Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 754-767.doi: 10.3864/j.issn.0578-1752.2021.04.008

• PLANT PROTECTION • Previous Articles     Next Articles

Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method

CHEN Ge(),CAO LiDong(),XU ChunLi,ZHAO PengYue,CAO Chong,LI FengMin,HUANG QiLiang()   

  1. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2020-05-14 Accepted:2020-07-08 Online:2021-02-16 Published:2021-02-16
  • Contact: LiDong CAO,QiLiang HUANG E-mail:chenge0036@126.com;caolidong@caas.cn;qlhuang@ippcaas.cn

Abstract:

【Objective】The biodegradable material poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P (3HB-co-4HB)) was used as the wall material to prepare prothioconazole microcapsules. The effect of preparation process on the microcapsule size, pesticide loading and encapsulation efficiency was optimized. The microcapsules with good dispersion, small particle size, and high pesticide loading were screened out, and the preliminary researches on the release kinetics, photodegradation, and indoor biological activity on Sclerotium rolfsii were carried out. The purpose of this study is to provide a theoretical basis and technical support for improving the stability and utilization efficiency of prothioconazole in the environment.【Method】The solvent evaporation method was used to prepare prothioconazole microcapsules, and the effects of the mass ratio of core to wall material, volume ratio of oil to water, mass fraction of emulsifier and shearing speed on the particle size, pesticide loading and encapsulation efficiency of the microcapsules were investigated through a single factor test. Taking pesticide loading and particle size as the key technical indicators, the optimal preparation parameters were screened out through the L9 (34) orthogonal test, which was further verified. The morphological and structural features, release performance and photodegradability of the microcapsules were determined by scanning electron microscope (SEM), fourier transform infrared (FTIR) spectrometer, and high performance liquid chromatography (HPLC). The toxicity of prothioconazole microcapsules on S. rolfsii was investigated by indoor bioassay.【Result】The mass ratio of core to wall material had a significant effect on the pesticide loading capacity of the microcapsules. As the ratio of core material increased, the loading capacity gradually increased. The volume ratio of oil to water, PVA mass fraction, and shearing speed had significant effects on the microcapsule particle size. As the shearing speed and PVA mass fraction increased, the microcapsule particle size gradually decreased. The volume ratio of oil to water had a great influence on the morphology and dispersion of microcapsules, and the influence of various factors on the encapsulation efficiency of the microcapsules was not significant. The optimal preparation parameters obtained through the L9 (34) orthogonal test was as follows: the mass ratio of core to wall material of 1﹕5, volume ratio of oil to water of 1﹕5, PVA mass fraction of 2%, and shearing speed of 12 000 r/min. Under the optimal preparation process, spherical prothioconazole microcapsules with a particle size (D50) of 3.32 μm and a span of 2.82 were prepared with a loading content of 15.52% and an encapsulation efficiency of 80.24%. Compared with prothioconazole technical material, the microcapsules had better sustained-release performance, and the release kinetics conformed to Fick’s diffusion law, presenting two processes of “burst release” followed by “sustained release”. The photostability of prothioconazole in the microcapsules in aqueous solution was enhanced, and the half-life of photolysis was doubled. The mycelial growth rate inhibition result showed that the fungicidal activity of prothioconazole microcapsules against S. rolfsii was equivalent to that of prothioconazole technical material.【Conclusion】Prothioconazole microcapsules with biodegradable material P (3HB-co-4HB) as a carrier were prepared, and different preparation processes affect the pesticide loading, dispersion state and particle size of microcapsules. The slow and sustained release and photostability are of great significance for reducing the amount of pesticide applied and improving the utilization efficiency of pesticide, which has potential application in control of peanut southern blight.

Key words: prothioconazole, polyhydroxybutyrate, microcapsule, preparation process, controlled release, Sclerotium rolfsii

Fig. 1

Structural formula of prothioconazole"

Fig. 2

Structural formula of P (3HB-co-4HB)"

Table 1

Single factor and level table"

因素水平
Factor level
1 2 3 4
芯壁材质量比
Mass ratio of core to wall material
1﹕5 1﹕10 1﹕20
油水体积比
Volume ratio of oil to water
1﹕5 1﹕10 1﹕15 1﹕20
PVA质量分数
Mass fraction of PVA (%)
0.5 1 1.5 2
剪切速率
Shearing speed (r/min)
4000 8000 12000

Table 2

Orthogonal factor and level table"

水平
Level
因素Factor
A B C D
1 1﹕15 1﹕15 0.5% 4000
2 1﹕10 1﹕10 1% 8000
3 1﹕5 1﹕5 2% 12000

Table 3

Effect of mass fraction of PVA on microcapsule performance"

PVA质量分数
Mass fraction of PVA (%)
载药量
Loading content (%)
包封率
Encapsulation efficiency (%)
粒径
D50 (μm)
跨距
Span
0.5 15.58±0.83a 77.47±5.79a 4.61±0.06a 3.70b
1 15.69±0.21a 78.90±1.47a 3.46±0.06b 4.26a
1.5 15.67±0.34a 80.47±4.07a 3.21±0.06c 3.69b
2 15.12±1.69a 78.70±3.04a 2.55±0.04d 2.91c

Table 4

Effect of mass ratio of core to wall on microcapsule performance"

芯壁质量比
Mass ratio of core to wall
载药量
Loading content (%)
包封率
Encapsulation efficiency (%)
粒径
D50 (μm)
跨距
Span
1﹕5 15.31±2.28a 77.04±7.26a 3.46±0.06b 4.26a
1﹕10 7.69±0.98b 75.99±2.10a 3.47±0.05b 4.08b
1﹕20 4.66±0.12c 71.72±2.92a 4.33±0.08a 4.22a

Table 5

Effect of volume ratio of oil to water on microcapsule performance"

油水体积比
Volume ratio of oil to water
载药量
Loading content (%)
包封率
Encapsulation efficiency (%)
粒径
D50 (μm)
跨距
Span
1﹕5 15.38±1.34a 76.98±6.36a 3.46±0.06a 4.26c
1﹕10 15.35±0.34a 67.07±6.39a 2.65±0.01d 4.52b
1﹕15 14.82±2.36a 68.08±6.53a 3.13±0.03b 4.29c
1﹕20 14.88±1.09a 74.26±4.34a 2.90±0.08c 5.38a

Table 6

Effect of shearing speed on microcapsule performance"

乳化剪切速率
Shearing speed (r/min)
载药量
Loading content (%)
包封率
Encapsulation efficiency (%)
粒径
D50 (μm)
跨距
Span
4000 15.29±0.76a 78.31±1.51a 12.61±2.26a 3.54b
8000 15.34±1.35a 77.88±3.02a 3.46±0.05b 4.26a
12000 15.84±0.38a 78.33±2.54a 2.06±0.06c 2.87c

Table 7

Orthogonal experiment results"

试验编号
Trial number
A B C D 载药量
Loading content (%)
粒径
D50 (μm)
1 1 1 1 1 5.43 15.50
2 1 2 2 2 4.03 4.06
3 1 3 3 3 5.53 2.15
4 2 1 2 3 7.76 2.62
5 2 2 3 1 8.00 10.69
6 2 3 1 2 9.64 4.33
7 3 1 3 2 14.68 2.62
8 3 2 1 3 13.86 2.20
9 3 3 2 1 15.94 12.61

Table 8

Orthogonal test range analysis"

极差分析
Range analysis
因素Factor
A B C D
载药量
Loading content (%)
K1 5.00 9.29 9.64 9.79
K2 8.47 8.63 9.24 9.45
K3 14.83 10.37 9.40 9.05
R 9.83 1.74 0.40 0.74
粒径
Particle size (μm)
K1 7.24 6.91 7.34 12.93
K2 5.88 5.65 2.96 3.67
K3 5.81 6.36 5.15 2.32
R 1.43 1.27 4.39 10.61

Fig. 3

The SEM images of prothioconazole microcapsules"

Fig. 4

The optical microscope images (400×) of prothioconazole microcapsules with different volume ratios of oil to water A: 1﹕5; B: 1﹕10 ; C: 1﹕15; D: 1﹕20"

Fig. 5

The SEM images of prothioconazole microcapsules prepared with volume ratio of oil to water of 1﹕20"

Fig. 6

FTIR spectra of prothioconazole technical material (TC) (a), prothioconazole microcapsules (MC) (b), and P (3HB-co-4HB) MC without pesticide (c)"

Fig. 7

Sustained-release curves of prothioconazole TC and MC"

Table 9

Fitting results of sustained-release curves of prothioconazole TC and MC"

拟合模型
Fitting model
动力学方程
Kinetic equation (Q=)
决定系数
Determination coefficient (R2)
原药TC 零级拟合Zero-order fitting 0.23t+ 28.21 0.5015
一级拟合First-order fitting 46.22 (1-e -0.14t) 0.9727
Higuchi拟合Higuchi fitting 3.20t1/2+19.33 0.6789
Ritger-Peppas 拟合Ritger-Peppas fitting 18.40t0.22 0.8000
微囊MC 零级拟合Zero-order fitting 0.55t+22.05 0.9159
一级拟合First-order fitting 72.31(1-e -0.04t) 0.8501
Higuchi拟合Higuchi fitting 6.94t1/2+5.63 0.9596
Ritger-Peppas 拟合Ritger-Peppas fitting 10.65t0.42 0.9622

Fig. 8

Photolysis curves of prothioconazole TC and MC in water"

Table 10

Photolysis kinetics of prothioconazole TC and MC in water"

丙硫菌唑
Prothioconazole
一级动力学方程 First-order kinetic equation T1/2 (h)
Ct=C0e-kt k (min-1) R2
微囊MC y=54.04e-0.0076t 0.0076 0.975 1.52
原药TC y=54.57e-0.0151t 0.0151 0.997 0.76

Table 11

Virulence of prothioconazole TC and MC against S. rolfsii"

样品
Sample
浓度
Concentration
(mg·L-1)
菌落直径
Colony
diameter (cm)
抑制率
Inhibition
rate (%)
CK 7.95
丙硫菌唑原药
Prothioconazole TC
2.5 4.47 46.09±2.19
5.0 3.89 53.77±1.89
10.0 3.24 62.38±4.56
20.0 2.37 73.91±8.43
40.0 0.80 94.70±1.30
丙硫菌唑微囊
Prothioconazole MC
(DMSO溶解
Dissolved with DMSO)
2.5 4.24 49.14±6.94
5.0 3.83 54.57±9.46
10.0 3.52 58.68±5.61
20.0 1.99 78.94±6.25
40.0 0.93 92.98±1.82
丙硫菌唑微囊
Prothioconazole MC
(无菌水分散
Dispersal in sterile water)
2.5 4.53 48.89±1.17
5.0 4.12 53.96±2.60
10.0 3.39 63.00±3.51
20.0 3.04 67.32±2.88
40.0 2.40 75.25±4.65
[1] SANKOH A I, WHITTLE R, SEMPLE K T, JONES K C, SWEETMAN A J. An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environment International, 2016,94:458-466.
[2] ARIAS-ESTÉVEZ M, LÓPEZ-PERIAGO E, MARTÍNEZ-CARBALLO E, SIMAL-GÁNDARA J, MEJUTO J C, GARCÍA-RÍO L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, 2008,123(4):247-260.
[3] PARKER J E, WARRILOW A G S, COOLS H J, MARTEL C M, NES W D, FRAAIJE B A, KELLY D E, KELLY S L. Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals. Applied and Environmental Microbiology, 2011,77(4):1460-1465.
[4] 程圆杰, 崔蕊蕊, 郭雯婷, 左文静, 主艳飞, 庄占兴, 范金勇. 丙硫菌唑研究开发现状与展望. 山东化工, 2018,47(6):58-61.
CHENG Y J, CUI R R, GUO W T, ZUO W J, ZHU Y F, ZHUANG Z X, FAN J Y. A review of research progress in the development of prothioconazole. Shandong Chemical Industry, 2018,47(6):58-61. (in Chinese)
[5] 黄华树, 柏亚罗. 丙硫菌唑的全球市场与应用开发. 现代农药, 2017,16(6):45-51.
HUANG H S, BAI Y L. Global market, application and development of prothioconazole. Modern Agrochemicals, 2017,16(6):45-51. (in Chinese)
[6] 于雪骊, 邢立国, 楼少巍. 杀菌剂丙硫菌唑施用人员健康风险评估. 农药科学与管理, 2017,38(7):37-43.
YU X L, XING L G, LOU S W. Operators’ health risk assessment of fungicide prothioconazole. Pesticide Science and Administration, 2017,38(7):37-43. (in Chinese)
[7] 农业农村部农药检定所. 中国农药信息网. http://www.chinapesticide. org.cn/.
Pesticide Inspection Institute, Ministry of Agriculture and Rural Affairs. China pesticide information network. http://www.chinapesticide. org.cn/.(in Chinese)
[8] 许春丽, BILAL M, 徐博, 冉刚超, 赵鹏跃, 曹冲, 李凤敏, 曹立冬, 黄啟良. 荧光介孔二氧化硅负载丙硫菌唑纳米颗粒的制备及性能研究. 农药学学报, 2020,22(2):214-224.
XU C L, BILAL M, XU B, RAN G C, ZHAO P Y, CAO C, LI F M, CAO L D, HUANG Q L. Preparation and characterization of prothioconazole-loaded fluorescent mesoporous silica nanoparticles. Chinese Journal of Pesticide Science, 2020,22(2):214-224. (in Chinese)
[9] 李北兴, 张大侠, 张灿光, 管磊, 王凯, 刘峰. 微囊化技术研究进展及其在农药领域的应用. 农药学学报, 2014,16(5):483-496.
LI B X, ZHANG D X, ZHANG C G, GUAN L, WANG K, LIU F. Research advances and application prospects of microencapsulation techniques in pesticide. Chinese Journal of Pesticide Science, 2014,16(5):483-496. (in Chinese)
[10] TSUJI K. Microencapsulation of pesticides and their improved handling safety. Journal of Microencapsulation, 2001,18(2):137-147.
[11] 王安琪, 王琰, 王春鑫, 崔博, 孙长娇, 赵翔, 曾章华, 姚俊伟, 刘国强, 崔海信. 农药纳米微囊化剂型研究进展. 中国农业科技导报, 2018,20(2):10-18.
WANG A Q, WANG Y, WANG C X, CUI B, SUN C J, ZHAO X, ZENG Z H, YAO J W, LIU G Q, CUI H X. Research progress on nanocapsules formulations of pesticides. Journal of Agricultural Science and Technology, 2018,20(2):10-18. (in Chinese)
[12] 朱峰, 许春丽, 曹立冬, 曹冲, 李凤敏, 杜凤沛, 黄啟良. 农药微囊剂及其制备技术研究进展. 现代农药, 2018,17(2):12-16.
ZHU F, XU C L, CAO L D, CAO C, LI F M, DU F P, HUANG Q L. Research advances of pesticide microcapsule and its preparative technique. Modern Agrochemicals, 2018,17(2):12-16. (in Chinese)
[13] 冯建国, 徐妍, 罗湘仁, 严寒, 吴学民. 浅谈溶剂蒸发法制备微胶囊与农药胶囊的开发. 农药学学报, 2011,13(6):568-575.
FENG J G, XU Y, LUO X R, YAN H, WU X M. Discussion on the solvent evaporation method for preparation of microcapsules and the development of the pesticides microcapsules. Chinese Journal of Pesticide Science, 2011,13(6):568-575. (in Chinese)
[14] 乔吉超, 胡小玲, 张团红, 管萍. 溶剂蒸发法制备药物微胶囊研究进展. 化工进展, 2006,25(8):885-889, 927.
QIAO J C, HU X L, ZHANG T H, GUAN P. Application of solvent evaporation method in preparation of drug microcapsule. Chemical Industry and Engineering Progress, 2006,25(8):885-889, 927. (in Chinese)
[15] THORAT GADQIL B S, KILLI N, RATHAN G V N. Polyhydroxyalkanoates as biomaterials. Medicinal Chemistry Communication, 2017,8(9):1774-1787.
[16] 陈歌, 许春丽, 徐博, 冉刚超, 曹冲, 赵鹏跃, 曹立冬, 黄啟良. 聚羟基脂肪酸酯作为农药载体的研究进展. 农药学学报, 2019,21(5/6):871-882.
CHEN G, XU C L, XU B, RAN G C, CAO C, ZHAO P Y, CAO L D, HUANG Q L. Research progress of polyhydroxyalkylates as pesticide carriers. Chinese Journal of Pesticide Science, 2019,21(5/6):871-882. (in Chinese)
[17] CAO L D, LIU Y J, XU C L, ZHOU Z L, ZHAO P Y, NIU S J, HUANG Q L. Biodegradable poly (3-hydroxybutyrate-co-4- hydroxybutyrate) microcapsules for controlled release of trifluralin with improved photostability and herbicidal activity. Materials Science and Engineering C, Materials for Biological Applications, 2019,102:134-141.
[18] 陈慧萍, 陈歌, 许春丽, 徐博, 曹立冬, 黄啟良. 吡唑醚菌酯微囊的制备及性能表征. 现代农药, 2020,19(1):28-31, 39.
CHEN H P, CHEN G, XU C L, XU B, CAO L D, HUANG Q L. Preparation and characterization of pyraclostrobin microcapsules. Modern Agrochemicals, 2020,19(1):28-31, 39. (in Chinese)
[19] FREITAS S, MERKLE H P, GANDER B. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 2005,102(2):313-332.
[20] JELVEHGARI M, BARAR J, VALIZADEH H, SHADROU S, NOKHODCHI A. Formulation characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique. Pharmaceutical Development and Technology, 2011,16(6):637-644.
[21] ASRAR J, DING Y, MONICA R E, NESS L C. Controlled release of tebuconazole from a polymer matrix microparticle: Release kinetics and length of efficacy. Journal of Agricultural and Food Chemistry, 2004,52(15):4814-4820.
[22] 孙广宇, 宗兆锋. 植物病理学实验技术. 北京:中国农业出版社, 2002: 141-142.
SUN G Y, ZONG Z F. Experimental Techniques of Plant Pathology. Beijing:China Agriculture Press, 2002: 141-142. (in Chinese)
[23] 叶玉杰, 李芳, 任德全, 张永忠, 刘嵩. Origin软件拟合制剂体外释药规律的应用. 数理医药学杂志, 2014,27(1):93-94.
YE Y J, LI F, REN D Q, ZHANG Y Z, LIU S. Application of Origin software to fit the drug release in vitro. Journal of Mathematical Medicine, 2014,27(1):93-94. (in Chinese)
[24] RAVI P R, KOTREKA U K, SAHA R N. Controlled release matrix tablets of zidovudine: Effect of formulation variables on the in vitro drug release kinetics. AAPS PharmSciTech, 2008,9(1):302-313.
[25] SATHE P, TSONG Y, SHAH V P. In vitro dissolution profile comparison: Statistics and analysis, model dependent approach. Pharmaceutical Research, 1996,13(12):1799-1803.
[26] 陈建海, 陈志良, 侯连兵, 刘世霆. 聚羟基丁酸酯缓释微球的制备与性能. 功能高分子学报, 2000,13(1):61-64.
CHEN J H, CHEN Z L, HOU L B, LIU S T. Preparation and characterization of diazepam-polyhydroxybutyrate microspheres. Journal of Functional Polymers, 2000,13(1):61-64. (in Chinese)
[27] EMBLETON J K, TIGHE B J. Polymers for biodegradable medical devices. IX: Microencapsulation studies; effects of polymer composition and process parameters on poly-hydroxybutyrate- hydroxyvalerate microcapsule morphology. Journal of Microencapsulation, 1992,9(1):73-87.
[28] 舒丹丹, 张淑娟, 金丽娜, 王铁闯, 李大吉. 乳化溶剂挥发法及在微囊化制剂中的应用. 北方药学, 2012,9(4):22-23.
SHU D D, ZHANG S J, JIN L N, WANG T C, LI D J. Emulsion solvent evaporation method and its application in microencapsulated preparations. Journal of North Pharmacy, 2012,9(4):22-23. (in Chinese)
[29] LI M, ROUAUD O, PONCELET D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of Pharmaceutics, 2008,363(1/2):26-39.
[30] LI D, LIU B X, YANG F, WANG X, SHEN H, WU D C. Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin. Carbohydrate Polymers, 2016,136:341-349.
[31] MAIA J L, SANTANA M H, RÉ M I. The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process. Brazilian Journal of Chemical Engineering, 2004,21(1):1-12.
[32] YAN X F, WANG Y, LIU H H, LI R H, QIAN C Q. Synthesis and characterization of melamine-formaldehyde microcapsules containing pyraclostrobin by in situ polymerization. Polymer Science Series B, 2018,60(6):798-805.
[33] 滑海涛, 李敏, 翟晓曼, 曲文岩, 折冬梅, 李凤敏, 黄啟良. 反应时间、芯壁比及表面活性剂用量对阿维菌素微囊制备的影响. 农药学学报, 2010,12(1):54-60.
HUA H T, LI M, ZHAI X M, QU W Y, SHE D M, LI F M, HUANG Q L. Studies on the influence of polymerization time, ratio of core material to wall material and percentage of SDS on the preparation of abamectin capsule suspensions. Chinese Journal of Pesticide Science, 2010,12(1):54-60. (in Chinese)
[34] HEISKANEN H, DENIFL P, PITKÄNEN P, HURME M. Effect of preparation conditions on the properties of microspheres prepared using an emulsion-solvent extraction process. Chemical Engineering Research and Design, 2012,90(10):1517-1526.
[35] BAHRI Z, TAVERDET J. Preparation and optimization of 2, 4-D loaded cellulose derivatives microspheres by solvent evaporation technique. Journal of Applied Polymer Science, 2007,103(4):2742-2751.
[36] MATEOVIC T, KRIZNAR B, BOGATAJ M, MRHAR A. The influence of stirring rate on biopharmaceutical properties of Eudragit RS microspheres. Journal of Microencapsulation, 2002,19(1):29-36.
[37] CONTI B, GENTA I, MODENA T, PAVANETTO F. Investigation on process parameters involved in polylactide-co-glycolide microspheres preparation. Drug Development and Industrial Pharmacy, 2008,21(5):615-622.
[38] 黄彬彬, 杨丰梅, 张旭溪, 钟建斌, 吴祖建, 吴刚. 多杀菌素微球制备关键工艺研究:Ⅱ. 农药学学报, 2011,13(4):402-408.
HUANG B B, YANG F M, ZHANG X X, ZHONG J B, WU Z J, WU G. Study on key process of preparation of spinosad microsphere: Ⅱ. Chinese Journal of Pesticide Science, 2011,13(4):402-408. (in Chinese)
[39] SHENDEROVA A, BURKE T G, SCHWENDEMAN S P. Stabilization of 10-hydroxycampthecin in poly (lactide-co-glycolide) microsphere delivery vehicles. Pharmaceutical Research, 1997,14(10):1406-1414.
[40] HEISKANEN H, DENIFL P, PITKÄNEN P, HURME M. Effect of concentration and temperature on the properties of the microspheres prepared using an emulsion-solvent extraction process. Advanced Powder Technology, 2012,23(6):779-786.
[41] GÜRSEL I, HASIRCI V. Properties and drug release behaviour of poly (3-hydroxybutyric acid) and various poly (3-hydroxybutyrate- hydroxyvalerate) copolymer microcapsules. Journal of Microencapsulation, 1995,12(2):185-193.
[42] YANG Y Y, CHIA H H, CHUNG T S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Journal of Controlled Release, 2000,69(1):81-96.
[43] 王光磊, 陈璨, 魏文增, 王宫. 溶剂挥发法制备牛樟芝总三萜微囊的研究. 海峡药学, 2019,31(2):5-10.
WANG G L, CHEN C, WEI W Z, WANG G. Study on preparation of microcapsule loaded total triterpene from the Antrodia cinnamomea by emulsion-solvent evaporation technique. Strait Pharmaceutical Journal, 2019,31(2):5-10. (in Chinese)
[44] MORITA T, HORIKIRI Y, YAMAHARA H, SUZUKI T, YOSHINO H. Formation and isolation of spherical fine protein microparticles through lyophilization of protein-poly (ethylene glycol) aqueous mixture. Pharmaceutical Research, 2000,17(11):1367-1373.
[45] O’DONNELL P B, MOGINITY J W. Influence of processing of the stability and release properties of biodegradable microspheres containing thioridazine hydrochloride. European Journal of Pharmaceutics Biopharmaceutics, 1998,45(1):83-94.
[46] LIU B X, WANG Y, YANG F, WANG X, SHEN H, CUI H X, WU D C. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloids and Surfaces B: Biointerfaces, 2016,14:38-45.
[47] ROSKOS K V, MASKIEWICZ R. Degradable controlled release systems useful for protein delivery. Pharmaceutical Biotechnology, 1997,10:45-92.
[48] 刘晓旭, 侯志广, 吴敬慧, 王雪, 逯忠斌. 嘧菌酯水解动力学研究. 农业环境科学学报, 2012,31(8):1603-1607.
LIU X X, HOU Z G, WU J H, WANG X, LU Z B. Hydrolyze kinetics and mechanism of azoxystrobin. Journal of Agro-Environment Science, 2012,31(8):1603-1607. (in Chinese)
[49] 管磊, 张鹏, 王晓坤, 任玉鹏, 郭贝贝, 刘峰. 吡唑醚菌酯在水环境中的光解及微囊化对其光稳定性的影响. 农业环境科学学报, 2015,34(8):1493-1497.
GUAN L, ZHANG P, WANG X K, REN Y P, GUO B B, LIU F. Photodegradation of pyraclostrobin in water environment and microencapsulation effect on its photostability. Journal of Agro- Environment Science, 2015,34(8):1493-1497. (in Chinese)
[50] VOLOVA T, ZHILA N, VINOGRADOVA O, SHUMILOVA A, PRUDNIKOVA S, SHISHATSKAYA E. Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole. Environmental Science and Pollution Research International, 2016,23(6):5243-5254.
[51] XU W B, LI W, XIONG W, REN Y, LIU Y P, MIAO Y Z, XU Z H, ZHANG N, SHEN Q R, ZHANG R F. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 2019,10:3833.
[1] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[2] DING XiangPeng,LI GuangHao,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Base Application Depths of Controlled Release Urea on Yield and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(21): 4342-4354.
[3] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[4] ZHU CongHua, ZHANG YuPing, XIANG Jing, ZHANG YiKai, WU Hui, WANG YaLiang, ZHU DeFeng, CHEN HuiZhe. Effects of Side Deep Fertilization on Yield Formation and Nitrogen Utilization of Mechanized Transplanting Rice [J]. Scientia Agricultura Sinica, 2019, 52(23): 4228-4239.
[5] Ning SHI, Yan LI, YingPeng ZHANG, JiaFa LUO, ZiWen ZHONG, Ming SUN, ZhaoHui LIU, YongPing JING, LuJi BO. Effects of the Controlled Release Fertilizer on Nitrate Accumulation and Migration in the Soil of Wheat-Maize Rotation System [J]. Scientia Agricultura Sinica, 2018, 51(20): 3920-3927.
[6] YunPeng HOU, Qian LI, LiLi KONG, YuBo QIN, Meng WANG, Lei YU, LiChun WANG, CaiXia YIN. Effects of Different Slow/Controlled Release Nitrogen Fertilizers on Spring Maize Nitrogen Uptake and Utilization, Soil Inorganic Nitrogen and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2018, 51(20): 3928-3940.
[7] PengFei LI, XiaoKun LI, WenFeng HOU, Tao REN, RiHuan CONG, ChangWen DU, LieHuo XING, ShaoHua WANG, JianWei LU. Studying the Fate and Recovery Efficiency of Controlled Release Urea in Paddy Soil Using 15N Tracer Technique [J]. Scientia Agricultura Sinica, 2018, 51(20): 3961-3971.
[8] DeShui TAN, HaiTao LIN, GuoLiang ZHU, ZiShuang LI, QingFu GUO, XiaoBin WU, ZhaoHui LIU. Effect of One-off Fertilization on Winter Wheat Yield in Huang-Huai-Hai East Region [J]. Scientia Agricultura Sinica, 2018, 51(20): 3887-3908.
[9] ZHANG YaWei, LIU QiuXia, ZHU DanDan, FAN XiaoLin, REN Tao, ZHANG LiMei, LI XiaoKun, CONG RiHuan, LU JianWei. Effects of Different Special Controlled Release Urea Dosages on Yield and Nitrogen Uptake of Oilseed Rape [J]. Scientia Agricultura Sinica, 2018, 51(1): 139-148.
[10] ZHANG YaFei,LUO JingJing, PENG FuTian, GAO HuaiFeng, WANG GuoDong, SUN XiWu . Effects of Fertilizer Being Bag-Controlled Released on Root Growth, Nitrogen Absorption and Utilization, Fruit Yield and Quality of Peach Trees [J]. Scientia Agricultura Sinica, 2017, 50(24): 4769-4778.
[11] HE Jie, LI Bing, WANG ChangQuan, LI YuHao, YANG BangFeng, ZHANG JingSheng, XIANG Hao, YIN Bin, LI HongHao. Effects of Different Nitrogen Fertilization Treatments on Soil Nitrogen Supply and Yield in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2017, 50(15): 2957-2968.
[12] LAN Yue, HU Yue, WANG Yan, Guo YanZhen, ZHAO HengKe, HE Lin, QIAN Kun. Preparation of Acetochlor Microcapsules by Interfacial Polymerization and the Environmental Behavior and Control Efficacy [J]. Scientia Agricultura Sinica, 2017, 50(14): 2739-2747.
[13] XU Yu-xiu, GUO Li-ping, XIE Li-yong, YUN An-ping, LI Ying-chun, ZHANG Xuan, ZHAO Xun, DIAO Tian-tian. Characteristics of Background Emissions and Emission Factors N2O from Major Upland Fields in China [J]. Scientia Agricultura Sinica, 2016, 49(9): 1729-1743.
[14] XING Xiao-ming, LI Xiao-chun, DING Yan-feng, WANG Shao-hua, LIU Zheng-hui, TANG She, DING Cheng-qiang, LI Gang-hua, WEI Guang-bin. Effects of Types of Controlled Released Nitrogen and Fertilization Modes on Yield and Dry Mass Production [J]. Scientia Agricultura Sinica, 2015, 48(24): 4892-4902.
[15] WANG Bin, LI Yu-E, WAN Yun-Fan, QIN Xiao-Bo, GAO Qing-Zhu. Effect and Assessment of Controlled Release Fertilizer and Additive Treatments on Greenhouse Gases Emission from a Double Rice Field [J]. Scientia Agricultura Sinica, 2014, 47(2): 314-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!