Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3024-3035.doi: 10.3864/j.issn.0578-1752.2020.15.004

• SPECIAL FOCUS: INTEGRATED AGRONOMIC MANAGEMENT CLOSE THE YIELD GAP • Previous Articles     Next Articles

Quantitative Evaluation of the Contribution of Main Management Factors to Grain Yield of Spring Maize in North China

YANG Zhe1(),YU ShengNan1(),GAO JuLin1,TIAN Tian1,SUN JiYing1,WEI ShuLi1,HU ShuPing1,LI RongFa1,LI CongFeng2,WANG ZhiGang1()   

  1. 1College of Agronomy, Inner Mongolia Agricultural University/Key Laboratory for Crop Cultivation and Genetic Improvement of Inner Mongolia, Hohhot 010019
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-04-17 Accepted:2020-06-02 Online:2020-08-01 Published:2020-08-06
  • Contact: ZhiGang WANG E-mail:imauyz@163.com;imauyusn@163.com;imauwzg@163.com

Abstract:

【Objective】Quantitative analysis of the contribution of main management factors to grain yield is of great importance for narrowing yield gap of maize (Zea mays L.). 【Method】 To clarify the individual contribution rate of main management factors to maize yield, the present study analyzed data from 114 literatures published after 2000, which focused on crowding tolerance of hybrids, plant density, soil tillage method, nutrient management and leaf disease control in spring maize production of North China. Meanwhile, a 2-year field study with an incomplete factorial design with foregoing 5 factors was conducted in tow fixed locations, to verify the result of literature review and furtherly assess the priority of management optimization for reducing yield gap. 【Result】 The results of literature review was consistent with that of management-factor alternative test in field. The priority of 5 management factors was plant density, nutrient management, crowding tolerance of hybrids, and leaf disease control and soil tillage method, which contributed to yield by 12.6%, 9.2%, 6.7%, 6.3% and 5.5%, respectively. Similarly, the contribution rates to PFPN of them were 16.7%, 4.1%, 3.4%, 3.8% and 3.3%, respectively. Yield gap induced by each management factor was mainly attributed to mass productivity and sink capacity, which were initially increased along with mean leaf area index (MLAI). When MLAI exceeded optimum value, enhancing radiation efficiency and grain producing efficiency by optimizing assimilative capacity was of great importance for closing yield gap.【Conclusion】Concurrent enhancing yield and resource use efficiency by 15% to 20% could be reached easily through optimizing plant density and nutrient management. However, synchronously enhancing yield and resource use efficiency by more than 30% to 50%, four or all five management factors should be optimized systematically.

Key words: spring maize, management factors, yield gap, priority order

Table 1

Treatments of incomplete factorial design with 5 cultivated factors for field experiment"

处理 Treatment 栽培措施因子 Cultivation factor
对照模式
CK
增减措施
Supplemented or withheld
品种
Variety
密度
Population
土壤耕作
Tillage
养分管理
Fertilization
喷杀菌剂
Fungicide
农户模式FP 常规Conventional
Low
浅旋
Shallow rotary
一炮轰施肥
Single basal fertilization

None
+ 品种
Variety
耐密
Crowd tolerance

Low
浅旋
Shallow rotary
一炮轰施肥
Single basal fertilization

None
+ 种植密度
Population
常规Conventional
High
浅旋
Shallow rotary
一炮轰施肥
Single basal fertilization

None
+ 土壤耕作
Tillage
常规Conventional
Low
深耕培肥
Deep ploughing with manure
一炮轰施肥
Single basal fertilization

None
+ 养分管理 Fertilization 常规Conventional
Low
浅旋
Shallow rotary
优化施肥
Optimized fertilization

None
+ 防病
Fungicide
常规Conventional
Low
浅旋
Shallow rotary
一炮轰施肥
Single basal fertilization
喷施With
综合高产HT 耐密
Crowd tolerance

High
深耕培肥
Deep ploughing with manure
优化施肥
Optimized fertilization
喷施With
- 品种
Variety
常规Conventional
High
深耕培肥
Deep ploughing with manure
优化施肥
Optimized fertilization
喷施With
- 种植密度
Population
耐密
Crowd tolerance

Low
深耕培肥
Deep ploughing with manure
优化施肥
Optimized fertilization
喷施With
- 土壤耕作
Tillage
耐密
Crowd tolerance

High
浅旋
Shallow rotary
优化施肥
Optimized fertilization
喷施With
- 养分管理Fertilization 耐密
Crowd tolerance

High
深耕培肥
Deep ploughing with manure
一炮轰施肥
Single basal fertilization
喷施With
- 防病
Fungicide
耐密
Crowd tolerance

High
深耕培肥
Deep ploughing with manure
优化施肥
Optimized fertilization

None

Fig. 1

Responses of yield (a) and per-plant yield (b) of different crowding tolerance maize hybrids to plant density"

Fig. 2

Comparison of yield variation of maize under different soil tillage methods (a) and different tillage depth (b) The solid line in the boxplot represents the median; The dotted line represents the average; The bottom of the box represents the upper and lower quartile. The same as below"

Fig. 3

Effects of different nutrient managements (a) and strobilurin fungicide application (b) on grain yield of maize"

Table 2

Effect of management factors on yield gap and its contribution rate to grain yield of maize"

对照
模式
Control
增减措施因子
Supplemented or
withheld
包头 Baotou 赤峰 Chifeng 平均值 Average
产量差
Yield gap
(t·hm-2)
贡献率
Contribution rate (%)
产量差
Yield gap
(t·hm-2)
贡献率
Contribution rate (%)
产量差
Yield gap
(t·hm-2)
贡献率
Contribution rate (%)
农户模式FP 较FP增减 Compared with FP
+ 土壤耕作Tillage 0.6 4.6 0.3 3.5 0.4 4.0
+ 养分管理Fertilization 1.4* 10.7* 0.8 7.8 1.1 9.2
+ 品种Variety 0.7 5.1 0.5 5.1 0.6 5.1
+ 种植密度Population 2.1* 16.2* 1.5* 15.3* 1.8* 15.7*
+ 防病Fungicide 0.6 5.0 0.4 3.6 0.5 4.3
综合高产HT 较HT增减 Compared with HT
- 土壤耕作Tillage -0.5 -3.0 -0.3 -2.1 -0.4 -2.6
- 养分管理Fertilization -1.1* -7.6* -0.9 -7.1 -1.0 -7.4
- 品种Variety -0.5 -3.0 -0.4 -3.7 -0.5 -3.3
- 种植密度Population -2.0* -13.4* -1.7* -13.8* -1.9* -13.6*
- 防病Fungicide -0.6 -3.6 -0.4 -3.1 -0.5 -3.3
FP vs HT 2.3* 15.7* 2.2* 19.8* 2.3* 17.8*

Fig. 4

The relationship of maize yield gap to gaps of yield properties"

Table 3

Magnitude and contribution rate of different management factors to yield gap and PFPN of maize"

优先序
Priority
因素
Factor
产量差
Yield gap (t·hm-2)
对产量贡献率
Contribution rate to yield (%)
对PFPN贡献率
Contribution rate to PFPN (%)
文献综述
References
田间试验
Field test
平均值
Average
文献综述
Reference
田间试验
Field test
平均值
Average
田间试验
Field test
1 种植密度 Population 1.4 1.9 1.7 10.6 14.7 12.6 16.7
2 养分管理 Fertilization 1.0 1.0 1.0 10.1 8.3 9.2 4.1
3 品种 Variety 1.1 0.5 0.8 9.3 4.2 6.7 3.4
4 防病 Fungicide 1.0 0.5 0.7 8.9 3.8 6.3 3.8
5 土壤耕作 Tillage 0.8 0.4 0.6 7.7 3.3 5.5 3.3
[1] JONATHAN A F, NAVIN R, KATE A B, EMILY S C, JAMES S G, MATT J, NATHANIEL D M, CHRISTINE O, DEEPAK K R, PAUL C W, CHRISTIAN B, ELENA M B, STEPHEN R C, JASON H, CHAD M, STEPHEN P, JOHAN R, JOHN S, STEFAN S, DAVID T, DAVID P M. Solutions for a cultivated planet. Nature, 2011,478(7):369-337.
doi: 10.1038/nature10511
[2] LOBELL D B, CASSMAN K G, FIELD C B. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment & Resources, 2009,34(1):179-204.
[3] 刘保花, 陈新平, 崔振岭, 孟庆峰, 赵明. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015,23(5):525-534.
LIU B H, CHEN X P, CUI Z L, MENG Q F, ZHAO M. Research advance in yield potential and yield gap of three major cereal crops. Chinese Journal of Eco-Agriculture, 2015,23(5):525-534. (in Chinese)
[4] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013,143(1):91-97.
doi: 10.1016/j.fcr.2012.09.023
[5] 李雅剑, 王志刚, 高聚林, 孙继颖, 于晓芳, 胡树平, 余少波, 梁红伟, 裴宽. 基于密度联网试验和Hybrid-Maize模型的内蒙古玉米产量差和生产潜力评估. 中国生态农业学报, 2016,24(7):935-943.
LI Y J, WANG Z G, GAO J L, SUN J Y, YU X F, HU S P, YU S B, LIANG H W, PEI K. Understanding yield gap and production potential based on networked variety density tests and Hybrid-Maize model in maize production areas of Inner Mongolia. Chinese Journal of Eco-Agriculture, 2016,24(7):935-943. (in Chinese)
[6] 杨晓光, 刘志娟. 作物产量差研究进展. 中国农业科学, 2014,47(14):2731-2741.
doi: 10.3864/j.issn.0578-1752.2014.14.004
YANG X G, LIU Z J. Advances in research on crop yield gaps. Scientia Agricultura Sinica, 2014,47(14):2731-2741. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.14.004
[7] 刘建刚, 褚庆全, 王光耀, 陈阜, 张耀耀. 基于DSSAT模型的氮肥管理下华北地区冬小麦产量差的模拟. 农业工程学报, 2013,29(23):124-129.
LIU J G, CHU Q Q, WANG G Y, CHEN F, ZHANG Y Y. Simulating yield gap of winter wheat in response to nitrogen management in North China Plain based on DSSAT model. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(23):124-129. (in Chinese)
[8] 刘建刚, 王宏, 石全红, 陶婷婷, 陈阜, 褚庆全. 基于田块尺度的小麦产量差及生产限制因素解析. 中国农业大学学报, 2012,17(2):42-47.
LIU J G, WANG H, SHI Q H, TAO T T, CHEN F, CHU Q Q. Analysis of yield gap and limiting factors for wheat on the farmland. Journal of China Agricultural University, 2012,17(2):42-47. (in Chinese)
[9] ZHANG W F, CAO G X, LI X, ZHANG H Y, WANG C, LIU Q Q, CHEN X P, CUI Z L, SHEN J B, JIANG R F, MI G H, MIAO Y X, ZHANG F S, DOU Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016,537(7):622-671.
doi: 10.1038/537622a
[10] MATIAS L R, LAURA F G, ADAM S H, JULIANN R S, FREDERICK E B. Evaluating management factor contributions to reduce corn yield gaps. Agronomy Journal, 2015,107(2):495-505.
doi: 10.2134/agronj14.0355
[11] 李少昆, 王崇桃. 玉米生产技术创新·扩散. 北京: 科学出版社, 2010.
LI S K, WANG C T. Maize Production Tech-Niques: Innovation and Transfer. Beijing: Science Press, 2010. (in Chinese)
[12] 杨锦忠, 张洪生, 杜金哲. 玉米产量-密度关系年代演化趋势的Meta分析. 作物学报, 2013,39(3):515-519.
doi: 10.3724/SP.J.1006.2013.00515
YANG J Z, ZHANG H S, DU J Z. Meta-analysis of evolution trend from 1950s to 2000s in the relationship between crop yield and plant density in maize. Acta Agronomica Sinica, 2013,39(3):515-519. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00515
[13] DOBERMANN A, ARKEBAUER T J, CASSMAN K G, LINDQUIST J L, WALTERS D T, YANG H S, AMOS B, BINDER D L, TEICHMEIER G J. Understanding corn yield potential and optimal soil productivity in irrigated corn systems//SCHLEGEL A J. Proceeding of Great Plains Soil Fertility Conference. Denver, Colorado, 2002: 260-272.
[14] BELOW F E. The seven wonders of the corn yield world, 2018[2020-04-12]. http://cropphysiology.cropsci.illinois.edu/research/seven_wonders.html.
[15] CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, ROMHELD V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the USA, 2011,108(16):6399-6404.
doi: 10.1073/pnas.1101419108 pmid: 21444818
[16] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017,50(11):1960-1972.
doi: 10.3864/j.issn.0578-1752.2017.11.002
MING B, XIE R Z, HOU P, LI L L, WANG K R, LI S K. Changes of maize planting density in China. Scientia Agricultura Sinica, 2017,50(11):1960-1972. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.002
[17] CASAL J J, EREGIBUS V A, SANCHEZ R A. Variations in tiller dynamics and morphology in Lolium multiflorum Lam vegetative and reproductive plants as affected by differences in red/far-red irradiation. Annals of Botany, 1985,56(4):553-559.
doi: 10.1093/oxfordjournals.aob.a087040
[18] 张宾, 赵明, 董志强, 陈传永, 孙锐. 作物产量"三合结构"定量表达及高产分析. 作物学报, 2007,33(10):1674-1681.
ZHANG B, ZHAO M, DONG Z Q, CHEN C Y, SUN R. “Three combination structure” quantitative expression and high yield analysis in crops. Acta Agronomica Sinica, 2007,33(10):1674-1681. (in Chinese)
[19] 赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006,32(10):1566-1573.
ZHAO M, LI J G, ZHANG B, DONG Z Q, WANG M Y. The compensatory mechanism in exploring crop production potential. Acta Agronomica Sinica, 2006,32(10):1566-1573. (in Chinese)
[20] 刘开昌, 王庆成, 张秀清, 王春英, 张海林. 玉米叶片生理特性对密度的反应与耐密性. 山东农业科学, 2000(1):9-11.
LIU K C, WANG Q C, ZHANG X Q, WANG C Y, ZHANG H L. Responses of leaf physiological traits to density and density tolerance of new maize hybrids. Shandong Agricultural Sciences, 2000(1):9-11. (in Chinese)
[21] 李宗新, 王庆成, 刘开昌, 刘霞, 张慧. 不同粒重类型玉米品种耐密性的群体库源特征研究. 玉米科学, 2008,16(4):91-95.
LI Z X, WANG Q C, LIU K C, LIU X, ZHANG H. Population sink-source on density-tolerance of maize in different kernel-weight types. Journal of Maize Sciences, 2008,16(4):91-95. (in Chinese)
[22] MUELLER N D, GERBER J S, JOHNSTON M, RAY D K, RAMANKUTTY N, FOLEY J A. Closing yield gaps through nutrient and water management. Nature, 2012,490(7419):254-257.
pmid: 22932270
[23] 刘淑云, 董树亭, 赵秉强, 李秀英, 张振山. 长期施肥对夏玉米叶片氮代谢关键酶活性的影响. 作物学报, 2007,33(2):278-283.
LIU S Y, DONG S T, ZHAO B Q, LI X Y, ZHANG Z S. Effects of long-term fertilization on activities of key enzymes related to nitrogen metabolism (ENM) of maize leaf. Acta Agronomica Sinica, 2007,33(2):278-283. (in Chinese)
[24] 侯云鹏, 孔丽丽, 李前, 尹彩侠, 秦裕波, 杨建, 于雷, 张磊, 谢佳贵. 不同施氮水平对春玉米氮素吸收、转运及产量的影响. 玉米科学, 2015,23(3):136-142.
HOU Y P, KONG L L, LI Q, YIN C X, QIN Y B, YANG J, YU L, ZHANG L, XIE J G. Effect of different nitrogen rates on nitrogen absorption, translocation and yield of spring maize. Journal of Maize Sciences, 2015,23(3):136-142. (in Chinese)
[25] CUI Z L, CHEN X P, MIAO Y X, ZHANG F S, SUN Q P, SCHRODER J, ZHANG H L, LI J L, SHI L W, XU J F, YE Y L, LIU C S. On-Farm evaluation of the improved soil N-based nitrogen management for summer maize in north China Plain. Agronomy Journal, 2008,100:517-525.
doi: 10.2134/agronj2007.0194
[26] 孙冬梅, 顾明. 不同施氮方式对玉米农艺性状及产量的影响. 吉林农业科技学院学报, 2013,22(3):8-11.
SUN D M, GU M. Effects of different nitrogen application methods on agronomic characters and yield of maize. Jilin Agricultural Science and Technology University, 2013,22(3):8-11. (in Chinese)
[27] 蔡红光, 米国华, 张秀芝, 任军, 冯国忠, 高强. 不同施肥方式对东北黑土春玉米连作体系土壤氮素平衡的影响. 植物营养与肥料学报, 2012,18(1):89-97.
doi: 10.11674/zwyf.2012.11213
CAI H G, MI G H, ZHANG X Z, REN J, FENG G Z, GAO Q. Effect of different fertilizing methods on nitrogen balance in the black soil for continuous maize production in northeast China. Plant Nutrition and Fertilizer Science, 2012,18(1):89-97. (in Chinese)
doi: 10.11674/zwyf.2012.11213
[28] 李睿. 北方玉米叶部病害发生情况及防治技术. 科学种养, 2016(5):97.
LI R. Disease occurrence and control technology of maize leaf in northern China. Scientific Farming, 2016(5):97. (in Chinese)
[29] 王金金. 甲氧基丙烯酸酯类农药残留分析前处理方法的研究应用[D]. 武汉: 华中师范大学, 2015.
WANG J J. Study of sample pretreatment method for strobilurin pesticides residue analysis. Wuhan: Central China Normal University, 2015. (in Chinese)
[30] 思彬彬, 杨卓. 甲氧基丙烯酸酯类杀菌剂作用机理研究进展. 世界农药, 2007,29(6):5-9.
SI B B, YANG Z. Studies on mechanism and resistance to Strobilurin fungicides. World Pesticides, 2007,29(6):5-9. (in Chinese)
[31] 张晓翔, 刘微, 范文忠. 不同杀菌剂防治玉米大斑病田间药效试验. 吉林农业, 2016(21):70-71.
ZHANG X X, LIU W, FAN W Z. Field efficacy trials of different fungicides against maize macular disease. Jilin Agriculture, 2016(21):70-71. (in Chinese)
[32] 关成宏, 董爱书, 胡新, 杨芳. 几种杀菌剂对黑龙江高寒地区玉米大斑病的防治效果. 农药, 2015,54(2):133-135.
GUAN C H, DONG A S, HU X, YANG F. Control effect of several kinds of bactericides on Exserohilum turcicum in cold area of Heilongjiang province. Agrochemicals, 2015,54(2):133-135. (in Chinese)
[33] 刘树艳. 两种杀菌剂在玉米不同品种间防病及增产效果比较. 农业科技通讯, 2014 (11):58-60.
LIU S Y. The effect of two kinds of fungicides on the prevention and stimulation of different varieties maize. Bulletin of Agricultural Science and Technology, 2014 (11):58-60. (in Chinese)
[34] 周楠, 周祥利, 任伟, 谢倩, 陶洪斌, 王璞. 凯润对不同密度下夏玉米根叶衰老及子粒灌浆的影响. 玉米科学, 2015,23(2):69-74.
ZHOU N, ZHOU X L, REN W, XIE Q, TAO H B, WANG P. Influence of spraying cabrio under different densities on delaying summer maize root and leaf senescence and grain filling. Maize Science, 2015,23(2):69-74. (in Chinese)
[35] 赵亚丽, 郭海滨, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米轮作系统中干物质生产和水分利用效率的影响. 作物学报, 2014,40(10):1797-1807.
doi: 10.3724/SP.J.1006.2014.01797
ZHAO Y L, GUO H B, XUE Z W, MU X Y, LI C H. Effects of tillage and straw returning on biomass and water use efficiency in a winter wheat and summer maize rotation system. Acta Agronomica Sinica, 2014,40(10):1797-1807. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01797
[36] 张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波. 深松对春玉米根系形态特征和生理特性的影响. 农业工程学报, 2015,31(5):78-84.
ZHANG R F, YANG H S, GAO J L, ZHANG Y Q, WANG Z G, FAN X Y, BI W B. Effect of subsoiling on root morphological and physiological characteristics of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):78-84. (in Chinese)
[37] 蔡丽君, 边大红, 田晓东, 曹立燕, 崔彦宏. 耕作方式对土壤理化性状及夏玉米生长发育和产量的影响. 华北农学报, 2014,29(5):232-238.
doi: 10.7668/hbnxb.2014.05.039
CAI L J, BIAN D H, TIAN X D, CAO L Y, CUI Y H. Effect of tillage methods on soil physical and chemical properties, growth and grain yield of summer maize. Acta Agriculturae Boreali-Sinica, 2014,29(5):232-238. (in Chinese)
doi: 10.7668/hbnxb.2014.05.039
[38] CHRISTOPHER R B, JUDITH B S, TERRY D W, JASON C B, LAUREN M M, TONY J V. Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil & Tillage Research, 2010,106:227-240.
[39] 朴琳, 任红, 展茗, 曹凑贵, 齐华, 赵明, 李从锋. 栽培措施及其互作对北方春玉米产量及耐密性的调控作用. 中国农业科学, 2017,50(11):1982-1994.
doi: 10.3864/j.issn.0578-1752.2017.11.004
PIAO L, REN H, ZHAN M, CAO C G, QI H, ZHAO M, LI C F. Effect of cultivation measures and their interactions on grain yield and density resistance of spring maize. Scientia Agricultura Sinica, 2017,50(11):1982-1994. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.004
[1] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[2] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[3] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[4] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[5] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[6] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[7] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
[8] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[9] YuXian CAO,JianQiang ZHU,Jun HOU. Yield Gap of Ratoon Rice and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(4): 707-719.
[10] HUANG QiuWan,LIU ZhiJuan,YANG XiaoGuang,BAI Fan,LIU Tao,ZHANG ZhenTao,SUN Shuang,ZHAO Jin. Analysis of Suitable Irrigation Schemes with High-Production and High-Efficiency for Spring Maize to Adapt to Climate Change in the West of Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4470-4484.
[11] CAO YuJun,YAO FanYun,WANG Dan,LÜ YanJie,LIU XiaoDan,WANG LiChun,WANG YongJun,LI CongFeng. Effects of Different Agronomy Factors on Yield Gap and Nitrogen Efficiency Gap of Spring Maize Under Rain-Fed Conditions [J]. Scientia Agricultura Sinica, 2020, 53(15): 3036-3047.
[12] PIAO Lin,LI Bo,CHEN XiChang,DING ZaiSong,ZHANG Yu,ZHAO Ming,LI CongFeng. Regulation Effects of Improved Cultivation Measures on Canopy Structure and Yield Formation of Dense Spring Maize Population [J]. Scientia Agricultura Sinica, 2020, 53(15): 3048-3058.
[13] BAI YanWen,ZHANG HongJun,ZHU YaLi,ZHENG XueHui,YANG Mei,LI CongFeng,ZHANG RenHe. Responses of Canopy Radiation and Nitrogen Distribution, Leaf Senescence and Radiation Use Efficiency on Increased Planting Density of Different Variety Types of Maize [J]. Scientia Agricultura Sinica, 2020, 53(15): 3059-3070.
[14] JIANG Ying,WANG ZhengYu,LIAN HongLi,WANG MeiJia,SU YeHan,TIAN Ping,SUI PengXiang,MA ZiQi,WANG YingYan,MENG GuangXin,SUN Yue,LI CongFeng,QI Hua. Effects of Tillage and Straw Incorporation Method on Root Trait at Silking Stage and Grain Yield of Spring Maize in Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3071-3082.
[15] ZHANG Qi,WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi,LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!