Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1565-1578.doi: 10.3864/j.issn.0578-1752.2021.07.019

• CULTIVATION METHOD • Previous Articles    

Effects of Different Cultivation Models on Solar Radiation-Nitrogen Use Efficiency and Yield of “Early Indica-Late Japonica” Double Rice

ZHENG HuaBin,LI Bo,WANG WeiQin,LEI En,TANG QiYuan()   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128
  • Received:2020-07-07 Accepted:2020-11-23 Online:2021-04-01 Published:2021-04-22
  • Contact: QiYuan TANG E-mail:qytang@hunau.edu.cn

Abstract:

【Objective】In order to find the technical pathway to improve both grain yield and resource use efficiency in rice production, this study compared high yield and high efficiency cultivation models integrated by various cultivation measures. 【Method】Four cultivation models were established in a double rice-cropping region in south China, i.e., nitrogen-free cultivation model (CK: 62.5 and 50.0×104 seedlings·hm-2 in early and late season, respectively; 0 kg N·hm-2 in both early and late seasons), local farming cultivation model (FM: 62.5 and 50.0×104 seedlings·hm-2 in early and late season, respectively; 150 and 165 kg N·hm-2 in early and late season, respectively, with 70% as basal fertilizer and 30% as tillering fertilizer in both seasons), high yield and high-efficiency cultivation model (T1: 135 and 112.5×104 seedlings·hm-2 in early and late season, respectively; 120 and 210 kg N·hm-2 in early and late season, respectively, with 50% as basal fertilizer, 30% as tillering fertilizer, and 20% as panicle fertilizer in both seasons; 5 kg Zn·hm-2 as basal fertilizer in both early and late seasons), and more high-yield and high-efficiency cultivation model (T2: 176 and 137.5×104 seedlings·hm-2 in early and late season, respectively; 120 and 240 kg N·hm-2 in early and late season, respectively, with 40% as basal fertilizer, 30% as tillering fertilizer, and 30% as panicle fertilizer in both seasons; 5 kg Zn·hm-2 and 1.8 t·hm-2 organic fertilizer as basal fertilizer in both early and late seasons; bed cultivation in both early and late seasons). Solar radiation and nitrogen use efficiency and yield of rice were compared among these four cultivation models.【Result】 Average annual yield under T2 was 15.1 t·hm-2, which was significantly higher than those under T1 and FM. Compared with FM, the yield of early indica rice and late japonica rice under T2 was increased by 13.3% and 24.9%, respectively. T2 significantly increased panicle number per unit land area and consequently spikelet number per unit land area for both early indica rice and late japonica rice. Average annual yield under T1 was 13.3 t·hm-2, which was higher than that under FM. Compared with FM, the yield of late japonica rice was increased by 9.5% while the yield of early indica rice was slightly decreased under T1. In the early season, dry matter accumulation at maturity under T2 was 12.30 t·hm-2, which was significantly higher than those under T1 and FM. The crop growth rate from transplanting to flowering was significantly higher under T2 than under T1 and FM. In the late season, dry matter accumulation at maturity under T2 was 17.96 t·hm-2, which was significantly higher than those under T1 and FM. The crop growth rate from flowering to maturity was higher or significantly higher under T2 than under FM and T1. Solar radiation use efficiency under T2 in early season and late season was 1.05 and 1.25 g·MJ-1, respectively, which was improved by 31.7% in the early season and 63.4% in the late season as compared to FM. Nitrogen agronomy use efficiency under T2 in early season and late season was 28.8 and 14.7 kg·kg-1, respectively, which was enhanced by 61.6% in the early season and 31.9% in the late season as compared to FM. 【Conclusion】Based on ecological characteristics of double-cropped rice in south China, 10%-20% increases in rice yield as well as solar radiation and nitrogen use efficiency can be achieved by the adoption of T2 model which is integrated by increasing seedling number and reducing nitrogen rate, improving soil oxygen content by bed cultivation, and enhancing the activity of grain filling by other cultivation measures such as Zn fertilizer.

Key words: double rice, early indica and late japonica, cultivation model, yield, solar radiation/nitrogen use

Fig. 1

The variation of daily average, maximum and minimum temperature in 2017 and 2018a,b为2017年;c,d为2018年 a, b represent 2017; c, d represent 2018"

Table 1

Planting density, nitrogen management and other measures among different cultivation models"

栽培模式
Cultivation model
氮肥管理
Nitrogen application
种植密度
Planting density
其他措施
Other measures
早籼稻 Early indica rice
不施肥模式
No fertilizer model (CK)
0基本苗62.5万/hm2,株行距20 cm×20 cm,每穴2—3苗
Basic seedlings 62.5×104 hm-2, spacing 20 cm×20 cm,2-3 seedling per hill
45 kg P·hm-2,90 kg K·hm-2
农民模式
Farmer’s practice model (FM)
150 kg N·hm-2(7:3:0)基本苗62.5万/hm2,株行距20 cm×20 cm,每穴2—3苗
Basic seedlings 62.5×104 hm-2, spacing 20 cm×20 cm,2-3 seedling per hill
30 kg P·hm-2,60 kg K·hm-2
高产高效模式
High yield and high efficiency model (T1)
120 kg N·hm-2(5:3:2)基本苗135万/hm2,株行距16.7 cm×20 cm,每穴4—5苗
Basic seedlings 135×104 hm-2, spacing 16.7 cm×20 cm, 4-5 seedling per hill
45 kg P·hm-2、90 kg K·hm-2(5:5)、硫酸锌5 kg·hm-2
45 kg P·hm-2, 90 kg K·hm-2 (5:5), zinc sulfate 5 kg·hm-2
再高产高效模式
Enhanced high yield and high efficiency model (T2)
120 kg N·hm-2(4:3:3)基本苗176万/hm2,垄厢,株行距13.3 cm×23.3 cm,每穴5—6苗
Basic seedlings 176×104 hm-2, bed cultivation, spacing 13.3 cm ×23.3 cm,5-6 seedling per hill
生物有机肥1.8 t·hm-2,50 kg P·hm-2、100 kg K·hm-2(5:5)、硫酸锌5 kg·hm-2
Bio-organic fertilizer 1.8 t·hm-2, 50 kg P·hm-2, 100 kg K·hm-2 (5:5), zinc sulfate 5 kg·hm-2
晚粳稻 Late japonica rice
不施肥模式
No Fertilizer model (CK)
0基本苗50万/hm2,株行距20 cm×23.3 cm,每穴2—3苗
Basic seedlings 50×104 hm-2, spacing 20 cm×23.3 cm,2-3 seedling per hill
45 kg P·hm-2和90 kg K·hm-2
农民模式
Farmer’s practice model (FM)
165 kg N·hm-2(7:3:0)基本苗50万/hm2,株行距20 cm×23.3 cm,每穴2—3苗
Basic seedlings 50×104 hm-2, spacing 20 cm×23.3 cm,2-3 seedling per hill
30 kg P·hm-2和60 kg K·hm-2
高产高效模式
High yield and high efficiency model (T1)
210 kg N·hm-2(5:3:2)基本苗112.5万/hm2,株行距20 cm×20 cm,每穴4—5苗
Basic seedlings 112.5×104 hm-2, spacing 20 cm×23.3 cm,4-5 seedling per hill
45 kg P·hm-2、90 kg K·hm-2(5:5)、硫酸锌5 kg·hm-2
45 kg P·hm-2, 90 kg K·hm-2 (5:5), zinc sulfate 5 kg·hm-2
再高产高效模式
Enhanced high yield and high efficiency model (T2)
240 kg N·hm-2(4:3:3)基本苗137.5万/hm2,垄厢,株行距13.3 cm×30 cm,每穴5—6苗
Basic seedlings 137.5×104 hm-2, bed cultivation, spacing 13.3 cm×30 cm, 5-6 seedling per hill
生物有机肥1.8 t·hm-2,50 kg P·hm-2、100 kg K·hm-2(5:5)、硫酸锌5 kg·hm-2
Bio-organic fertilizer 1.8 t·hm-2, 50 kg P·hm-2, 100 kg K·hm-2 (5:5), zinc sulfate 5 kg·hm-2

Table 2

Effects of different cultivation models on growth period of “early indica and late japonica” double rice"

年份
Year
处理
Treatment
品种
Cultivar
播种期
Sowing stage (M-D)
齐穗期
Flowering stage (M-D)
成熟期
Mature stage (M-D)
2017CK中早39 ZZ3903-2606-1507-11
甬优1540 YY154006-2709-1310-29
甬优4949 YY494906-2709-1811-01
FM中早39 ZZ3903-2606-1607-12
甬优1540 YY154006-2709-1511-01
甬优4949 YY494906-2709-2011-03
T1中早39 ZZ3903-2606-1807-15
甬优1540 YY154006-2709-1611-02
甬优4949 YY494906-2709-2111-05
T2中早39 ZZ3903-2606-1807-15
甬优1540 YY154006-2709-1811-02
甬优4949 YY494906-2709-2111-05
2018CK中早39 ZZ3903-2606-1307-08
甬优1540 YY154006-2709-0810-29
甬优4949 YY494906-2709-1610-29
FM中早39 ZZ3903-2606-1807-14
甬优1540 YY154006-2709-1510-27
甬优4949 YY494906-2709-1810-29
T1中早39 ZZ3903-2606-1507-10
甬优1540 YY154006-2709-1310-29
甬优4949 YY494906-2709-1810-30
T2中早39 ZZ3903-2606-1507-10
甬优1540 YY154006-2709-1510-29
甬优4949 YY494906-2709-1811-01

Table 3

Analysis of variance for grain yield under different cultivation models in 2017 and 2018"

来源
Source
产量Grain yield
中早39
ZZ39
甬优1540 YY1540甬优4949 YY4949
处理Treatment (T)******
年份Year (Y)**nsns
T×Y**nsns
**为差异极显著(P<0.01);ns为差异不显著
**, significance at 0.01 level; ns, no significance

Fig. 2

Effects of different cultivation models on yield of “early indica and late japonica” double riceLeft: Japonica rice YY1540; Right: Japonica rice YY4949. ER: Early rice; LR: Late rice. Average of the treatment for grain yield with the same letters are not significantly different at P = 0.05"

Table 4

Effect of different cultivation models on yield component of “early indica and late japonica” double rice"

品种
Variety
处理
Treatment
年份
Year
公顷穗数
Panicle (×104 hm-2)
每穗粒数
Spikelets per panicle
公顷颖花数
Spikelets (×104 hm-2)
结实率
Filling ratio (%)
千粒重
1000-grain weight (g)
中早39
ZZ39
CK201714610715.684.223.1
201813013517.688.924.7
平均Mean138±11D121±20C16.6±1.4C86.5±3.4A23.9±1.2B
FM201720114529.376.223.9
201821015332.284.525.2
平均Mean206±6C149±6A30.7±2.0B80.4±5.9B24.5±1.0AB
T1201727113436.474.124.8
201821614330.985.925.5
平均Mean244±38B139±6AB33.8±3.9B80.0±8.3B25.1±0.5A
T2201733211939.57423.9
201829713941.274.924.7
平均Mean315±25A129±14BC40.5±1.2A74.4±0.7C24.3±0.5AB
甬优1540
YY1540
CK201712622928.885.420.7
201818618835.085.420.7
平均Mean156±42D209±29AB32.5±4.4B85.4±0.0A20.7±0.0B
FM201715624838.77122.9
201822420245.379.322.3
平均Mean190±48C225±32A42.8±4.7A75.1±5.9B22.6±0.4A
T1201722818542.180.622.8
201822720045.481.723.5
平均Mean227±1B193±11B43.8±2.3A81.1±0.8AB23.1±0.5A
T2201725120050.37222
201824621553.083.322.5
平均Mean249±4A208±11AB51.7±1.9A77.7±8.0B22.2±0.3A
甬优4949
YY4949
CK201712624731.282.721.7
201818318433.585.620.7
平均Mean154±40B216±45A33.3±1.6C84.1±2.0A21.2±0.7B
FM201715423536.182.921.9
201820223246.881.222.9
平均Mean178±34B233±2A41.5±7.6B82.0±1.2AB22.4±0.7A
T1201722522049.577.619.3
201824920551.183.122.6
平均Mean237±17A212±10A50.4±1.2A80.4±3.9B21.0±2.3B
T2201724721052.082.120.2
201824921653.883.623.5
平均Mean248±1A213±4A52.9±1.2A82.9±1.0A21.8±2.3AB

Table 5

Effect of different cultivation models on dry matter accumulation, crop growth rate and HI of “early indica and late japonica” double early rice"

处理
Treatment
年份
Year
干物质积累
Dry matter accumulation (kg·hm-2)
群体生长速率
Crop growth rate (kg·hm-2·d-1)
收获指数
HI
齐穗期
Flowering stage
成熟期
Mature stage
移栽-齐穗期Transplanting to flowering stage齐穗-成熟期
Flowering to mature stage
CK20173960619073.385.90.48
20182560623052.2110.00.60
平均Mean3260±990D6210±20C62.8±14.9C97.9±17.1A0.54±0.08B
FM201775208950136.854.80.53
2018620010280114.9175.30.56
平均Mean6860±930B9610±940B126.0±15.5B115.0±85.2A0.54±0.02B
T12017683010910119.8151.20.55
2018555011280108.9171.70.62
平均Mean6190±900C11090±260B114.0±7.70B161.5±14.5A0.58±0.05A
T22017872011770153.0113.10.53
2018738012820144.8217.50.59
平均Mean8050±940A12300±740A149.0±5.80A165.3±73.9A0.56±0.04AB

Table 6

Effect of different cultivation models on dry matter accumulation, crop growth rate and HI of “early indica and late japonica” double late rice"

年份
Year
处理
Treatment
品种
Cultivar
干物质积累
Dry matter accumulation (kg·hm-2)
群体生长速率
Crop growth rate (kg·hm-2·d-1)
收获指数
HI
齐穗期
Flowering stage
成熟期
Mature stage
移栽-齐穗期
Transplanting to flowering stage
齐穗-成熟期
Flowering to mature stage
2017CKYY154064909080129.856.30.52
YY494966009840120.173.60.56
平均Mean6550±80A9460±540D125.0±6.90A65.0±12.2C0.54±0.03A
FMYY1540620011330119.1109.20.50
YY4949582011250102.0123.50.51
平均Mean6010±270A11290±60C110.6±12.1A116.4±10.1B0.51±0.01B
T1YY1540553014250104.3189.60.49
YY4949650014270112.1172.50.47
平均Mean6020±690A14260±10B108.2±5.50A181.1±12.1A0.48±0.01B
T2YY1540548015330103.3209.60.49
YY4949618015130106.5199.00.49
平均Mean5830±490A15230±140A104.9±2.30A204.3±7.5A0.49±0.00B
2018CKYY154051007470108.642.20.54
YY4949514068109.8829.10.54
平均Mean5120±30C7140±470D103.7±6.90D35.7±9.3D0.54±0.00A
FMYY15405660979078.670.40.54
YY49496190996086.064.30.54
平均Mean5930±370C9880±120C82.3±5.20C67.4±4.3C0.54±0.00A
T1YY1540777013490149.597.40.53
YY4949859014650156.3103.10.52
平均Mean8180±580B14070±820B152.9±4.80B100.3±4.0B0.53±0.01B
T2YY15401007020390186.5175.90.54
YY49491257020970220.5143.30.55
平均Mean11320±1770A20680±410A203.5±24.0A159.6±23.1A0.55±0.01A

Fig. 3

Effects of different cultivation models on solar radiation efficiency of “early indica and late japonica” double riceThe same letters in the figure indicate no significantly different at P = 0.05. The same as below"

Fig. 4

Effects of different cultivation models on agronomy efficiency (AEN) and nitrogen partial factor productivity (PFPN) of “early indica and late japonica” double rice"

[1] AMARA W, HANK G, CAMPBELL J T.The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Annual Botany, 1997, 80: 115-123.
[2] HORIE T, SHIRAIWA T, HOMMA K, KATSURA K, MAEDA S, YOSHIDA H.Can yields of lowland rice resume the increases that they showed in the 1980s? Plant Production Science, 2005, 8(3): 259-274.
[3] NORMILE D.Reinventing rice to feed the world. Science, 2008, 321: 330-333.
[4] PENG S, HUANG J, CASSMAN K G, LAZA R C, VISPERAS R M, KHUSH G S.The importance of maintenance breeding: A case study of the first miracle rice variety-IR8. Field Crops Research, 2010, 119(2): 342-347.
[5] 彭少兵. 论新时期作物栽培管理在全球水稻增产中的作用. 作物研究, 2008, 22(4): 207-208.
PENG S B.The importance of improved crop management to world rice production. Crop Research, 2008, 22(4): 207-208. (in Chinese)
[6] ZORRILLA G.Improving rice production systems in Latin America and the Caribbean Eco-Efficiency: From Vision to Reality. CIAT, Cali, Columbia, 2012: 161-170.
[7] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44(8): 845-850.
PENG S B.Reflection on China’s rice production strategies during the transition period. Scientia Sinica Vitae, 2014, 44(8): 845-850. (in Chinese)
[8] PENG S, KHUSH G S, VIRK P, TANG Q Y, ZOU Y B.Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108(1): 32-38.
[9] FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D, O'CONNELL C, RAY D K, WEST P C, BALZER C, BENNETT E M, CARPENTER S R, HILL J, MONFREDA C, POLASKY S, ROCKSTRÖM J, SHEEHAN J, SIEBERT S, TILMAN D, ZAKS D P M. Solutions for a cultivate planet. Nature, 2011, 478(7369): 337-342.
[10] QIN J, IMPA S M, TANG Q, YANG S H, YANG J, TAO Y S, JAGADISH K S V. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double- season rice crop. Field Crops Research, 2013, 148: 15-23.
[11] PENG X, YANG Y, YU C, CHEN L N, ZHANG M C, LIU Z L, SUN Y K, LUO S G, LIU Y Y.Crop management for increasing rice yield and nitrogen use efficiency in northeast China. Agronomy Journal, 2015, 107(5): 1682-1690.
[12] LADHA J K, SINGH, YADVINDER, ERENSTEIN O, HARDY B.Integrated Crop and Resource Management in the Rice-Wheat System of South Asia. International Rice Research Institute, Los Baños, Philippines, 2009: 69-108.
[13] WANG D, HUANG J, NIE L, WANG F, LING X X, CUI K H, LI Y, PENG S B.Integrated crop management practices for maximizing grain yield of double-season rice crop. Scientific Reports, 2017, 7(1): 38982.
[14] 郑华斌, 姚林, 刘建霞, 贺慧, 陈阳, 黄璜. 种植方式对水稻产量及根系性状的影响. 作物学报, 2014, 40(4): 667-677.
ZHENG H B, YAO L, LIU J X, HE H, CHEN Y, HUANG H.Effect of ridge & terraced cultivation on rice yield and root trait. Acta Agronomica Sinica, 2014, 40(4): 667-677. (in Chinese)
[15] ZHENG H B, HUANG H, LIU J X, YAO L, HE H.Recent progress and prospects in the development of ridge tillage cultivation technology in China. Soil & Tillage Research, 2014, 142: 1-7.
[16] 蒋鹏, 徐富贤, 熊洪, 张林, 朱永川, 郭晓艺, 陈琳, 明静. 两种产量水平下减量施氮对杂交中稻产量和氮肥利用率的影响. 核农学报, 2020, 34(1): 147-156.
JIANG P, XU F X, XIONG H, ZHANG L, ZHU Y C, GUO X Y, CHEN L, MING J.Effect of reduced nitrogen application on grain yield and nitrogen use efficiency of mid-season rice under two yield levels. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 147-156. (in Chinese)
[17] 韩宝吉, 曾祥明, 卓光毅, 徐芳森, 姚忠清, 肖习明, 石磊. 氮肥施用措施对湖北中稻产量、品质和氮肥利用率的影响. 中国农业科学, 2011, 44(4): 842-850.
HAN B J, ZENG X M, ZHUO G Y, XU F S, YAO Z Q, XIAO X M, SHI L.Effects of fertilization measures of nitrogen (N) on grain yield, grain quality and N-use efficiency of midseason rice in Hubei province. Scientia Agricultura Sinica, 2011, 44(4): 842-850. (in Chinese)
[18] 张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003, 36(7): 800-806.
ZHANG H C, WANG X Q, DAI Q G, HUO Z Y, XU K.Effects of application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu. Scientia Agricultura Sinica, 2003, 36(7): 800-806. (in Chinese)
[19] 向璐, 周萍, 盛良学, 李巧云, 马蓓, 吴金水. 减氮条件下不同施肥措施对双季稻产量和N肥利用的影响. 农业现代化研究, 2018, 39(2): 335-341.
XIANG L, ZHOU P, SHENG L X, LI Q Y, MA P, WU J S.Effects of different fertilizations on double-rice and nitrogen efficiency under the condition of reduced nitrogen application. Research of Agricultural Modernization, 2018, 39(2): 335-341. (in Chinese)
[20] 成臣, 曾勇军, 王祺, 谭雪明, 商庆银, 曾研华, 石庆华, 金霄. 氮肥运筹对南方双季晚粳稻产量及品质的影响. 植物营养与肥料学报, 2018, 24(5): 1386-1395.
CHENG C, ZENG Y J, WANG Q, TAN X M, SHANG Q Y, ZENG Y H, SHI Q H, JIN X.Effects of nitrogen application regime on japonica rice yield and quality of the late rice in the double rice system in southern China. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1386-1395. (in Chinese)
[21] HUANG M, CHEN J N, CAO F B, ZOU Y B.Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Research, 2018, 221: 333-338.
[22] SLATON N A, NORMAN R J, WILSON C E.Effect of zinc source and application time on zinc uptake and grain yield of flood irrigated rice. Agronomy Journal, 2005, 97: 272-278.
[23] 王力, 孙影, 张洪程, 魏海燕, 朱大伟, 朱盈, 徐栋, 霍中洋. 不同时期施用锌硅肥对优良食味粳稻产量和品质的影响. 作物学报, 2017, 43(6): 885-898.
WANG L, SUN Y, ZHANG H C, WEI H Y, ZHU D W, ZHU Y, XU D, HUO Z Y.Effects of Zn and Si fertilizers applied at different stages on yield and quality of japonica rice with good eating quality. Acta Agronomica Sinica, 2017, 43(6): 885-898. (in Chinese)
[24] ZHANG Y B, TANG Q Y, ZOU Y B, LI D Q, QIN J Q, YANG S H, CHEN L J, XIA B, PENG S B.Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Research, 2009, 114: 91-98.
[25] ZHENG H B, CHEN Y W, CHEN Q M, LI B, ZHANG Y S, JIA W, MO W W, TANG Q Y.High-density planting with lower nitrogen application increased early rice production in a double-season rice system. Agronomy Journal, 2020, 112: 205-214.
[26] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L,WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S.Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.
[27] WU W, NIE L X, LIAO Y C, SHAH F, CUI K H, WANG Q, LIAN Y, HUANG J L.Toward yield improvement of early season rice: Other options under double rice-cropping system in central China. European Journal of Agronomy, 2013, 45: 75-86.
[28] ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L.Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Research, 2012, 137: 203-212.
[29] YANG J C, PENG S B, ZHANG Z J, WANG Z Q, VISPERAS R M, ZHU Q S.Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Science, 2002, 42(3): 766-772.
[30] ZHOU Y J, LI X X, CAO J, LI Y, HUANG J L, PENG S B.High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crops Research, 2018, 228: 68-75.
[31] 叶廷红, 李鹏飞, 侯文峰, 邢烈火, 吴海亚, 张建设, 李小坤. 早稻、晚稻和中稻干物质积累及氮素吸收利用的差异. 植物营养与肥料学报, 2020, 26(2): 212-222.
YE T H, LI P F, HOU W F, XING L H, WU H Y, ZHANG J S, LI X K.Differences of dry matter accumulation and nitrogen absorption and utilization among early, later and middle rice. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 212-222. (in Chinese)
[32] KATSURA K, MAEDA S, LUBIS I, HORIE T, CAO W, SHIRAIWA T.The high yield of irrigated rice in Yunnan China: A cross-location analysis. Field Crops Research, 2008, 101: 1-11.
[33] 孟琳, 张小莉, 蒋小芳, 王秋君, 黄启为, 徐阳春, 杨兴明, 沈其荣. 有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率. 中国农业科学, 2009, 42(2): 532-542.
MENG L, ZHANG X L, JIANG X F, WANG Q J, HUANG Q W, XU Y C, YANG X M, SHEN Q R.Effects of partial mineral nitrogen substitution by organic fertilizer nitrogen on the yields of rice grains and its proper substitution rate. Scientia Agricultura Sinica, 2009, 42(2): 523-542. (in Chinese)
[34] ZHONG Y Q W, YAN W M, SHANGGUAN Z P. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biology and Biochemistry, 2015, 91: 151-159.
[35] HUANG M, YANG C, JI Q, JIANG L, TAN J, LI Y.Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Research, 2013, 149: 187-192.
[36] 邹应斌. 长江流域双季稻栽培技术发展. 中国农业科学, 2011, 44(2): 254-262.
ZOU Y B.Development of cultivation technology for double cropping rice along the Changjiang River valley. Scientia Agricultura Sinica, 2011, 44(2): 254-262. (in Chinese)
[37] HUANG M, SHAN S L, XIE X B, CAO F B, ZOU Y B.Why high grain yield can be achieved in single seedling machine transplanted hybrid rice under dense planting conditions. Journal of Integrative Agriculture, 2017, 17(6): 1299-1306.
[38] 黄敏, 邹应斌, 谢小兵, 陈佳娜. 杂交水稻单本密植机插栽培方法: CN104885836A.2015-09-09[2020-07-07].
HUANG M, ZOU Y B, XIE X B, CHEN J N. Cultivation method of single seedling machine transplanted hybrid rice: CN104885836A.2015-09-09[2020-07-07]. (in Chinese)
[39] 赵锋, 徐春梅, 张卫建, 章秀福, 程建平, 王丹英. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响. 中国水稻科学, 2011, 25(2): 195-200.
ZHAO F, XU C M, ZHANG W J, ZHANG X F, CHENG J P, WANG D Y.Effects of rhizosphere dissolved oxygen and nitrogen form on root characteristics and nitrogen accumulation of rice. Chinese Journal of Rice Science, 2011, 25(2): 195-200. (in Chinese)
[40] 胡伟凤, 王晓敏, 唐启源, 郑华斌, 戴云花. 不同分选方式对水稻种子活力的影响. 杂交水稻, 2018, 33(4): 58-63.
HU W F, WANG X M, TANG Q Y, ZHENG H B, DAI Y H.Effects of different sorting methods on seed vigor of rice. Hybrid Rice, 2018, 33(4): 58-63. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!