1042/bst0110591 |
[27] | MCCOUCH S R, KOCHERT G, YU Z H, WANG Z Y, KHUSH G S, COFFMANW R, TANKLEY S D. Molecular mapping of rice chromosomes. The Oretical and Applied Genet, 1988,76(6):815-829. |
[28] |
LI J T, ZHAO Y, CHU H W, WANG L K, FU Y R, LIU P, UPADHYAYA N, CHEN C L, MOU T M, FENG Y Q, KUMAR P, XU J. SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation. PLoS Genetics, 2015,11(8):e1005464.
doi: 10.1371/journal.pgen.1005464 |
[29] | WU K, WANG S S, SONG W Z, ZHANG J Q, WANG Y, LIU Q, YU J P, YE Y F, LI S, CHEN J F, ZHAO Y, WANG J, WU X K, WANG M Y, ZHANG Y J, LIU B M, WU Y J, HARBERD N P, FU X D. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020,367(6478): eaaz2046. |
[1] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[2] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[3] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[4] | ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345. |
[5] | YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226. |
[6] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
[7] | JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889. |
[8] | HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691. |
[9] | PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696. |
[10] | WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790. |
[11] | LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483. |
[12] | RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320. |
[13] | WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133. |
[14] | MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169. |
[15] | GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725. |
|