Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (3): 493-503.doi: 10.3864/j.issn.0578-1752.2021.03.004

• SPECIAL FOCUS: CURRENT STATUS AND FUTURE PROSPECTIVE OF MINOR CEREALS, SWEETPOTATO AND FOOD LEGUMS PRODUCTION AND SEED INDUSTRY IN CHINA • Previous Articles     Next Articles

Current Status and Future Prospective of Food Legumes Production and Seed Industry in China

CHEN HongLin1(),TIAN Jing2,ZHU ZhenDong1,ZHANG YaoWen3,CHEN QiaoMin4,ZHOU SuMei5,WANG LiXia1,LIU YuJiao6,HE YuHua7,YIN FengXiang8,WEI ShuHong9,CHENG XuZhen1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035
    3Institute of Crop Sciences, Shanxi Academy of Agricultural Science, Taiyuan 030031
    4Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014
    5Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193
    6Academy of Agriculture and Forestry Science of Qinghai University, Xining 810016
    7Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205
    8Baicheng Academy of Agricultural Sciences, Baicheng 137000, Jilin
    9Crop Breeding Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086
  • Received:2020-08-14 Accepted:2020-11-19 Online:2021-02-01 Published:2021-02-01
  • Contact: XuZhen CHENG E-mail:chenhonglin@caas.cn;chengxuzhen@caas.cn

Abstract:

Food legumes play an important role in food composition, human health, and soil improvement in China, especially as the main source of protein in poverty-stricken area. With the deciphering of the genome of food legumes, the molecular genetic basis and molecular breeding of food legumes have been promoted. Since the establishment of China Agricultural Research System (CARS) in 2008, a number of cultivation techniques suitable for different regions were integrated, and many food legumes varieties with High yield, high quality, diseases and insects resistance, resistance to stresses and suitable for mechanized harvesting were bred, the research and application of green pest prevention and control technology produced a marked effect, the research on production machinery and technology had achieved initial effects, and the improvement of post-production processing technology and product innovation research promoted the quality and efficiency of the food legumes industry. With the demonstration and popularization of new food legume varieties and new technologies, the total yield and yield per unit area of food legumes increased significantly. In particular, the production of faba bean and pea were transformed from dry grain production to fresh vegetable production in the past 10 years. The planting area increased 21.1%, the yield per unit area increased 3.9%, and the total yield increased 36.8%. With the continuous expansion of the food legume industry scale, more food legumes are listed as geographical indication of China's agricultural products, and a number of agricultural enterprise brands are being forming. With the stimulation of the food legume industry, the number of variety rights protection and transfers is gradually increasing, and the food legume industry is emerging. With the improvement of people’s health awareness, domestic and foreign market demand is raising rapidly, the implementation of the rural vitalization strategy, the advancement of agricultural supply-side structural reform, and the development of the featured and advantageous industries in poor areas have brought new opportunities to the food legumes production and seed industry. However, the food legumes seed industry still has some problems, such as high production cost, low production efficiency, scientific research platform construction is still need to be strengthened, lack of elite varieties, and insufficient awareness of variety rights. On the basis of summarizing the present situation and problems of food legumes production and seed industry in China, this paper discusses the future development direction of food legumes production and seed industry.

Key words: food legumes, production, seed industry, status, future prospective

Table 1

The planting area and total production of food legumes in China from 2009 to 2018"

年份
Year
干籽粒面积
Area of dry pulses (×104 hm2)
干籽粒总产量
Total production of dry pulses
(×104 t)
干籽粒单产
Dry pulses yield per unit area
(kg·hm-2)
鲜食面积
Area of fresh-eating legumes
(×104 hm2)
鲜食总产量
Total production of fresh-eating legumes (×104 t)
鲜食单产
Fresh-eating legumes yield per unit area (kg·hm-2)
2009 300.0 405 1350.0 129.8 1040.1 8013.2
2010 280.0 400 1428.6 135.9 1081.4 7957.2
2011 346.7 497 1433.5 140.5 1120.6 7975.9
2012 333.3 450 1350.1 140.4 1139.1 8113.1
2013 333.3 500 1500.2 140.4 1149.0 8183.9
2014 346.7 560 1615.3 143.9 1161.0 8067.8
2015 337.0 530 1572.7 158.3 1274.9 8053.8
2016 337.0 530 1572.7 165.3 1342.5 8121.6
2017 344.0 548 1593.0 170.4 1385.8 8132.7
2018 345.2 550 1594.2 175.4 1427.4 8138.3
[1] 程须珍, 王述民. 中国食用豆类品种志. 北京: 中国农业科学技术出版, 2009.
CHENG X Z, WANG S M. Food Legumes Varietes Records in China. Beijing: China Agricultural Science and Technology Press, 2009. (in Chinese)
[2] 盖钧镒, 金文林. 我国食用豆类生产现状与发展策略. 作物杂志, 1994(4):3-4.
GAI J Y, JIN W L. Current production status and development strategy of food legumes in China. Crop Journal, 1994(4):3-4. (in Chinese)
[3] 林汝法. 中国食用豆类的历史和现状//吉林省农特产品加工协会//第五届全国杂粮产业大会论文集. 2012: 12-14.
LIN R F. The history and current situation of edible legumes in China//Jilin Province Agricultural Special Products Processing Association//Proceedings of the 5th National Grain Industry Congress. 2012: 12-14. (in Chinese)
[4] 郭永田. 中国食用豆产业的经济分析[D]. 武汉: 华中农业大学, 2014.
GUO Y T. The economic analysis of edible bean in dusty in China[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[5] 段灿星, 朱振东, 孙素丽, 王晓鸣. 中国食用豆抗性育种研究进展. 中国农业科学, 2013,46(22):4633-4645.
DUAN C X, ZHU Z D, SUN S L, WANG X M. Advances in study on food legumes resistance breeding in China. Scientia Agricultura Sinica, 2013,46(22):4633-4645. (in Chinese)
[6] 夏先飞, 陈巧敏, 肖宏儒, 杨光, 宋志禹, 梅松. 我国食用豆机械化收获技术发展现状及对策. 中国农机化学报, 2019,40(5):22-28.
XIA X F, CHEN Q M, XIAO H R, YANG G, SONG Z Y, MEI S. Current situation and countermeasures of mechanization harvesting technology of food legumes in China. Chinese Journal of Agricultural Mechanization, 2019,40(5):22-28. (in Chinese)
[7] 张旭娜, 么杨, 任贵兴, 崔波. 小豆功能活性成分及加工利用研究进展. 食品安全质量检测学报, 2018,9(7):1561-1566.
ZHANG X N, YAO Y, REN G X, CUI B. Research progress of the biological activity and application of adzuki bean (Vigna angularis). Journal of Food Safety and Quality, 2018,9(7):1561-1566. (in Chinese)
[8] 马玉玲, 罗可大, 佟立涛, 王丽丽, 周闲容, 刘兴训, 周素梅. 绿豆发芽富集GABA及产品开发研究进展. 中国粮油学报, 2018,33(5):119-127.
MA Y L, LUO K D, TONG L T, WANG L L, ZHOU X R, LIU X X, ZHOU S M. Research progress of GABA enrichment in mungbean germination and product development. Journal of the Chinese Cereals and Oils Association, 2018,33(5):119-127. (in Chinese)
[9] 刘长友, 王素华, 王丽侠, 孙蕾, 梅丽, 徐宁, 程须珍. 中国绿豆种质资源初选核心种质构建. 作物学报, 2008,34(4):700-705.
LIU C Y, WANG S H, WANG L X, SUN L, MEI L, XU N, CHENG X Z. Establishment of candidate core collection in Chinese mungbean germplasm resources. Acta Agronomica Sinica, 2008,34(4):700-705. (in Chinese)
[10] 陈红霖, 胡亮亮, 杨勇, 郝曦煜, 李姝彤, 王素华, 王丽侠, 程须珍. 481份国内外绿豆种质农艺性状及豆象抗性鉴定评价及遗传多样性分析. 植物遗传资源学报, 2020,21(3):549-559.
CHEN H L, HU L L, YANG Y, HAO X Y, LI S T, WANG S H, WANG L X, CHENG X Z. Evaluation and denetic diversity analysis of agronomic traits and bruchid resistance using 481 worldwide mungbean germplasms. Journal of Plant Genetic Resources, 2020,21(3):549-559. (in Chinese)
[11] 白鹏, 程须珍, 王丽侠, 王素华, 陈红霖. 小豆种质资源农艺性状综合鉴定与评价. 植物遗传资源学报, 2014,15(6):1209-1215.
BAI P, CHENG X Z, WANG L X, WANG S H, CHEN H L. Evaluation in agronomic traits of adzuki bean accessions. Journal of Plant Genetic Resources, 2014,15(6):1209-1215. (in Chinese)
[12] 王丽侠, 程须珍, 王素华, 罗高玲, 刘振兴, 蔡庆生. 我国小豆应用核心种质的生态适应性及评价利用. 植物遗传资源学报, 2013,14(5):794-799.
WANG L X, CHENG X Z, WANG S H, LUO G L, LIU Z X, CAI Q S. Adaptability and variation of an applied core collection of adzuki bean (Vigna angularis) in China. Journal of Plant Genetic Resources, 2013,14(5):794-799. (in Chinese)
[13] 姜俊烨, 杨涛, 王芳, 方俐, 仲伟文, 关建平, 宗绪晓. 国内外蚕豆核心种质SSR遗传多样性对比及微核心种质构建. 作物学报, 2014,40(7):1311-1319.
JIANG J Y, YANG T, WANG F, FANG L, ZHONG W W, GUAN J P, ZONG X X. Genetic diversity analysis of germplasm resources and construction of mini-core collections for Vicia faba L. at home and abroad. Acta Agronomica Sinica, 2014,40(7):1311-1319. (in Chinese)
[14] 刘玉皎, 侯万伟. 青海蚕豆种质资源AFLP多样性分析和核心资源构建. 甘肃农业大学学报, 2011,46(4):62-68.
LIU Y J, HOU W W. Diversity analysis no germplasm resources by AFLP and core resource construction of Vicia faba in Qinghai. Journal of Gansu Agricultural University, 2011,46(4):62-68. (in Chinese)
[15] 宗绪晓, 关建平, 顾竟, 王海飞, 马钰. 中国和国际豌豆核心种质群体结构与遗传多样性差异分析. 植物遗传资源学报, 2009,10(3):347-353.
ZONG X X, GUANG J P, GU J, WANG H F, MA Y. Differentiation on population structure and genetic diversity of pea core collections separately constituted from Chinese landraces and international genetic resources. Journal of Plant Genetic Resources, 2009,10(3):347-353. (in Chinese)
[16] 龙珏臣, 张继君, 龚万灼, 陈红, 王萍, 宗绪晓, 何玉华, 杜成章. 重庆地区豌豆(Pisum sativum L.)种质资源收集与多样性分析. 植物遗传资源学报, 2019,20(1):137-145.
LONG J C, ZHANG J J, GONG W Z, CHEN H, WANG P, ZONG X X, HE Y H, DU C Z. Field collection and genetic diversity analysis of pea (Pisum sativum L.) germplasm resource in Chongqing. Journal of Plant Genetic Resources, 2019,20(1):137-145. (in Chinese)
[17] 王兰芬, 武晶, 王昭礼, 余莉, 吴宪志, 张时龙, 王述民. 普通菜豆种质资源表型鉴定及多样性分析. 植物遗传资源学报, 2016,17(6):976-983.
WANG L F, WU J, WANG Z L, YU L, WU X Z, ZHANG S L, WANG S M. Morphological diversity and classification of common bean (Phaseolus vulgaris L.) germplasm resources. Journal of Plant Genetic Resources, 2016,17(6):976-983. (in Chinese)
[18] 公丹, 王素华, 程须珍, 王丽侠. 普通豇豆应用核心种质的SSR指纹图谱构建及多样性分析. 作物杂志, 2020(4):79-83.
GONG D, WANG S H, CHENG X Z, WANG L X. SSR fingerprint analysis and diversity analysis of cowpea (Vigna ungniculata) using core germplasm. Crop, 2020(4):79-83. (in Chinese)
[19] CHEN H L, QIAO L, WANG L X, WANG S H, BLAIR MW, CHENG X Z. Assessment of genetic diversity and population structure of mung bean (Vigna radiata) germplasm using EST-based and genomic SSR markers. Gene, 2015,566:175-183.
pmid: 25895480
[20] CHEN H L, LIU L P, WANG L X, WANG S H, WANG M L, CHENG X Z. Development of SSR markers and assessment of genetic diversity of adzuki bean in the Chinese germplasm collection. Molecular Breeding, 2015,35.
pmid: 25663815
[21] WANG H F, ZONG X X, GUAN J P, YANG T, SUN X L, MA Y, REDDEN R. Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers. Theoretical and Applied Genetics, 2012,124(5):789-797.
doi: 10.1007/s00122-011-1750-1 pmid: 22204023
[22] ZONG X X, REDDEN R J, LIU Q C, WANG S M, GUAN J P, LIU J, XU Y H, LIU X J, GU J, YAN L, ADES P, FORD R. Analysis of a diverse global Pisum sp collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theoretical and Applied Genetics, 2009,118(2):193-204.
[23] ZHANG X Y, BLAIR M W, WANG S M. Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theoretical and Applied Genetics, 2008,117(4):629-640.
pmid: 18548226
[24] CHEN H L, CHEN H, HU L L, WANG L X, WANG S H, WANG M L, CHENG X Z. Genetic diversity a population structure analysis of a accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection. Crop Journal, 2017,5(5):363-372.
[25] SCHMUTZ J, MCCLEAN P E, MAMIDI S, WU G A, CANNON S B, GRIMWOOD J, JENKINS J, SHU S, SONG Q, CHAVARRO C, TORRES-TORRES M, GEFFROY V, MOGHADDAM S M, GAO D, ABERNATHY B, BARRY K, BLAIR M W, BRICK M A, CHOVATIA M, GEPTS P, GOODSTEIN D M, GONZALES M, HELLSTEN U, HYTEN D L, JIA G, KELLY J D, KUDRNA D, LEE R, RICHARD M M, MIKLAS P N, OSORNO J M, RODRIGUES J, THAREAU V, URREA C A, WANG M, YU Y, ZHANG M, WING R A, CREGAN P B, ROKHSAR D S, JACKSON S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014,46(7):707-713.
pmid: 24908249
[26] KANG Y J, KIM S K, KIM M Y, LESTARI P, KIM K H, HA B K, JUN T H, HWANG W J, LEE T, LEE J, SHIM S, YOON M Y, JANG Y E, HAN K S, TAEPRAYOON P, YOON N, SOMTA P, TANYA P, KIM K S, GWAG J G, MOON J K, LEE Y H, PARK B S, BOMBARELY A, DOYLE J J, JACKSON S A, SCHAFLEITNER R, SRINIVES P, VARSHNEY R K, LEE S H. Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communication, 2014,5:5443.
[27] YANG K, TIAN Z, CHEN C, LUO L, ZHAO B, WANG Z, YU L, LI Y, SUN Y, LI W, CHEN Y, LI Y, ZHANG Y, AI D, ZHAO J, SHANG C, MA Y, WU B, WANG M, GAO L, SUN D, ZHANG P, GUO F, WANG W, LI Y, WANG J, VARSHNEY RK, WANG J, LING HQ, WAN P. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(43):13213-13218.
[28] LONARDI S, MUNOZ-AMATRIAIN M, LIANG Q, SHU S, WANAMAKER S I, LO S, TANSKANEN J, SCHULMAN A H, ZHU T, LUO M C, ALHAKAMI H, OUNIT R, HASAN A M, VERDIER J, ROBERTS P A, SANTOS JR P, NDEVE A, DOLEZEL J, VRANA J, HOKIN S A, FARMER A D, CANNON S B, CLOSE T J. The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant Journal, 2019,98(5):767-782.
[29] KREPLAK J, MADOUI M A, CAPAL P, NOVAK P, LABADIE K, AUBERT G, BAYER P E, GALI K K, SYME R A, MAIN D, KLEIN A, BERARD A, VRBOVA I, FOURNIER C, D'AGATA L, BELSER C, BERRABAH W, TOEGELOVA H, MILEC Z, VRANA J, LEE H, KOUGBEADJO A, TEREZOL M, HUNEAU C, TURO C J, MOHELLIBI N, NEUMANN P, FALQUE M, GALLARDO K, MCGEE R, TAR'AN B, BENDAHMANE A, AURY J M, BATLEY J, LE PASLIER M C, ELLIS N, WARKENTIN T D, COYNE C J, SALSE J, EDWARDS D, LICHTENZVEIG J, MACAS J, DOLEZEL J, WINCKER P, BURSTIN J . A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019,51(9):1411-1422.
[30] CHOTECHUNG S, SOMTA P, CHEN J, YIMRAM T, CHEN X, SRINIVES P. A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: bruchidae) resistance in mungbean (Vigna radiata). Theoretical and Applied Genetics, 2016,129(9):1673-1683.
[31] YUNDAENG C, SOMTA P, CHEN J, YUAN X, CHANKAEW S, SRINIVES P, CHEN X. Candidate gene mapping reveals VrMLO12 (MLO Clade II) is associated with powdery mildew resistance in mungbean (Vigna radiata [L.] Wilczek). Plant Science, 2020,298:110594.
pmid: 32771151
[32] CHEN M L, WU J, WANG L F, MANTRI N, ZHANG X Y, ZHU Z D, WANG S M. Mapping and genetic structure analysis of the anthracnose resistance locus Co-1 HY in the common bean (Phaseolus vulgaris L.) . PLoS ONE, 2017,12(1):e0169954.
[33] CHEN H L, LIU L P, WANG L X, WANG S H, CHENG X Z. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Journal of Plant Research, 2016,129(2):263-273.
[34] CHEN J B, YANG J W, ZHANG Z Y, FENG X F, WANG S M. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. Journal of Genetics, 2013,92(3):461-469.
pmid: 24371167
[35] SUN S L, DENG D, WANG Z Y, DUAN C X, WU X F, WANG X M, ZONG X X, ZHU Z D. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theoretical and Applied Genetics, 2016,129(5):909-919.
[36] KAEWWONGWAL A, LIU C Y, SOMTA P, CHEN J B, TIAN J, YUAN X X, CHEN X. A second VrPGIP1 allele is associated with bruchid resistance (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) accession ACC41. Molecular Genetics and Genomics, 2020,295(2):275-286.
doi: 10.1007/s00438-019-01619-y pmid: 31705195
[37] WU J, WANG L F, FU J J, CHEN J B, WEI S H, ZHANG S L, ZHANG J, TANG Y S, CHEN M L, ZHU J F, LEI L, GENG Q H, LIU C L, WU L, LI X M, WANG X L, WANG Q, WANG Z L, XING S L, ZHANG H K, BLAIR M W, WANG S M. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nature Genetics, 2020,52(1):118-125.
[38] 刘长友, 范保杰, 曹志敏, 苏秋竹, 王彦, 张志肖, 程须珍, 田静. 豇豆属食用豆类间的远缘杂交. 中国农业科学, 2015,48(3):426-435.
LIU C Y, FAN B J, CAO Z M, SU Q Z, WANG Y, ZHANG Z X, CHENG X Z, TIAN J. Interspecific hybridization among Vigna species. Scientia Agricultura Sinica, 2015,48(3):426-435. (in Chinese)
[39] 叶卫军, 杨勇, 张丽亚, 田东丰, 张玲玲, 周斌. 绿豆EMS诱变突变体库的构建及表型分析. 中国农学通报, 2020,36(17):36-41.
YE W J, YANG Y, ZHANG L Y, TIAN D F, ZHANG L L, ZHOU B. Construction of EMS mutagenesis mung bean mutant library and phenotypic analysis. Chinese Agricultural Science Bulletin, 2020,36(17):36-41. (in Chinese)
[40] 欧阳裕元, 杨梅, 项超, 余东梅. 60Coγ诱变豌豆M2农艺性状与产量多重分析 . 中国农学通报, 2018,34(23):33-40.
OUYANG Y Y, YANG M, XIANG C, YU D M. Multiple analysis of agronomic characters and yield of pea M2 Induced by 60Coγ . Chinese Agricultural Science Bulletin, 2018,34(23):33-40. (in Chinese)
[41] 刘慧. 我国绿豆生产现状和发展前景. 农业展望, 2012(6):36-39.
LIU H. Current status and development prospects of mung bean production in China. Agricultural Outlook, 2012(6):36-39. (in Chinese)
[42] 陈红, 杨雄年. 现代种业发展战略下强化植物新品种保护的政策措施. 知识产权, 2017,11:84-88.
CHEN H, YANG X N. Policies and measures to strengthen the protection of new varieties of plants under the development strategy of modern seed industry. Intellectual Property, 2017,11:84-88. (in Chinese)
[43] 周俊玲, 张蕙杰. 世界食用豆主要出口国国际竞争力的比较分析. 中国食物与营养, 2018,24(10):46-50.
ZHOU J L, ZHANG H J. Comparative analysis of the international competitiveness of the world's major food legumes exporting countries. Food and Nutrition in China, 2018,24(10):46-50. (in Chinese)
[1] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[2] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[5] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[6] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[7] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[8] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[9] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[10] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[11] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[12] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[13] LI ShunGuo, LIU Fei, LIU Meng, CHENG RuHong, XIA EnJun, DIAO XianMin. Current Status and Future Prospective of Foxtail Millet Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 459-470.
[14] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[15] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!