Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 504-521.doi: 10.3864/j.issn.0578-1752.2021.03.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat

XIAO LiuJun(),LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing()   

  1. College of Agriculture, Nanjing Agricultural University/National Engineering and Technology Center for Information Agriculture/ Engineering Research Center of Smart Agriculture, Ministry of Education/ Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs/Jiangsu Key Laboratory for Information Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095
  • Received:2020-04-23 Accepted:2020-10-12 Online:2021-02-01 Published:2021-02-16
  • Contact: Bing LIU E-mail:liujunxiao@zju.edu.cn;bingliu@njau.edu.cn

Abstract:

【Objective】Crop growth model is an essential approach for predicting and evaluating crop productivity under climate change. This study was conducted to clearly demonstrate the shortcomings of the existing models under low temperature stress, and provide instructions to improve the algorithms for simulating effects of low temperature stress on wheat productivity.【Method】The low temperature stress response routines from four famous wheat models, including CERES-Wheat from Michigan State University, CropSyst from Washington State University, WOFOST from Wageningen University in the Netherlands, and STICS from INRA in France, were integrated into the WheatGrow model. And then, the WheatGrow model was used to test and evaluate the responses of low temperatures stress routines in simulating effects of low temperature stress at jointing and booting stages on wheat leaf area index, stem biomass, aboveground biomass and grain yield, with detailed observed datasets from environment-controlled phytotron experiments under different temperature levels (lowest to -6℃) and durations (2 days, 4 days and 6 days) of low temperature stress at Nanjing (2012-2013) and Rugao (2013-2015) with two wheat cultivars (Yangmai16 and Xumai30).【Result】 The results showed that leaf area index, aboveground biomass, and grain yield were decreased significantly under low temperature stress during jointing and booting stages, and the reductions increased with the increasing duration of low temperature stress and the decreasing low temperature level. Wheat growth and grain yield were more sensitive to low temperature stress at booting than at jointing, and Yangmai16 were more sensitive to low temperature stress than Xumai30. The integration of four low-temperature stress algorithms improved the performance of the original WheatGrow model in simulating the dynamics of leaf area index, but the simulation errors were still large, and the simulation errors were larger under low temperature stress at booting stage than at jointing stage. All four low temperature stress routines underestimated the negative effects of low temperature stress on the accumulation of stem and aboveground biomass. Comparing the overall performance of the four low temperature stress routines, the low temperature stress routine from CropSyst model performed best in simulating the dynamics of leaf area index and aboveground biomass. For the simulation of stem biomass dynamic, the low temperature stress algorithm from the WOFOST model performed best among the four routines, especially under low temperature stress at booting. The low temperature stress algorithm from STICS is the best routine in the simulation of grain yield under low temperature stress, followed by CropSyst model. 【Conclusion】The integrated models with four low temperature stress algorithms were better than the original WheatGrow model in predicting aboveground biomass, stem biomass, leaf area index and grain yield, and the simulation error under weak low temperature conditions was smaller than that under strong low temperature conditions. However, there were large uncertainties in simulating the accumulation of stem biomass and simulating above-ground biomass under different durations of low temperature stress from all four low temperature algorithms, because none of the four low temperature stress routines considered the damaging effects of low temperature stress on stem biomass, dry matter partitioning, and the recovery and compensation effects after low temperature stress. As many parameters were introduced in the four low temperature stress algorithms, it was difficult for conducting model parameterization with existing algorithms, and this should be avoided in future model improvement. Our results were critical for improving the simulation of wheat growth and yield for wheat crop models under low temperature stress, and reducing the uncertainty in predicting crop productivity under climate change.

Key words: wheat, low temperature stress, crop growth model, algorithm comparison, model evaluation, WheatGrow model

Table 1

Summary of treatments in the multi-year phytotron experiments"

年份
Year
品种
Cultivar
站点
Site
处理时期
Stage
持续时间
Duration
温度设置
(Tmax/Tmin) (℃)
数据用途
Data utilization
2012-2013 扬麦16 Yangmai16 (V1)
徐麦30 Xumai30 (V2)
南京 Nanjing 拔节期 Jointing (S1)
孕穗期 Booting (S2)
D1 (2 d)
D2 (4 d)
D3 (6 d)
T1(16/6), T2(13/3) T3(10/0), T4(13/-3) 模型校正 Calibration
2013-2014 如皋Rugao T1(16/6), T2(12/2) T3(8/-2), T4(4/-6) 模型校正 Calibration
2014-2015 如皋Rugao T1(16/6), T2(8/-2) T3(6/-4), T4(4/-6) 模型检验 Validation

Fig. 1

The value of killing factor of green leaf (a) and plants survival (b) for Yangmai16 at jointing stage in CERES-Wheat"

Table 2

Parameters and its values for low temperature response routine used in the four wheat models"

模型
Model
名称
Name
单位
Unit
描述
Description
参数值 Parameter value
默认值
Default value
拔节期
Jointing (S1)
孕穗期
Booting (S2)
V1 V2 V1 V2
CERES-
Wheat
Tcoef 温度常数(叶面积)Temperature coefficient (LAI) 10 0 0 0 0
Thkill 初始致死温度(植株) Initial killing temperature (plants) -6 -0.5 -1.5 0 0
CropSyst LT0_HI 初始致死温度(收获指数) Initial killing temperature (HI) -0.5 0 0 0 0
LT100_HI 完全致死温度(收获指数) Maximum stress killing temperature (HI) -2 -14.3 -16.6 -8.34 -10.2
Sensitivity 温度敏感性(收获指数) Temperature sensitivity (HI) 1 0.43 0.4 0.52 0.5
LT0_LAI 开始致死温度(叶面积) Initial killing temperature (LAI) 0 0 0 0 0
LT100_LAI 完全致死温度(叶面积) Maximum stress killing temperature (LAI) -3 -14.3 -16.6 -8.34 -10.2
WOFOST LT50 半致死温度(叶面积和植株) Temperature when 50% plants die (y) -7.15 -8.32 -4.17 -5.14
KILLcoef 致死速率系数 Steepness coefficient for logistic kill function 1.189 1.74 1.95 1.189 1.189
STICS Tgelveg10 10%致死温度(叶面积) Temperature when 10% damage (LAI) -4.5 -4.5 -5 -2.5 -3
Tgelveg90 90%致死温度(叶面积) Temperature when 90% damage (LAI) -10 -9.8 -11.7 -5.84 -7.28
Tgelflo10 10%致死温度(收获指数) Temperature when 10% decreases (HI) -4.5 -5.8 -6 -3.5 -4
Tgelflo90 90%致死温度(收获指数) Temperature when 90% decreases (HI) -6.5 -11.5 -12 -6.8 -7.5

Fig. 2

The relationship between low temperature stress impact factor for leaf area and daily minimum temperature from the low temperature response routines in three wheat models for different low temperature stress treatments"

Table 3

Statistical indices in the validation of the original WheatGrow model and the integrated WheatGrow model with four low temperature stress routines in estimating LAI dynamic and stem biomass dynamic in environment-controlled phytotron experiments"

处理
Treatment (Tmax/Tmin)
模型
Model
叶面积指数 LAI 茎生物量 Stem biomass
拔节期 Jointing (S1) 孕穗期 Booting (S2) 拔节期 Jointing (S1) 孕穗期 Booting (S2)
MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2 MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2 MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2 MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2
8/-2℃ a 0.5 0.6 23.3 0.97 0.94 0.8 0.9 35.1 0.96 0.96 626.6 791.0 13.0 0.98 0.94 795 934.7 14 0.91 0.85
b 0.5 0.6 21.6 0.97 0.93 0.7 0.8 30.5 0.96 0.96 536.2 678.1 11.2 0.98 0.95 594.1 749.6 11.2 0.94 0.84
c 0.5 0.6 21.3 0.97 0.93 0.6 0.7 28.0 0.97 0.95 534.4 675.5 11.1 0.98 0.94 502.9 643.9 9.6 0.95 0.84
d 0.5 0.6 23.3 0.97 0.94 0.6 0.8 30.1 0.97 0.95 626.6 791.0 13.0 0.98 0.94 582.9 739.3 11 0.94 0.81
e 0.5 0.6 22.0 0.97 0.93 0.7 0.8 31.4 0.96 0.96 575.7 731.2 12.0 0.98 0.94 638.5 786.9 11.7 0.93 0.85
6/-4℃ a 0.7 0.8 32.3 0.95 0.92 1.1 1.3 58 0.9 0.94 842.7 982.4 17.4 0.96 0.96 2332 2495 49.6 0.74 0.67
b 0.6 0.7 27.9 0.95 0.86 0.6 0.7 33.4 0.95 0.89 379.2 482.7 8.6 0.99 0.96 1096 1237 24.6 0.85 0.82
c 0.5 0.6 26.0 0.96 0.89 0.6 0.7 33.1 0.95 0.88 445.9 569.0 10.1 0.99 0.96 997.8 1158 23 0.85 0.8
d 0.5 0.7 27.2 0.96 0.9 0.6 0.7 33.7 0.95 0.84 565 708.7 12.6 0.98 0.96 617.5 774.1 15.4 0.92 0.84
e 0.6 0.7 28.4 0.96 0.91 0.7 0.8 35.1 0.95 0.91 676.3 820.7 14.6 0.97 0.96 1271 1407 28 0.82 0.82
4/-6℃ a 0.8 0.9 43.0 0.92 0.91 2.0 2.3 185.0 0.72 0.69 1389 1639.0 32.7 0.9 0.9 5073 5384 249 0.73 0.1
b 0.7 0.8 37.9 0.91 0.75 0.8 1.1 85.6 0.79 0.5 529.3 641.7 12.8 0.98 0.93 2437 2749 127.2 0.68 0.22
c 0.5 0.6 29.2 0.95 0.85 1.0 1.2 93.2 0.78 0.5 653.8 881.7 17.6 0.96 0.92 2786 3089 142.9 0.7 0.1
d 0.5 0.6 29.0 0.95 0.85 0.6 1 78.8 0.75 0.32 632.0 835.4 16.7 0.97 0.93 1244 1484 68.6 0.68 0.37
e 0.6 0.7 31.7 0.95 0.87 0.9 1.1 87.6 0.79 0.5 871.5 1106.0 22.1 0.95 0.93 2525 2856 132.1 0.68 0.16
低于0℃
Tmin<0℃
a 0.7 0.8 32.7 0.95 0.91 1.3 1.6 81.7 0.85 0.78 952.7 1194.0 21.4 0.95 0.91 2733 3468 74.9 0.67 0.15
b 0.6 0.7 28.9 0.95 0.84 0.7 0.9 44.1 0.94 0.86 481.6 606.8 10.9 0.99 0.94 1376 1794 38.7 0.83 0.67
c 0.5 0.6 25.3 0.97 0.9 0.7 0.9 45.2 0.93 0.84 544.7 720.5 12.9 0.98 0.94 1429 1941 41.9 0.79 0.58
d 0.5 0.6 26.3 0.96 0.9 0.6 0.8 42.2 0.94 0.79 607.9 780.1 14.0 0.98 0.95 815 1056 22.8 0.95 0.84
e 0.5 0.7 27.1 0.96 0.91 0.7 0.9 45.5 0.94 0.86 707.8 900.1 16.2 0.97 0.94 1478 1894 40.9 0.82 0.66

Fig. 3

Comparison of observed (point) and simulated (line) dynamics of LAI with the original WheatGrow model and the integrated WheatGrow models with four low temperature stress routines under low temperature treatments in growing season 2014-2015 V1: Yangmai16, V2: Xumai30, S1: Jointing, S2: Booting, D1: 2 d; D2: 4 d; D3: 6 d. The same as below"

Fig. 4

Comparison of observed (point) and simulated (line) stem biomass dynamics of winter wheat with the original WheatGrow model and the integrated WheatGrow models with four low temperature stress routines under low temperature stress treatments in growing season 2014-2015"

Fig. 5

Comparison of observed (point) and simulated (line) above ground biomass dynamics with the original WheatGrow model and the integrated WheatGrow models with four low temperature stress routines under low temperature stress treatments in growing season 2014-2015"

Table 4

Statistical indices in the validation of the original WheatGrow model and the integrated WheatGrow models with low temperature stress routines in estimating final above ground biomass and final grain yield in environment-controlled phytotron experiments"

处理
Treatment (Tmax/Tmin)
模型
Model
地上部生物量 Above ground biomass 籽粒产量 Grain yield
拔节期 Jointing (S1) 孕穗期 Booting (S2) 拔节期 Jointing (S1) 孕穗期 Booting (S2)
MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2 MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2 MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2 MAE (m2·m-2) RMSE (m2·m-2) NRMSE (%) D-index R2
8/-2℃ a 2096 2262 17.4 0.71 0.01 2692 2883 23.1 0.72 0.33 1113 1220 24 0.71 0.05 1211 1335 26.7 0.71 0.2
b 1778 1934 14.8 0.7 0.06 2173 2284 18.3 0.73 0.24 975.3 1077 21.2 0.71 0.05 998.6 1080 21.6 0.72 0.52
c 974.5 1196 9.2 0.62 0.12 759.6 915.7 7.3 0.81 0.52 334.4 455.6 9 0.74 0.29 412.1 495.2 9.9 0.84 0.7
d 2096 2262 17.4 0.71 0.01 1988 2094 16.7 0.73 0.31 1113 1220 24 0.71 0.05 922.9 1001 20 0.72 0.45
e 1192 1328 10.2 0.69 0.41 1239 1343 10.7 0.74 0.45 371.5 453.3 8.9 0.73 0.59 189.5 240.8 4.8 0.94 0.8
6/-4℃ a 3240 3323 28.4 0.74 0.02 6274 6480 73.5 0.74 0.16 1838 1876 43.7 0.74 0.08 3332 3391 118.8 0.74 0.11
b 1696 1769 15.1 0.73 0.53 3890 3957 44.9 0.74 0.8 1204 1228 28.6 0.74 0.51 2356 2372 83.1 0.75 0.8
c 622.5 732.3 6.3 0.78 0.41 1014 1148 13 0.84 0.8 475.6 630.9 14.7 0.72 0.66 509.7 566.4 19.9 0.86 0.81
d 2640 2708 23.2 0.74 0.45 2550 2657 30.1 0.74 0.78 1591 1618 37.7 0.74 0.44 1807 1832 64.2 0.74 0.79
e 1370 1478 12.6 0.72 0.47 1723 1858 21.1 0.76 0.8 407.5 484.9 11.3 0.75 0.52 466.8 581.5 20.4 0.86 0.81
4/-6℃ a 4903 5023 50.6 0.74 0 11666 11800 366.7 0.75 0.01 2650 2705 79.1 0.74 0.06 5284 5311 650.9 0.75 0.04
b 1692 1836 18.5 0.72 0.66 6260 6381 198.3 0.74 0.79 1333 1384 40.5 0.74 0.52 3071 3129 383.6 0.74 0.8
c 609.7 734.9 7.4 0.89 0.77 4247 4314 134.1 0.74 0.82 643.7 776.1 22.7 0.77 0.72 520.7 656.6 80.5 0.81 0.85
d 3161 3228 32.5 0.74 0.62 2639 3070 95.4 0.74 0.82 1937 1972 57.7 0.74 0.48 1539 1754 214.9 0.71 0.84
e 1562 1641 16.5 0.73 0.8 3358 3468 107.8 0.74 0.77 407.7 482.4 14.1 0.85 0.7 481.5 559.2 68.5 0.82 0.72
低于0 ℃
Tmin<0℃
a 3413 3714 32.2 0.72 0.1 6877 7949 97.2 0.69 0.07 1867 2027 47.5 0.72 0.07 3276 3719 128.6 0.7 0.1
b 1722 1847 16 0.79 0.79 4108 4531 55.4 0.75 0.85 1171 1236 29 0.74 0.77 2142 2351 81.3 0.73 0.79
c 735.5 914 7.9 0.92 0.79 2007 2631 32.2 0.85 0.9 484.6 634.5 14.9 0.9 0.83 480.9 576.5 19.9 0.97 0.9
d 2632 2761 23.9 0.73 0.75 2392 2637 32.2 0.91 0.92 1547 1633 38.3 0.73 0.72 1423 1574 54.4 0.85 0.86
e 1375 1488 12.9 0.82 0.83 2107 2400 29.3 0.9 0.95 395.6 473.7 11.1 0.93 0.83 379.3 486.1 16.8 0.98 0.96

Fig. 6

Comparison of observed (point) and simulated (line) grain yields of winter wheat with the original WheatGrow model and the integrated WheatGrow models with four low temperature stress routines under low temperature stress treatments in growing season 2014-2015"

Fig. 7

Comparison of observed and simulated wheat grain yields at maturity with the original WheatGrow model and the integrated WheatGrow models with four low temperature stress routines under low temperature stress treatments in model validation"

[1] IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge, UK: Cambridge University Press, 2012.
[2] XIAO L, LIU L, ASSENG S, XIA Y, TANG L, LIU B, CAO W, ZHU Y. Estimating spring frost and its impact on yield across winter wheat in China. Agricultural and Forest Meteorology, 2018,260/261:154-164.
[3] 陈翔, 林涛, 林非非, 张妍, 苏慧, 胡燕美, 宋有洪, 魏凤珍, 李金才. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展. 麦类作物学报, 2020,40(2):243-250.
CHEN X, LIN T, LIN F F, ZHANG Y, SU H, HU Y M, SONG Y H, WEI F Z, LI J C. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in huanghuai region. Journal of Triticeae Crops, 2020,40(2):243-250. (in Chinese)
[4] WU Y, ZHONG X, HU X, REN D, LV G, WEI C, SONG J. Frost affects grain yield components in winter wheat. New Zealand Journal of Crop and Horticultural Science, 2014,42(3):194-204.
[5] MARTINO D, ABBATE P. Frost damage on grain number in wheat at different spike developmental stages and its modelling. European Journal of Agronomy, 2019,103:13-23.
[6] 刘蕾蕾, 纪洪亭, 刘兵, 马吉锋, 肖浏骏, 汤亮, 曹卫星, 朱艳. 拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响. 中国农业科学, 2018,51(23):4434-4448.
LIU L L, JI H T, LIU B, MA J F, XIAO L J, TANG L, CAO W X, ZHU Y. Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyll fluorescence characteristics in wheat leaf. Scientia Agricultura Sinica, 2018,51(23):4434-4448. (in Chinese)
[7] 武永峰, 胡新, 任德超, 史萍, 游松财. 晚霜冻胁迫后冬小麦株高降低及其与籽粒产量关系. 中国农业科学, 2018,51(18):3470-3485.
WU Y F, HU X, REN D C, SHI P, YOU S C. Reduction of plant height in winter wheat and its relationship with grain yield under late frost stress. Scientia Agricultura Sinica, 2018,51(18):3470-3485. (in Chinese)
[8] ZHENG B, CHENU K, FERNANDA DRECCER M, CHAPMAN S C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 2012,18(9):2899-2914.
[9] ZHENG B, CHAPMAN S C, CHRISTOPHER J T, FREDERIKS T M, CHENU K. Frost trends and their estimated impact on yield in the Australian wheatbelt. Journal of Experimental Botany, 2015,66(12):3611-3623.
[10] 郑冬晓, 杨晓光, 赵锦, 慕臣英, 龚宇. 气候变化背景下黄淮冬麦区冬季长寒型冻害时空变化特征. 生态学报, 2015,35(13):4338-4346.
ZHENG D X, YANG X G, ZHAO J, MU C Y, GONG Y. Spatial and temporal patterns of freezing injury during winter in Huang Huai winter wheat area under climate change. Acta Ecologica Sinica, 2015,35(13):4338-4346. (in Chinese)
[11] ASSENG S, MARTRE P, MAIORANO A, RöTTER R P, O’LEARY G J, FITZGERALD G J, GIROUSSE C, MOTZO R, GIUNTA F, BABAR M A . Climate change impact and adaptation for wheat protein. Global Change Biology, 2019,25(1):155-173.
[12] RÖTTER R, APPIAH M, FICHTLER E, KERSEBAUM K, TRNKA M, HOFFMANN M. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review. Field Crops Research, 2018,221:142-156.
[13] WANG E, MARTRE P, ZHAO Z, EWERT F, MAIORANO A, RöTTER R P, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, REYNOLDS M P, ALDERMAN P D, AGGARWAL P K, ANOTHAI J, BASSO B, BIERNATH C, CAMMARANO D, CHALLINOR A J, DE SANCTIS G, DOLTRA J, DUMONT B, FERERES E, GARCIA-VILA M, GAYLER S, HOOGENBOOM G, HUNT L A, IZAURRALDE R C, JABLOUN M, JONES C D, KERSEBAUM K C, KOEHLER A-K, LIU L, MÜLLER C, NARESH KUMAR S, NENDEL C, O'LEARY G, OLESEN J E, PALOSUO T, PRIESACK E, EYSHI REZAEI E, RIPOCHE D, RUANE A C, SEMENOV M A, SHCHERBAK I, STÖCKLE C, STRATONOVITCH P, STRECK T, SUPIT I, TAO F, THORBURN P, WAHA K, WALLACH D, WANG Z, WOLF J, ZHU Y, ASSENG S. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017,3:17102.
[14] LIU B, LIU L, ASSENG S, ZOU X, LI J, CAO W, ZHU Y. Modelling the effects of heat stress on post-heading durations in wheat: A comparison of temperature response routines. Agricultural and Forest Meteorology, 2016,222:45-58.
[15] LECOMTE C, GIRAUD A, AUBERT V. Testing a predicting model for frost resistance of winter wheat under natural conditions. Agronomie, 2003,23(1):51-66.
[16] 陈曦, 杜克明, 魏湜, 孙忠富, 郑飞翔, 李晶, 顾万荣. 小麦霜冻害模拟模型研究进展. 麦类作物学报, 2015,35(2):285-291.
CHEN X, DU K M, WEI S, SUN Z F, ZHENG F X, LI J, GU W R. Advance on simulation modeling of frost and freezy injury in wheat. Journal of Triticeae Crops, 2015,35(2):285-291. (in Chinese)
[17] BERGJORD OLSEN A K, PERSSON T, DE WIT A, NKURUNZIZA L, SINDHøJ E, ECKERSTEN H. Estimating winter survival of winter wheat by simulations of plant frost tolerance. Journal of Agronomy and Crop Science, 2018,204(1):62-73.
[18] 马玉平, 王石立, 张黎. 针对华北小麦越冬的WOFOST模型改进. 中国农业气象, 2005,26(3):145-149.
MA Y P, WANG S L, ZHANG L. Study on improvement of WOFOST against overwinter of wheat in north China. Chinese Journal of Agrometeorology, 2005,26(3):145-149. (in Chinese)
[19] 张雪芬, 余卫东, 王春乙, 白凌霞. WOFOST模型在冬小麦晚霜冻害评估中的应用. 自然灾害学报, 2006(S1):337-341.
ZHANG X F, YU W D, WANG C Y, BAI L X. Application of WOFOST model to assessment of winter wheat's chilling damage by late frost. Journal of Natural Disasters, 2006(S1):337-341. (in Chinese)
[20] PERSSON T, BERGJORD OLSEN A K, NKURUNZIZA L, SINDHöJ E, ECKERSTEN H . Estimation of crown temperature of winter wheat and the effect on simulation of frost tolerance. Journal of Agronomy and Crop Science, 2017,203(2):161-176.
[21] SAVDIE I, WHITEWOOD R, RADDATZ R L, FOWLER D B. Potential for winter wheat production in western Canada: A CERES model winterkill risk assessment. Canadian Journal of Plant Science, 1991,71(1):21-30.
[22] STöCKLE C O. Temperature routines in CropSyst. Proceedings of the Workshop on Modeling Wheat Response to High Temperature. Mexico, International Maize and Wheat Improvement Center (CIMMYT), 2013: 47.
[23] BRISSON N, GARY C, JUSTES E, ROCHE R, MARY B, RIPOCHE D, ZIMMER D, SIERRA J, BERTUZZI P, BURGER P, BUSSIèRE F, CABIDOCHE Y M, CELLIER P, DEBAEKE P, GAUDILLèRE J P, HéNAULT C, MARAUX F, SEGUIN B, SINOQUET H. An overview of the crop model stics. European Journal of Agronomy, 2003,18(3/4):309-332.
[24] BEAUDOIN N, MARY B, LAUNAY M, BRISSON N, Conceptual basis, formalisations and parameterization of the STICS crop model. France: Quae Editions, 2009.
[25] KEATING B A, CARBERRY P S, HAMMER G L, PROBERT M E, ROBERTSON M J, HOLZWORTH D, HUTH N I, HARGREAVES J N, MEINKE H, HOCHMAN Z. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003,18(3):267-288.
[26] FLOHR B M, HUNT J R, KIRKEGAARD J A, EVANS J R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 2017,209:108-119.
[27] BRACHO-MUJICA G, HAYMAN P T, OSTENDORF B. Modelling long-term risk profiles of wheat grain yield with limited climate data. Agricultural Systems, 2019,173:393-402.
[28] BARLOW K M, CHRISTY B P, O’LEARY G J, RIFFKIN P A, NUTTALL J G. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 2015,171:109-119.
[29] LUO Q. Temperature thresholds and crop production: A review. Climatic Change, 2011,109(3/4):583-598.
[30] JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T. The DSSAT cropping system model. European Journal of Agronomy, 2003,18(3/4):235-265.
[31] RITCHIE J. Description and performance of CERES wheat: A user-oriented wheat yield model. ARS Wheat Yield Project, US Department of Agriculture, Agricultural Research Service, 1985,38:159-175.
[32] STÖCKLE C O, DONATELLI M, NELSON R. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 2003,18(3/4):289-307.
[33] DE WIT A, BOOGAARD H, FUMAGALLI D, JANSSEN S, KNAPEN R, VAN KRAALINGEN D, SUPIT I, VAN DER WIJNGAART R, VAN DIEPEN K. 25 years of the WOFOST cropping systems model. Agricultural Systems, 2019,168:154-167.
[34] 陈振林, 张建平, 王春乙, 郑江平. 应用WOFOST模型模拟低温与干旱对玉米产量的综合影响. 中国农业气象, 2007,28(4):440-442, 445.
CHEN Z L, ZHANG J P, WANG C Y, ZHENG J P. Application of WOFOST model in simulation of integrated impacts of low temperature and drought on maize yield. Chinese Journal of Agrometeorology, 2007,28(4):440-442, 445. (in Chinese)
[35] BRISSON N, RUGET F, GATE P, LORGEOU J, NICOULLAUD B, TAYOT X, PLENET D, JEUFFROY M-H, BOUTHIER A, RIPOCHE D, MARY B, JUSTES E. STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 2002,22(1):69-92.
[36] WILLMOTT C J, ACKLESON S G, DAVIS R E, FEDDEMA J J, KLINK K M, LEGATES D R, O'DONNELL J, ROWE C M. Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 1985,90:8995-9005.
[37] BELLOCCHI G, RIVINGTON M, DONATELLI M, MATTHEWS K. Validation of biophysical models: ISSUES and methodologies. A review. Agronomy for Sustainable Development, 2010,30(1):109-130.
[38] 李军玲, 余卫东, 张弘, 郭其乐. 冬小麦越冬中期冻害高光谱敏感指数研究. 中国农业气象, 2014,35(6):708-716.
LI J L, YU W D, ZHANG H, GUO Q L. Study on hyperspectral sensitivity index of winter wheat after freezing injury at mid-winter period. Chinese Journal of Agrometeorology, 2014,35(6):708-716. (in Chinese)
[39] ZHENG D, YANG X, MíNGUEZ M I, MU C, HE Q, WU X. Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agricultural and Forest Meteorology, 2018,260/261:1-8.
[40] VICO G, HURRY V, WEIH M. Snowed in for survival: Quantifying the risk of winter damage to overwintering field crops in northern temperate latitudes. Agricultural and Forest Meteorology, 2014,197:65-75.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!