Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (15): 2879-2897.doi: 10.3864/j.issn.0578-1752.2016.15.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction

DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2016-03-09 Online:2016-08-01 Published:2016-08-01

Abstract: 【Objective】The aim of this study is to analyze the expression profiles of Arabidopsis glucosinolate biosynthetic genes in different tissues at different developmental stages and under various stress treatments, so as to facilitate the identification of the key genes involved in controlling glucosinolate biosynthesis and provide valuable information for exploring the metabolic mechanism of glucosinolate biosynthesis as well as their functions in plant defenses. 【Method】 The dynamic expression profiles of 82 glucosinolate biosynthetic structural genes and regulating genes across a wide range of developmental stages and biotic and abiotic stresses were examined, based on ten expression microarray data and two RNA-Seq data in PLEXdb and AtGenExpress database. The expression patterns of ten key structural genes and regulating genes involved in glucosinolate biosynthesis pathway were further confirmed by Real-time PCR method. The correlation of the expression patterns of glucosinolate biosynthesis related genes was analyzed by STRING v10 software. 【Result】 The expressions of candidate genes between vegetative and reproductive organs were significantly different, with the majority of the candidate genes have higher expression levels in vegetative organs and lower expression levels in reproductive organs, indicating glucosinolates were mainly synthesized in vegetative tissues. The aliphatic glucosinolate biosynthesis genes were preferential expressed in shoot, such as stems and leaves, while indolic glucosinolate related genes were highly expressed in both of root and shoot, such as roots, stems and leaves. Moreover, the expressions of genes in a given tissue at different developmental stages were generally distinct, implying a temporal and spatial expression pattern. Real-time PCR analyses revealed that the expression profiles of the ten representive glucosinolate biosynthetic genes kept consistent with the results of microarray data assay. Furthermore, the expressions of aliphatic and indolic glucosinolate biosynthesis genes were tend to be induced by many bio- and abio-stresses, whereas indolic glucosinolate biosynthesis related genes were obviously induced by bio- and abio-stresses, such as Pseudomonas syringae, Alternaria brassicicola, Myzus persicae, low temperature (4℃), salt and high temperature (38℃). In addition, co-expression analysis revealed that the expressions of regulating genes were highly correlated to those of metabolic genes in aliphatic or indolic glucosinolate biosynthesis pathway. 【Conclusion】 The glucosinolates biosynthesis genes were preferentially expressed in vegetative tissues, as compared to seed tissues. There is a transport system that is responsible for transporting glucosinolates that were synthesized in vegetative tissues to seed tissues. The expressions of indolic glucosinolate biosynthesis genes tend to be induced by bio- and abio-stresses, indicating indolic glucosinolates are more important for Arabidopsis defense.

Key words: Arabidopsis thaliana, glucosinolates, expression patterns, development stage, biotic stresses, abiotic stresses, real- time PCR

[1]    Fahey J W, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences of the United States America, 1997, 94: 10367-10372.
[2]    Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 2001, 56: 5-51.
[3]    Yan X F, Chen S X. Regulation of plant glucosinolate metabolism. Planta, 2007, 226: 1343-1352.
[4]   Kliebenstein D J, Kroymann J, Mitchell-Olds T. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 2005, 8: 264-271.
[5]    Natella F, Maldini M, Leoni G, Scaccini C. Glucosinolates redox activities: can they act as antioxidants? Food Chemistry, 2014, 149: 226-232.
[6]    Stotz H U, Sawada Y, Shimada Y, Hirai M Y, Sasaki E, Krischke M, Brown P D, Saito K, Kamiya Y. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. The Plant Journal, 2011, 67: 81-93.
[7]    Winde I, Wittstock U. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry, 2011, 72: 1566-1575.
[8]    Rohr F, Ulrichs C, Schreiner M, Zrenner R, Mewis I. Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar. Plant Physiology and Biochemistry, 2012, 55: 52-59.
[9]    Santolamazza-Carbone S, Velasco P, Soengas P, Cartea M E. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala. Oecologia, 2014, 174: 893-907.
[10]   Prakash D, Gupta C. Glucosinolates: the phytochemicals of nutraceutical importance. Journal of ComplementaryIntegrative Medicine, 2012, 9: 1553-3840.
[11]   Dinkova-Kostova A T, Kostov R V. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 2012, 18: 337-347.
[12]   Wittstock u, Halkier B A. Glucosinolate research in the Arabidopsis era. Trends in Plant Science, 2002, 7: 263-270.
[13]   Sønderby I E, Geuflores F, Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends in Plant Science, 2010, 15: 283-290.
[14]   Burow M, Halkier B A, Kliebenstein D. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness.Current Opinion in Plant Biology, 2010, 13: 347-352.
[15]   Sønderby I E, Burow M, Rowe H C, Kliebenstein D J, Halkier B A. A complex interplay of three R2R3-MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiology, 2010, 153: 348-363.
[16]   Gigolashvili T, Berger B, Mock H P, Müller C, Weisshaar B, Flügge U I. The transcription factor HIG1/ MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal, 2007, 50: 886-901.
[17]   Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey M G, Ecker J R, Solano R, Reymond P. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. The Plant Cell, 2013, 25: 3117-3132.
[18] Frerigmann H, Berger B, Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiology, 2014, 166: 349-369.
[19]   Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor M I, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. The Plant Journal, 2006, 47: 10-24.
[20]   Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge U I. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytologist, 2008, 177: 627-642.
[21]   Li Y, Sawada Y, Hirai A, Sato M, Kuwahara A, Yan X, Hirai M Y. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Plant &Cell Physiology, 2013, 54: 1335-1344.
[22]   Frerigmann H, Gigolashvili T. MYB34, MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant, 2014, 7: 814-828.
[23]   Petersen B L, Chen S, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214: 562-571.
[24]   Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 2007, 50: 347-363.
[25]   Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita  A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai M Y, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.The Plant Journal, 2008, 55(3): 526-542.
[26]   Dash S, Van Hemert J, Hong L, Wise R P, Dickerson J A. PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Research, 2012, 40: 1194-1201.
[27]   de Hoon M J, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics, 2004, 20: 1453-1454.
[28]   De Vos M, Van Oosten V R, Van Poecke R M, Van Pelt J A, Pozo M J, Mueller M J, Buchala A J, Métraux J P, Van Loon L C, Dicke M, Pieterse C M. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 2005, 18(9): 923-937.
[29]   Kempema L A, Cui X, Holzer F M, Walling L L. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 2007, 143(2): 849-865.
[30]   Ford K A, Casida J E, Chandran D, Gulevich A G, Okrent R A, Durkin K A, Sarpong R, Bunnelle E M, Wildermuth M C. Neonicotinoid insecticides induce salicylate- associated plant defense responses. Proceedings of the National Academy of Sciences the United States America, 2010, 107(41): 17527-17532.
[31]   Saldanha A J. Java Treeview--extensible visualization of microarray data. Bioinformatics, 2004, 20: 3246-3248.
[32]   Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou K P, Kuhn M, Bork P, Jensen L J, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 2015, 43: D447-452.
[33]   Petersen B L, Chen S, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214: 562-571.
[34]   Nour-Eldin H H, Andersen T G, Burow M, Madsen S R, Jørgensen M E, Olsen C E, Dreyer I, Hedrich R, Geiger D, Halkier B A. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature, 2012, 488(7412): 531-534.
[35]   Andersen T G, Nour-Eldin H H, Fuller V L, Olsen C E, Burow M, Halkier B A. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. The Plant Cell, 2013, 25(8): 3133-3145.
[36]   Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19(1): 5-9.
[37]   Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal, 2007, 51: 247-261.
[38]   Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge U I. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytology, 2008, 177: 627-642.
[39]   Frerigmann H, Gigolashvili T. MYB34, MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant, 2014, 7: 814-828.
[40]   文碧玲, 李培武, 李航森, 赵力, 余萍, 邹俊清, 张文, 丁小霞, 杨湄, 汪雪芳, 吴渝. 油菜吲哚硫苷降解产物对S180小鼠抗肿瘤作用的实验研究. 中草药, 2002, 33: 331-333.
Wen B L, Li P W, Li H S, Zhao L, Yu P, Zou J Q, Zhang W, Ding X X, Yang M, Wang X F, Wu Y. Studies on antitumor effect of INDL-GLN in rape on mice transplanted S180 cell. Chinese Traditional and Herbal Drugs, 2002, 33: 331-333. (in Chinese)
[41]   Li Y, Kiddle G, Bennett R N, Wallsgrove R M. Local and systemic changes in glucosinolates in Chinese and European cultivars of oilseed rape (Brassica napus L.) after inoculation with Sclerotinia sclerotiorun (stem rot). Annals of Applied Biology, 1999, 134: 45-58.
[42]   宋志荣, 官春云. 甘蓝型油菜硫苷特性与对菌核病抗性关系. 湖南农业大学学报(自然科学版), 2008, 34: 462-465.
Song Z R, Guan C Y. Relationship between glucosinolate characteristics and resistance to Sclerotinia sclerotiorum in Brassica napus L.. Journal of Hunan Agricultural University (Natural Science), 2008, 34: 462-465. (in Chinese)
[43]   Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book, 2010, 8: e0134.
[1] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[2] LIU QianNan,HUANG Wei,DING YunHua,WANG YaQin,HU LiPing,ZHAO XueZhi,HE HongJu,LIU GuangMin. Rapid Determination of RAA and GBC in Broccoli by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2020, 53(21): 4497-4506.
[3] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[4] Yue CHEN,TianXingZi WANG,Shuo YANG,Tong ZHANG,JinJiao MA,GaoWei YAN,YuQing LIU,Yan ZHOU,JiaNan SHI,JinPing LAN,Jian WEI,ShiJuan DOU,LiJuan LIU,Ming YANG,LiYun LI,GuoZhen LIU. Expression Profiling and Functional Characterization of Rice Transcription Factor OsWRKY68 [J]. Scientia Agricultura Sinica, 2019, 52(12): 2021-2032.
[5] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[6] WANG CongCong, ZHANG XiaoHong, WANG XiaoYan, ZHANG Pan, FAN ShuLi, PANG ChaoYou, MA QiFeng, WEI HengLing, WANG HanTao, SU JunJi, YU ShuXun . The Expression Patterns and Function Analysis of GhFLP5, a Gene Related to Flowering in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2017, 50(12): 2220-2231.
[7] YUAN Min, XING JiHong, WANG Li, GE WeiNa, GUO Di, ZHANG Lan. Interaction Between TFL1 and GRFs in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2017, 50(10): 1772-1780.
[8] SUN Guang-hua, YUAN Huan-huan, FAN Xiao-cong, GU Hai-ke, SONG Mei-fang, XIAO Yang, MENG Fan-hua, GUO Lin, YANG Qing-hua, ZHAN Ke-hui, YANGJian-ping. Molecular Cloning and Arabidopsis Ectopic Expression of a Phytochrome B gene from Brassica oleracea [J]. Scientia Agricultura Sinica, 2015, 48(22): 4417-4427.
[9] CHEN Jie, CHEN Hong-Xin, YAO Qiong, ZHANG Wen-Qing. Molecular Cloning, Expression Patterns and RNAi of UDP-N-acetylglucosamine Pyrophosphorylase in Spodoptera exigua [J]. Scientia Agricultura Sinica, 2014, 47(7): 1351-1361.
[10] FAN Jin-tao, JIA Jiao, JIANG Chen-xi, WANG Guan-yu, ZHANG Jing, XING Ji-hong, DONG Jin-gao. Regional Analysis of Transcription Activity and Screening of Interaction Proteins of AtMYB73 Transcription Factor in Arabidopsis [J]. Scientia Agricultura Sinica, 2014, 47(23): 4754-4762.
[11] LIU Jin, ZHANG Ji-fang, LIANG Jian-li, CHENG Feng, WU Jian, WANG Xiao-wu. Evolutionary Study of MAM Genes Which Function in the Process  of Glucosinolates Synthesis in Brassica rapa [J]. Scientia Agricultura Sinica, 2014, 47(21): 4309-4317.
[12] DING Yan-1, LI Li-Qian-1, CAO Rong-2, TANG Gen-Sheng-2, GU Zhen-Xin-1, HAN Yong-Bin-1. Effect of Enzymolysis Conditions on Glucosinolates in Rapeseed Meal and Identification of Their Degradation Products [J]. Scientia Agricultura Sinica, 2014, 47(2): 383-393.
[13] LIU Lu-lu, CHEN Lei, ZHANG Chun-yan, SHI Rui-jie, REN Jiang-ping, MENG Fan-rong, YIN Jun, LI Yong-chun. Characterization of Two LEA Genes and Their Response to Abiotic Stresses in Wheat [J]. Scientia Agricultura Sinica, 2014, 47(19): 3736-3745.
[14] SHENG Hui-1, 2 , QIN Zhi-Wei-1, LI Wen-Bin-3, ZHOU Xiu-Yan-1, WU Tao-1, XIN Ming-1. Genome-wide Identification and Expression Analysis of Auxin Response Factor (ARF) Family in Cucumber [J]. Scientia Agricultura Sinica, 2014, 47(10): 1985-1994.
[15] ZHUANG Jia-Xiang, JIANG Hai-Yan, LIU Lei-Lei, WANG Fang-Fang, TANG Liang, ZHU Yan, CAO Wei-Xing. Parameters Optimization of Rice Development Stages Model Based on Individual Advantages Genetic Algorithm [J]. Scientia Agricultura Sinica, 2013, 46(11): 2220-2231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!