Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1590-1598.doi: 10.3864/j.issn.0578-1752.2021.08.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

F1 Performance Prediction of Upland Cotton Based on Partial NCII Design

QIN HongDe1(),FENG ChangHui1,ZHANG YouChang1,BIE Shu1,ZHANG JiaoHai1,XIA SongBo1,WANG XiaoGang1,WANG QiongShan1,LAN JiaYang1,CHEN QuanQiu1,JIAO ChunHai2()   

  1. 1Institute of Cash Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Yangtze River, Ministry of Agriculture, Wuhan 430064
    2Hubei Academy of Agricultural Sciences, Wuhan 430064
  • Received:2020-11-08 Accepted:2020-12-02 Online:2021-04-16 Published:2021-04-25
  • Contact: ChunHai JIAO E-mail:qinhongde2002@163.com;jiaoch@hotmail.com

Abstract:

【Objective】Develop the method for predicting F1 performance of upland cotton, and reduce breeding cost and improve breeding efficiency. 【Method】A partial NCII population composed of 60 parents and 180 F1 crosses, and three prediction methods with parent additive effect (A), general combining ability (GCA) and mid-parent value (MP) were employed to predict F1 performance on yield and fiber quality traits. 【Result】The Heterosis of lint yield of upland cotton was obvious. All crosses showed 19.63% average mid-parent heterosis and 8.47% average over-parent heterosis. 97.78% and 79.44% crosses showed positive mid-parent heterosis and positive over-parent heterosis respectively. Three prediction methods showed different prediction effects for F1 performance. Prediction with additive effect of parents showed the highest prediction accuracy (pearson correlation coefficient, 0.738-0.928) for seven target traits,lint yield, boll numbers, boll weight, lint percentage, fiber length, fiber strength and micronaire value. The additive variance component of target traits and the crossing times for every parent influenced the prediction effect. The higher additive variance component, the higher the prediction accuracy of three methods; with the increase of crossing times of each parent, the prediction accuracy of A and GCA increased, but did not change for MP prediction. 【Conclusion】 The performance of upland cotton F1 can be effectively predicted by using additive effect of parents based on partial NCII design, and ‘large parent population and less crossing times’ is the preferable strategy to maintain reasonable prediction effect and reduce the workload.

Key words: Upland cotton, F1 performance, prediction, partial NCII design

Table 1

Mating patterns in partial NCII mating design"

母本
Female parents
父本 Male parents
1 2 3 4 5 27 28 29 30
31 ×
32 × ×
33 × × ×
34 × × × ×
35 × × × × ×
36 * × × × ×
* × × × ×
* × × × ×
* × × × ×
60 × × × × ×
31 * × × × ×
32 * × × ×
33 * × ×
34 * ×
35 *

Table 2

Performance of heterosis and lint yield performance of parents and crosses"

性状
Traits
平均值
Mean
标准误
Standard error
标准差
Standard variance
峰度
Skewness
偏度
Kurtosis
最小值
Min
最大值
Max
亲本皮棉产量Lint yield of parents (g/plot, n=60) 475.87 11.50 89.09 1.73 -1.03 168.93 630.95
组合皮棉产量Lint yield of crosses (g/plot, n=180) 567.01 5.26 70.53 -0.38 0.14 387.79 745.10
中亲优势HMP (%) 19.63 0.77 10.29 0.07 0.19 -8.12 45.74
超亲优势HHP (%) 8.47 0.87 11.68 0.26 0.01 -22.70 36.61

Fig. 1

Scatter plot of lint yield of 180 F1 crosses The slope of the dotted line is 1"

Table 3

Prediction accuracy of seven breeding target traits under three prediction methods"

预测方法
Prediction methods
皮棉产量
Lint yield
[0.25]
铃数
Boll numbers
[0.20]
铃重
Boll weight
[0.14]
衣分
Lint percent
[0.62]
长度
Fiber length
[0.48]
强度
Fiber strength
[0.60]
马克隆
Micronaire
[0.48]
加性效应A 0.839a
(0.036)
0.756 a
(0.060)
0.738 a
(0.060)
0.928 a
(0.017)
0.905 a
(0.021)
0.915 a
(0.053)
0.891 a
(0.026)
一般配合力GCA 0.776b
(0.048)
0.693 b
(0.120)
0.706b
(0.067)
0.870 b
(0.040)
0.843 b
(0.028)
0.852c
(0.068)
0.841 b
(0.048)
中亲值MP 0.777b
(0.048)
0.669b
(0.064)
0.585c
(0.082)
0.880 b
(0.019)
0.843 b
(0.027)
0.887 b
(0.021)
0.823 b
(0.039)

Fig. 2

The prediction accuracy rate of the top 10% crosses by three methods A: Prediction by additive effect; GCA: Prediction by general combining ability; MP: Prediction by mid-parent value. The same as below"

Fig. 3

Prediction accuracy and prediction accuracy rate of the top 10% crosses for lint yield based on three methods and different crossing times a: Prediction accuracy; b: Prediction accuracy rate of the top 10% crosses"

Fig. 4

Prediction accuracy and prediction accuracy rate of the top 10% crosses for fiber length based on three methods and different crossing times a: Prediction accuracy; b: Prediction accuracy rate of the top 10% crosses"

[1] KEMPTHORNE O, CURNOW R N. The partial diallel cross. Biometrics, 1961,17(2):229-250.
[2] CURNOW R N. Sampling the diallel cross. Biometrics, 1963,19:287-306.
[3] FYFE J L, GILBERT N. Partial diallel crosses. Biometrics, 1963,19:278-286.
[4] GORDON G H. A method of parental selection and cross prediction using incomplete partial diallels. Theoretical and Application of Genetics, 1980,56:225-232.
[5] FILHO J B M, VENCOVSKY R. The partial circulant diallel cross at the interpopulation level. Genetics and Molecular Biology, 1999,22(2):249-255.
[6] ZHAO Y S, LI Z, LIU G Z, JIANG Y, MAURER H P, WÜRSCHUMB T, MOCKC H P, MATROS A, EBMEYER E, SCHACHSCHNEIDER R, KAZMANF E, SCHACHT J, GOWDAB M, LONGINB C F H, REIF J C. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the USA, 2015,112(51):15624-15629.
[7] XU Y, WANG X, DING X W, ZHENG X F, YANG Z F, XU C W, HU Z L. Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice, 2018,11:32.
doi: 10.1186/s12284-018-0223-4 pmid: 29748895
[8] DIAS K O G, PIEPHO H P, GUIMARÃES L J M, GUIMARÃES P E O, PARENTONI S N, PINTO M O, NODA R W, MAGALHÃES J V, GUIMARÃES C T, GARCIA A A F, PASTINA M M. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data. Theoretical and Applied Genetics, 2020,133:443-455
[9] REIS A J D S, CHAVES L J, DUARTE J B, BRASIL E M. Prediction of hybrid means from a partial circulant diallel table using the ordinary least square and the mixed model methods. Genetics and Molecular Biology, 2005,28(2):314-320.
[10] WEN J, ZHAO X W, WU G R, XIANG D, LIU Q, BU S H, YI C, SONG Q J, DUNWELL J M, TU J X, ZHANG T Z, ZHANG Y M. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Scientific Reports, 2015,5:18376
doi: 10.1038/srep19185 pmid: 26753518
[11] 朱军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994,20(6):551-559.
ZHU J. General genetic models and new analysis methods for quantitative traits. Journal of Zhejiang Agricultural University, 1994,20(6):551-559. (in Chinese)
[12] 朱军. 作物杂种后代基因型值和杂种优势的预测方法. 生物数学学报, 1993,8(1):32-44.
ZHU J. Methods of predicting genotype value and heterosis for offspring of hybrids. Journal of Biomathematics, 1993,8(1):32-44. (in Chinese)
[13] 朱志翔. 遗传分析软件QGA Station 2.0和GMDR-GPU的开发[D]. 杭州: 浙江大学, 2012.
ZHU Z X. Development of the genetic analysis softwares QGA Station 2.0 and GMDR-GPU[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[14] 秦鸿德, 冯常辉, 张友昌, 陈全求, 张教海, 夏松波, 王孝刚, 王琼珊, 蓝家样, 别墅, 章元明, 焦春海. 一种陆地棉F1产量优势杂交组合的预测方法: 中国, CN 111903499 A. 2020-11-10.
QIN H D, FENG C H, ZHANG Y C, CHEN Q Q, ZHANG J H, XIA S B, WANG X G, WANG Q S, LAN J Y, BIE S, ZHANG Y M, JIAO C H. A prediction method for high yield F1 crosses in Upland Cotton: China, CN 111903499 A. 2020-11-10. (in Chinese)
[15] BERNARDO R. Testcross additive and dominance effects in best linear unbiased prediction of maize single-cross performance. Theoretical and Application of Genetics, 1996,93:1098-1102.
[16] 孙济中, 刘金兰, 张金发. 棉花杂种优势的研究和利用. 棉花学报, 1994,6(3):135-139.
SUN J Z, LIU J L, ZHANG J F. Study and utilization of cotton heterosis. Acta Gossypii Sinica, 1994,6(3):135-139. (in Chinese)
[17] 裴小雨, 周晓箭, 马雄风, 田桂平, 王海风, 孟清芹, 张文生, 周克海, 刘艳改, 杨代刚. 持续高温干旱年份陆地棉农艺和产量性状的遗传效应分析. 棉花学报, 2015,27(2):126-134.
PEI X Y, ZHOU X J, MA X F, TIAN G P, WANG H F, MENG Q Q, ZHANG W S, ZHOU K H, LIU Y G, YANG D G. Genetic analysis of agronomic and yield traits of upland cotton under continuous high temperature and drought. Cotton Science, 2015,27(2):126-134. (in Chinese)
[18] 刘艳改, 马雄风, 周晓箭, 张文英, 王海风, 孟清芹, 张文生, 裴小雨, 周克海, 杨代刚. 陆地棉主要农艺与纤维品质性状的双列杂交分析. 棉花学报, 2014,26(1):25-33.
LIU Y G, MA X F, ZHOU X J, ZHANG W Y, WANG H F, MENG Q Q, ZHANG W S, PEI X Y, ZHOU K H, YANG D G. Report on diallel analysis for main agronomic and fiber quality traits in upland cotton. Cotton Science, 2014,26(1):25-33. (in Chinese)
[19] JENKINS J N, WU J, MCCARTY J C, SAHA S, GUTIÉRREZ O, HAYES R, STELLY D M. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars: I. Yield and yield components. Crop Science, 2006,46(3):1169-1178.
[20] 王学德, 潘家驹. 陆地棉杂种优势及自交衰退的遗传分析. 作物学报, 1991,17(1):18-23.
WANG X D, PAN J J. Genetic analysis of Heterosis and inbreeding depression in Upland Cotton. Acta Agronomica Sinica, 1991,17(1):18-23. (in Chinese)
[21] XU S Z, ZHU D, ZHANG Q F. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the USA, 2014,111(34):12456-12461.
[22] ALVES F C, GRANATOÍ S C, GALLI G, LYRA D H, NETOM R F, CAMPOS G D L. Bayesian analysis and prediction of hybrid performance. Plant Methods, 2019,15:14.
doi: 10.1186/s13007-019-0388-x pmid: 30774704
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[3] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[4] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] LI HongYan,XUE Jun,WANG YongHong,WANG KeRu,ZHAO RuLang,MING Bo,ZHANG ZhenTao,ZHANG WenJie,LI ShaoKun. Study on Optimal Time and Construct a Prediction Model of Mechanical Grain Harvest of Maize in Ningxia [J]. Scientia Agricultura Sinica, 2022, 55(12): 2324-2337.
[7] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[8] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[9] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[10] TianYu ZHOU,JiangLing LI,Lan YANG,RenWu RUAN,YuHeng YANG,ZhongAn LI. The Resistance Prediction of Wheat Hybrids Based on the Sensibility of Their Parents to Stripe Rust [J]. Scientia Agricultura Sinica, 2020, 53(9): 1806-1819.
[11] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[12] WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton [J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
[13] XIANG FangLin,LI XinGe,MA JiFeng,LIU XiaoJun,TIAN YongChao,ZHU Yan,CAO WeiXing,CAO Qiang. Using Canopy Time-Series Vegetation Index to Predict Yield of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(18): 3679-3692.
[14] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,WANG Zhuan,ZHU GuoLong,SHI QianXiong,YU KeFan,XU AiGuo. Research on Spatial Distribution of Soil Particle Size Distribution in Loess Region Based on Three Spatial Prediction Methods—Taking Haiyuan County in Ningxia as an Example [J]. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728.
[15] ZHU Yan,TANG Liang,LIU LeiLei,LIU Bing,ZHANG XiaoHu,QIU XiaoLei,TIAN YongChao,CAO WeiXing. Research Progress on the Crop Growth Model CropGrow [J]. Scientia Agricultura Sinica, 2020, 53(16): 3235-3256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!