Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (13): 2595-2603.doi: 10.3864/j.issn.0578-1752.2020.13.008

• PROCESS AND MECHANISM OF TEMPERATE MEADOW STEPPE DEGRADATION • Previous Articles     Next Articles

Effect of Fairy Rings on Soil Respiration in Hulunber Meadow Steppe

FAN KaiKai,TONG XuZe,YAN YuChun,XIN XiaoPing,WANG Xu()   

  1. National Hulunber Grassland Ecosystem Observation and Research Station/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-09-04 Accepted:2020-02-19 Online:2020-07-01 Published:2020-07-16
  • Contact: Xu WANG E-mail:wangxu01@caas.cn

Abstract:

【Objective】 Circles of mushrooms coupled with regular rings or arcs of greener plants are commonly observed in grassland. This pattern is often referred to as ‘fairy rings’. Indeed, fairy ring funguses not only affect plant growth but also greatly modify the soil quality and microbial populations, thus indirectly have impact on soil respiration. The aim of this study was to observe soil respiration of the fairy rings to accurately estimate greenhouse gas emissions from grassland soil. 【Method】 Measurement of soil respiration of the outside (OUT), on (ON) and inside (IN) the rings was conducted by Li-8100 automatic instrument. Meanwhile, soil temperature and soil water content were measured by the monitoring instrument CJTP-101 and TDR 300. The biomass and soil nutrients through field investigation on fairy rings were also measured. 【Result】 The average aboveground biomass of ON zone was 246.2 g·m -2, significantly higher than that of IN (153.1 g·m-2) and OUT (132.6 g·m-2) zones, which was 1.62 times of IN zone and 1.86 times of OUT zone. The average belowground biomass of ON zone was 763.9 g·m-2, less than that of IN (927.4 g·m-2) and OUT (824.8 g·m-2) zones, and there was no significant difference (P>0.05) of the belowground biomass among them. The litter of ON zone was 17.9 g·m-2, higher than that of IN (13.1 g·m-2) and OUT (9.6 g·m-2) zones, and there was no significant difference in different zones (P>0.05). The available nitrogen and phosphorus of ON zone were 52.2 and 7.8 mg?kg-1, significantly higher than that in IN and OUT zones (P>0.05), respectively. The available nitrogen was 42% and 40% higher than the IN and OUT zones, and the available phosphorus was 53% and 59% higher than the IN and OUT zones, respectively. The organic matter and total nitrogen of ON zone were 3 560.1 and 319.8 mg?kg-1, respectively, less than that in IN and OUT zones. The total phosphorus of ON zone was 502.2 mg?kg-1, higher than the IN and OUT zones, but the difference was not significant (P>0.05). The average soil respiration rate (SRR) of ON zone was 5.26 μmol·m-2·s-1, significantly higher than IN and OUT zones which were 4.07 and 4.17 μmol·m -2·s-1, respectively. The significantly relationship were found between the SRR and soil temperature and soil water content (P<0.01). 【Conclusion】 It was suggested that the soil temperature and soil water content were not the dominant factors. And the enhancement of soil respiration in the ON zone was related to the higher available nutrients and stronger microbial and enzyme activities.

Key words: fairy rings, grassland ecosystem, soil respiration, temperature, soil water content, soil nutrient

Fig. 1

Quadrat setting"

Fig. 2

Comparison of aboveground biomass, belowground biomass and litter in fairy rings N, S, W indicate inside, on and outside the fairy rings, respectively. Different lowercase letters indicate significant difference among treatments (P<0.05). The same as below"

Table 1

Relationship between soil respiration and biomass"

项目
Project
土壤呼吸
Soil respiration
地上生物量
Aboveground biomass
地下生物量
Belowground biomass
枯落物
Litter
土壤呼吸Soil respiration 1.00
地上生物量Aboveground biomass 0.13 1.00
地下生物量Belowground biomass 0.23 -0.12 1.00
枯落物Litter 0.54** 0.30* 0.46** 1.00

Table 2

Soil nutrient surrounding the fairy ring"

蘑菇圈位置
Zone
有机质
Organic matter (mg?kg-1)
全氮
Total
nitrogen (mg?kg-1)
全磷
Total phosphorus (mg?kg-1)
速效氮
Available nitrogen
(mg?kg-1)
速效磷
Available phosphorus
(mg?kg-1)
速效钾
Available potassium
(mg?kg-1)
圈内IN 3685.4±107.9 321.5±92.9 494.3±123.2 36.8±2.3b 5.1±0.3b 303.8±8.2
圈上ON 3560.1±163.3 319.8±63.2 502.2±138.6 52.2±5.8a 7.8±0.7a 331.9±12.3
圈外OUT 3572.4±111.6 321.3±94.8 486.9±171.3 37.2±4.0b 4.9±0.4b 310.6±12.1

Fig. 3

Soil respiration, soil temperature and soil water content in fairy rings"

Fig. 4

The relationship among soil respiration rate, soil temperature, and soil water content"

[1] SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000,48(1):7-20.
[2] SINGH J S, GUPTA S R. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 1977,43(4):449-528.
[3] 唐燕飞, 王国兵, 阮宏华. 土壤呼吸对温度的敏感性研究综述. 南京林业大学学报(自然科学版), 2008,32(1):124-128.
TANG Y F, WANG G B, RUAN H H. A review on the sensitivity of soil respiration to temperature. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008,32(1):124-128. (in Chinese)
[4] RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995,9(1):23-36.
[5] 陶波, 葛全胜, 李克让, 邵雪梅. 陆地生态系统碳循环研究进展. 地理研究, 2001,20(5):564-575.
TAO B, GE Q S, LI K R, SHAO X M. Progress in the studies on carbon cycle in terrestrial ecosystem. Geographical Research, 2001,20(5):564-575. (in Chinese)
[6] REEDER J D, SCHUMAN G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002,116(3):457-463.
[7] JONES M B, DONNELLY A. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytologist, 2004,164(3):423-439.
[8] JONES S K, REES R M, KOSMAS D, BALL B C, SKIBA U M. Carbon sequestration in a temperate grassland; management and climatic controls. Soil Use & Management, 2006,22(2):132-142.
[9] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304(5677):1623-1627.
[10] 鲍芳, 周广胜. 中国草原土壤呼吸作用研究进展. 植物生态学报, 2010,34(6):713-726.
BAO F, ZHOU G S. Review of research advances in soil respiration of grassland in China. Chinese Journal of Plant Ecology, 2010,34(6):713-726. (in Chinese)
[11] 赵吉, 邵玉琴. 草原蒙古口蘑蘑菇圈的特殊生态现象观察. 中国食用菌, 2002,21(6):25-26.
ZHAO J, SHAO Y Q. Ecological phenomena observation on the fairy ring of Tricholoma mongolicus Lmai in grassland. Edible Fungi of China, 2002,21(6):25-26. (in Chinese)
[12] SHANTZ H L, PIEMEISEL R L. Fungus fairy rings in Eastern Colorado and their effect on vegetation. Journal of Agricultural Research, 1917,11(5):191-245.
[13] 关世英, 阎伟, 常金保, 陈立红. 白蘑菇(Tricholoma mongolicum)圈对羊草(Leymus chinensis)生长的影响. 内蒙古大学学报(自然科学版), 1997,28(2):261-264.
GUAN S Y, YAN W, CAHNG J B, CHEN L H. The effect of Tricholoma monggolicum circle on Leymus chinensis growth. Acta Scientiarum Naturalium Universitatis Neimongol (Natural Science Edition), 1997,28(2):261-264. (in Chinese)
[14] 关世英, 阎伟, 常金保, 陈立红. 白蘑圈对牧草产量影响的研究. 中国草地学报, 1997,45(6):33-35, 46.
GUAN S Y, YAN W. A study on enfection of the herbage yield by tricholoma gambosum circle. Grassland of China, 1997,45(6):33-35, 46. (in Chinese)
[15] 赵吉, 孙维, 柳海鹰, 廖仰南. 草原蘑菇圈土壤生物化学活性的比较研究. 内蒙古大学学报(自然科学版), 1999,30(1):96-100.
ZHAO J, SUN W, LIU H Y, LIAO Y N. A comparative study on the soil biochemical activities of the fairy rings in grassland. Acta Scientiarum Naturalium Universitatis Neimongol (Natural Science Edition), 1999,30(1):96-100. (in Chinese)
[16] 陈立红, 阎伟, 刘建. 草原蘑菇圈对牧草长势影响的初步分析. 西北植物学报, 2002,22(6):1421-1425.
CHEN L H, YAN W, LIU J. Preliminary study of the effects of fairy ring of grassland on the growth of herbage. Acta Botanica Boreali- Occidentalia Sinica, 2002,22(6):1421-1425. (in Chinese)
[17] 陈立红, 闫伟. 草原黑蘑(Agaricus arvensis)圈对牧草生产的影响. 植物学报, 2003,20(1):94-97.
CHEN L H, YAN W. The effects of fairy ring of Agaricus arvensis of grassland on the growth of herbage. Chinese Bulletin of Botany, 2003,20(1):94-97. (in Chinese)
[18] 赵吉, 邵玉琴, 包青海. 草原蘑菇圈的土壤-植物系统研究. 生态学杂志, 2003,22(5):43-46.
ZHAO J, SHAO Y Q, BAO H Q. Soil-vegetation system surround the fairy ring in steppe. Chinese Journal of Ecology, 2003,22(5):43-46. (in Chinese)
[19] 赵勇斌, 胡美蓉, 冷观悌, 赵楠. 蘑菇圈的初步研究. 微生物学通报, 1985,12(2):94-97.
ZHAO Y B, HU M R, LENG G T, ZHAO N. A preliminary study on the mushroom ring. Microbiology China, 1985,12(2):94-97. (in Chinese)
[20] 刘振魁. 高寒草甸白蘑菇圈与圈外植物及土壤的比较. 草业科学, 1997,14(3):68-70.
LIU Z K. A comparison between mushroom sphere and plants outside the sphere and soil in alpine meadow. Pratacultural Science, 1997,14(3):68-70. (in Chinese)
[21] 裴海昆, 刘育红. 高寒草甸“蘑菇圈”对牧草营养成分的影响. 青海草业, 1999(1):9-11.
PEI H K, LIU Y H. Effect of “fairy rings” on forage nutrition in alpine meadow. Qinghai Grass Industry, 1999(1):9-11. (in Chinese)
[22] 裴海昆, 刘育红. 高寒草甸“蘑菇圈”对土壤营养成分的影响. 青海大学学报(自然科学版), 1998,16(1):28-29.
PEI H K, LIU Y H. Effect of “fairy rings” on soil nutrients in alpine meadow. Journal of Qinghai Normal University (Natural Science Edition), 1998,16(1):28-29. (in Chinese)
[23] 刁治民, 朱锦福, 熊亚, 马寿福. 青海高寒草甸“蘑菇圈”的研究. 青海师范大学学报(自然科学版), 2004,16(1):75-78.
DIAO Z M, ZHU J F, XIONG Y, MA S F. Study on “fairy rings” of alpine meadow in Qinghai province. Journal of Qinghai Normal University (Natural Science Edition), 2004,16(1):75-78. (in Chinese)
[24] 田绍义, 黄文胜. 河北坝上蒙古口蘑生态观察. 真菌学报, 1992,11(2):163-166.
TIAN S Y, HUANG W S. Investigation on the growth and development of Tricholoma mongolicum Imai in nature. Acta Mycologica Sinica, 1992,11(2):163-166. (in Chinese)
[25] 赵吉, 邵玉琴, 包青海, 贾复珠. 蒙古口蘑(Tricholoma mongolicum Imai.)蘑菇圈及其两侧的土壤细菌分布的比较研究. 内蒙古大学学报(自然科学版), 1999,30(1):101-102.
ZHAO J, SHAO Y Q, BAO Q H, JIA F Z. A comparative study on the distribution of soil bacteria in Tricholoma mongolicum Imai and its two sides. Acta Scientiarum Naturalium Universitatis Neimongol (Natural Science), 1999,30(1):101-102. (in Chinese)
[26] 邵玉琴, 赵吉. 蒙古口蘑蘑菇圈土壤微生物类群的分布研究. 内蒙古大学学报(自然科学版), 2000,31(1):81-83.
SHAO Y Q, ZHAO J. A Study on soil microbial distribution in the fairy rings of Tricholoma mongolicum. Acta Scientiarum Naturalium Universitatis Neimongol (Natural Science Edition), 2000,31(1):81-83. (in Chinese)
[27] 邵玉琴, 赵吉. 草原蘑菇圈中土壤微生物类群数量的动态分布研究. 中国草地学报, 2000(1):47-50.
SHAO Y Q, ZHAO J. Study on dynamic distribution of soil microbial number of the fariy ring in steppe. Study on dynamic distribution of soil microbial number of the fariy ring in steppe.Grassland of China, 2000(1):47-50. (in Chinese)
[28] 王启兰, 姜文波, 陈波. 黄绿蜜环菌蘑菇圈生长对土壤及植物群落的影响. 生态学杂志, 2005,24(3):269-272.
WANG Q L, JIANG W B, CHEN B. Effects of fairy ring growth of Armillaria luteovirens on soil fertility and plant community. Chinese Journal of Ecology, 2005,24(3):269-272. (in Chinese)
[29] 杜广红. 不同施肥处理对黄淮海地区土壤微生物区系的影响[D]. 北京: 中国农业科学院, 2012.
DU G H. Effects of different fertilizing treatments on the microbial flora in the Huang-Huai-Hai area[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[30] CHAO Y, ZHANG Y J, RONG Y P, BEI Y X, WEI Y Q, LIU N. Temporal variation of Q 10 values in response to changes in soil physiochemical properties caused by fairy rings. European Journal of Soil Biology, 2018,86:42-48.
[31] BONANOMI G, INCERTI G, ALLEGREZZA M. Assessing the impact of land abandonment, nitrogen enrichment and fairy-ring fungi on plant diversity of Mediterranean grasslands. Biodiversity & Conservation, 2013,22(10):2285-2304.
[32] CAESAR-TONTHAT T C, ESPELAND E, CAESAR A J, SAINJU U M, LARTEY R T, GASKIN J F. Effects of agaricus lilaceps fairy rings on soil aggregation and microbial community structure in relation to growth stimulation of western wheatgrass ( Pascopyrum smithii) in Eastern Montana Rangeland. Microbial Ecology, 2013,66(1):120-131.
[33] EDWARDS P J. The growth of fairy rings of Agaricus arvensis and their effect upon grassland vegetation and soil Journal of Ecology, 1984,72(2):505-513.
[34] FISHER R F. Nitrogen and phosphorus mobilization by the fairy ring fungus, Marasmius oreades (bolt.) fr. Soil Biology and Biochemistry, 1977,9(4):239-241.
[35] EDWARDS P J. Effects of the fairy ring fungus Agaricus arvensis on nutrient availability in grassland. New Phytologist, 1988,110:377-381.
[36] YANG C, ZHANG F, LIU N, HU J, ZHANG Y J. Changes in soil bacterial communities in response to the fairy ring fungus Agaricus gennadii in the temperate steppes of China. Pedobiologia, 2018,69:34-40.
[37] SPALDING B, DUXBURY J M, STONE E L. Lycopodium fairy rings: Effect on soil respiration and enzymatic activities. Soil Science Society of America Journal, 1975,39(1):65.
[38] 李凌浩, 王其兵, 白永飞, 周广胜, 邢雪荣. 锡林河流域羊草草原群落土壤呼吸及其影响影子的研究. 植物生态学报, 2000,24(6):680-686.
LI L H, WANG Q B, BAI Y F, ZHOU G S, XING X R. Soil respiration of a Leymus chinensis grassland stand in the Xilin river basin as affected by over-grazing and climate. Acta Phytoecologica Sinica, 2000,24(6):680-686. (in Chinese)
[39] 赵巴音那木拉, 红梅, 梁存柱, 包乌云, 张佳鑫. 施肥对内蒙古短花针茅荒漠草原土壤呼吸的影响. 应用生态学报, 2014,25(3):687-694.
ZHAO B Y N M L, HONG M, LIANG C Z, BAO W Y, ZHANG J X. Effect of fertilization on soil respiration in the Stipa breviflora desert steppe of Inner Mongolia. Chinese Journal of Applied Ecology, 2014,25(3):687-694. (in Chinese)
[40] 侯亚红, 王磊, 付小花, 乐毅全. 土壤呼吸对秸秆与秸秆生物炭还田的响应及其微生物机制. 工业微生物, 2014,44(5):7-13.
HOU Y H, WANG L, FU X H, LE Y Q. Response of soil respiration to straw and straw biochar returning and its microbial mechanism. Industrial Microbiology, 2014,44(5):7-13. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[7] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[8] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[9] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[10] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[11] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[12] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[13] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[14] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[15] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!