Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2182-2194.doi: 10.3864/j.issn.0578-1752.2020.11.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Evaluation Method of Spring Maize Waterlogging Disaster in Northeast China Based on Improved Weight Moist Index

LIU Cong1,2,WU YongFeng2(),LIU PingHui1(),LIANG LiJiang2   

  1. 1College of Earth Sciences, East China University of Technology, Nanchang 330000
    2Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, Ministry of Agriculture, Beijing 100081
  • Received:2019-11-07 Accepted:2019-11-18 Online:2020-06-01 Published:2020-06-09
  • Contact: YongFeng WU,PingHui LIU E-mail:wuyongfeng@caas.cn;pinghui_liu@126.com

Abstract:

【Objective】The aim of this study investigated the evaluation methods of spring maize waterlogging disasters in Northeast China, so as to provide a scientific basis for the rational production and management of spring maize in Northeast China under the background of climate change. 【Method】Based on the Weight Moist Index (WMI), the crop water demand, instead of the reference crop evapotranspiration, was used to construct an Improved Weight Moist Index (IWMI). The coupling method of waterlogging disaster events and IWMI during the growth period of spring maize in Northeast China from 1986 to 2015, the normal distribution significance test method based on K-S test, and the estimation method of t-distribution interval were used to determine the thresholds for waterlogging intensity grading of different growth stages in spring maize. The correlation and fitting relationship of soil relative humidity and IWMI, the consistency of the evaluation results on IWMI and WMI and waterlogging disaster statistics results, and the accuracy of the assessment on dynamic process of waterlogging disasters in typical years were analyzed to evaluate the IWMI precision. The spatial pattern of waterlogging at different growth stages of spring maize in Northeast China was analyzed, and then its regular characteristics were revealed. 【Result】 (1) IWMI was significantly correlated with soil relative humidity at different depths (P<0.001). Except for the rapidly developmental period of maize, in the other stages, the maximum correlation coefficient of both appeared at 20 cm depth. Through fitting the IWMI and the soil relative humidity at 20 cm depth based on a Slogistic model, it was found that the maximum coefficient of determination (R 2) appeared in the middle period (0.46), followed by the end period (0.34), the rapidly developmental period (0.31) and the initial growth period (0.21). The minimum root mean square error (RMSE) appeared in the end period (0.49), followed by the middle period (0.51), the initial growth period (0.52), and the rapidly developmental period (0.56). The values of the IWMI corresponding to soil relative humidity of 90% at 20 cm depth were 0.77 in the initial growth period, 1.12 in the rapidly developmental period, 1.21 in the middle period, and 1.25 in the end period. (2) Compared with the disaster diagnosis results in the test samples of the spring maize waterlogging disaster events randomly reserved, the complete accuracy rate and partial accuracy rate of the WMI evaluation results were 26.7% and 66.7%, respectively, while the complete accuracy rate and partial accuracy rate of the IWMI were 66.7% and 93.3%, respectively. (3)Taking the waterlogging disasters during the growth period of spring maize in 1998 in Nenjiang, Baicheng and Shenyang stations as examples, changes of the precipitation, WMI and the IWMI with the days of the year were compared, and it was found that the time of occurrence and intensity level of the waterlogging evaluated by the IWMI were more consistent with the disaster records, and IWMI could also be used to represent the dynamic change of the waterlogging intensity. (4) The frequency of waterlogging of the different intensity levels in spring maize had a great difference. The central part of Heilongjiang, southeastern Jilin, and southeastern Liaoning were high-incidence areas with moderate and above waterlogging, and the middle period was a period of high frequency of moderate and above waterlogging. 【Conclusion】Based on the IWMI, the method of determining the thresholds of waterlogging intensities at different growth stages of spring maize in Northeast China was reliable, which could be used to characterize the actual occurrence of farmland waterlogging. Compared with the WMI, IWMI not only had a higher accuracy, but also was more suitable to track and evaluate the dynamic assess of waterlogging disasters, which was of great significance to reveal the catastrophic mechanism and spatio-temporal evolution of spring maize waterlogging disasters in Northeast China under the background of climate change.

Key words: Northeast China, spring maize, improved weight moist index, waterlogging intensity grade, evaluation

Table 1

Grade classification of crop waterlogging"

强度等级
Grade
持续时间
Duration
过程累积程度指数
CWMI
正常No disaster <10 d ≤10
轻度 Light 10 - 20 d 10 - 30
中度 Moderate 20 - 30 d 30 - 60
重度 Severe >30 d >60

Fig. 1

Change of Kc during the developmental period of spring maize"

Table 2

K-S test values of IWMI sequence and 95% confidence interval of sample average"

生育阶段
Developmental stage
灾害等级
Disaster grade
改进权重湿润指数序列个数
Number of IWMI sequence
K-S正态分布显著性检验值
K-S test value for normal distribution significance
95%置信区间
95% confidence interval
初始生长期
Initial growth period
轻 Light 7 0.5363 0.73-2.92
中 Moderate 8 0.2388 1.49-4.60
重 Severe 18 0.8151 2.53-4.45
快速发育期
Rapidly developmental period
轻 Light 37 1.0000 1.14-1.84
中 Moderate 36 0.8805 1.97-2.48
重 Severe 61 0.5589 2.91-3.61
生育中期
Middle period
轻 Light 47 1.0000 1.26-1.63
中 Moderate 64 1.0000 2.12-2.51
重 Severe 64 0.0618 2.93-3.86
生育后期
End period
轻 Light 13 0.2673 1.26-2.56
中 Moderate 8 1.0000 2.09-2.89
重 Severe 15 0.0523 2.98-4.74

Table 3

Grading of spring maize waterlogging at different stages in Northeast China based on IWMI"

生育阶段
Developmental stage
涝渍强度等级 Waterlogging grade
无涝渍 No waterlogging 轻度 Light 中度 Moderate 重度 Severe
初始生长期Initial growth period ≤0.75 (0.75,1.50] (1.50,2.55] >2.55
快速发育期Rapidly developmental period ≤1.15 (1.15,1.95] (1.95,2.90] >2.90
生育中期Middle period ≤1.25 (1.25,2.10] (2.10,2.95] >2.95
生育后期End period ≤1.25 (1.25,2.10] (2.10,3.00] >3.00

Table 4

Pearson correlation of relative soil moisture and IWMI at different growth stages of spring maize "

土壤相对湿度
Relative soil moisture
初始生长期
Initial growth period
快速发育期
Rapidly developmental period
生育中期
Middle period
生育后期
End period
全生育期
Whole growth period
10 cm 0.479*** 0.533*** 0.529*** 0.460*** 0.480***
20 cm 0.484*** 0.492*** 0.581*** 0.532*** 0.514***
50 cm 0.243*** 0.391*** 0.434*** 0.412*** 0.330***

Fig. 2

Fitting on relative soil moisture at 20 cm depth and IWMI based on the Slogistic model (a), (b), (c) and (d) represent initial growth period, rapidly developmental period, middle period, and end period, respectively. Black solid lines respectively represent fitting curves and the Improved Weight Moist index corresponding to 90% of the 20 cm soil relative humidity in the fitted curve; n is the sample size"

Table 5

Verification and comparison on the indices evaluation results through spring maize waterlogging disaster events"

事件序列
Sequence
发生站点
Station
灾情记录统计结果
Statistical of waterlogging
权重湿润指数评估结果
Evaluation results based on WMI
改进权重湿润指数评估结果
Evaluation results based on IWMI
时间
Time
程度
Degree
时间
Time
程度
Degree
检验情况Inspection 时间
Time
程度
Degree
检验情况Inspection
1 虎林
Hulin
1988.5.14-5.31
Severe
× 5月中-5月下
Mid May-Late May
中、轻
Moderate、light
2 辽中
Liaozhong
1991.7.1-7.31
Severe
7.3-8.5
Severe
7月上-7月下
Early Jul-Mid Jul
重、重、重
Severe、severe、severe
3 同江
Tongjiang
1992.6.1-6.30
Severe
6.8-6.17
Light
× 6月上-6月中
Early Jun-Mid Jun
重、重
Severe、sever
4 鹤岗
Hegang
1994.9.30
Severe
9.20-10.17
Moderate
9月下
Late Sept

severe
5 双阳
Shuangyang
1997.8.21
Light
× 8月下
Late Aug

Light
6 呼玛
Huma
1998.5.21-6.20
Severe
× 5月下-6月中
Late May-Mid Jun
重、重、重
Severe、severe、severe
7 榆树
Yushu
1998.6.28
Light
× ×
8 方正
Fangzheng
2000.8.11-8.20
Light
8.15-8.24
Light
8月中
Mid Aug

Light
9 尚志
Shangzhi
2003.7.27
Moderate
7.26-8.12
Light
7月中
Mid Jul

Moderate
10 肇源
Zhaoyuan
2005.7.12-7.18
Light
7.6-7.17
Light
7月中
Mid Jul

Light
11 通化县
Tonghua
2005.8.14-8.15
Moderate
8.13-8.29
Moderate
8月中
Mid Aug

Severe
12 鸡西
Jixi
2008.8.12
Light
8.12-8.21
Light
8月中
Mid Aug

Light
13 五营
Wuying
2009.6.19-6.21
Severe
6.19-7.10
Severe
6月中-7月上
Mid Jun-Early Jul
重、重、中
Severe、severe、moderate
14 辽源
Lianyuan
2010.7.19-7.24
Severe
7.21-8.11
Moderate
7月下
Late Jul

Severe
15 东丰
Dongfeng
2013.8.14-8.17
Light
8.16-9.7
Moderate
8月中
Mid Aug

Light

Fig. 3

Verification and comparison on waterlogging disaster process assessment results based on the WMI and IWMI In the case of waterlogging events at representative stations of Nenjiang (a), Baicheng (b) and Shenyang (c) during the spring maize growth period in 1998"

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2010- 2018.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2010-2018. (in Chinese)
[2] 周琳 . 东北气候. 北京:气象出版社, 1991: 43-55.
ZHOU L. Climate of Northeast China. Beijing: Meteorological Press, 1991: 43-55. (in Chinese)
[3] 余卫东, 冯利平, 刘荣花 . 玉米涝渍灾害研究进展与展望. 玉米科学, 2013,21(4):143-147.
YU W D, FENG L P, LIU R H . Research progress and prospective of waterlogging on maize. Journal of Maize Sciences, 2013,21(4):143-147. (in Chinese)
[4] PATRICIO G, GUILLERNO V I, MONICA L P, ANTONIO J H, NORA T . Responses to short-term waterlogging during grain filling in sunflower. Field Crop Research, 2007, ( 101):352-363.
[5] 霍治国 . 农业和生物气象灾害. 北京: 气象出版社, 2009.
HUO Z G. Agricultural and Biometeorological Disasters. Beijing: Meteorological Press, 2009. ( in Chinese)
[6] 霍治国, 范雨娴, 杨建莹, 尚莹 . 中国农业洪涝灾害研究进展. 应用气象学报, 2017,28(6):641-653.
HOU Z G, FAN Y X, YANG J Y, SHANG Y . Review on agricultural flood disaster in China. Journal of Applied Meteorological Science, 2017,28(6):641-653. (in Chinese)
[7] 朱建强, 李方敏, 张文英, 陈晓群, 程玲 . 旱作物涝渍排水研究动态分析. 灌溉排水, 2001,20(1):39-42.
ZHU J Q, LI F M, ZHANG W Y, CHEN X Q, CHENG L . Research trends about surface and subsurface waterlogging drainage on dry farmlands. Journal of Irrigation and Drainage, 2001,20(1):39-42. (in Chinese)
[8] 吴启侠, 苏荣瑞, 刘凯文, 朱建强, 杨威, 周元 . 江汉平原四湖流域近50年高温热害及热涝相随特征. 中国农业气象, 2012,33(4):609-614.
WU Q X, SU R R, LIU K W, ZHU J Q, YANG W, ZHOU Y . Hot damage and concomitance of hot and waterlogging in four-lake basin in Jianhan plain during the last 50 years. Chinese Journal of Agrometeorology, 2012,33(4):609-614. (in Chinese)
[9] 吴贤云, 丁一汇, 王琪, 叶成志 . 近40年长江中游地区旱涝特点分析. 应用气象学报, 2006,17(1):19-28.
WU X Y, DING Y H, WANG Q, YE C Z . Characteristics of the recent 40-year flood/drought over the middle reaches of the Yangtze. Journal of Applied Meteorological Science, 2006,17(1):19-28. (in Chinese)
[10] 郁凌华, 赵艳霞 . 黄淮海地区夏玉米生长季内的旱涝灾害分析. 灾害学, 2013,28(2):71-75, 80.
YU L H, ZHAO Y X . Analysis of drought and flood disasters in summer maize growing season in Huang-Huai-Hai region. Journal of Catastrophology, 2013,28(2):71-75, 80. (in Chinese)
[11] 郭锐, 智协飞 . 中国南方旱涝时空分布特征分析. 气象科学, 2009,29(5):598-605.
GUO R, ZHI X F . Spatial-temporal characteristics of the drought and flood in southern China. Scientia Meteorologica Sinica, 2009,29(5):598-605. (in Chinese)
[12] 马晓群, 吴文玉, 张辉 . 利用累积湿润指数分析江淮地区农业旱涝时空变化. 资源科学, 2008,30(3):371-377.
MA X Q, WU W Y, ZHANG H . Analyzing spatial and temporal variations of agricultural drought and waterlog in Jianghuai area through accumulated humidity index. Resources Science, 2008,30(3):371-377. (in Chinese)
[13] 马晓群, 吴文玉, 张辉 . 农业旱涝指标及在江淮地区监测预警中的应用. 应用气象学报, 2009,20(2):186-194.
MA X Q, WU W Y, ZHANG H . The agricultural drought and flood index and its operational application to monitoring and early-warning in Jianghuai area. Journal of Applied Meteorological Science, 2009,20(2):186-194. (in Chinese)
[14] 吴洪颜, 高苹, 谢志清, 曹璐 . 基于春季阴雨过程的冬小麦涝渍指数模型构建与应用. 气象, 2017,43(3):373-377.
WU H Y, GAO P, XIE Z Q, CAO L . Construction and application of waterlogging index model of winter wheat based on spring rainy weather. Meteorological Monthly, 2017,43(3):373-377. (in Chinese)
[15] 秦鹏程, 刘志雄, 万素琴, 苏荣瑞, 黄敬峰 . 基于决策树和随机森林模型的湖北油菜产量限制因子分析. 中国农业气象, 2016,37(6):691-699.
QIN P C, LIU Z X, WAN S Q, SU R R, HUANG J F . Identification of yield limiting factors for oilseed rape in Hubei province based on CART and Random Forest model. Chinese Journal of Agrometeorology, 2016,37(6):691-699. (in Chinese)
[16] 秦鹏程, 刘志雄, 万素琴, 刘敏, 苏荣瑞 . 基于权重湿润指数的作物湿渍害监测与检验. 长江流域资源与环境, 2018,27(2):328-334.
QIN P C, LIU Z X, WAN S Q, LIU M, QIN P C . Application and validation of weighted moisture index in waterlogging disaster monitoring. Resources and Environment in the Yangtze Basin, 2018,27(2):328-334. (in Chinese)
[17] ZAIDI P H, RAFIQUE S, RAI P K, SINGH N N, SRINIVASAN G . Tolerance to excess moisture in maize (Zea may L): Susceptible crop stages and identification of tolerant genotypes. Field Crops Research, 2004,90:189-202.
[18] 房稳静, 武建华, 陈松, 张静, 李晨, 刘瑞 . 不同生育期积水对夏玉米生长和产量的影响试验. 中国农业气象, 2009,30(4):616-618.
FANG W J, WU J H, CHEN S, ZHANG J, LI C, LIU R . Experiment for the impact of flood in different development stages on summer maize growth and yields. Chinese Journal of Meteorology, 2009,30(4):616-618. (in Chinese)
[19] RAI R, SRIVASTAVA K . Effect of waterlogging on some biochemical parameters during early growth stages of maize. Indian Journal of Plant Physiology, 2004,9:65-68.
[20] 王矿, 薛亚峰, 王友贞, 汤广民, 胡铁松, 袁宏伟 . 玉米涝渍胁迫的水分产量关系试验研究. 灌溉排水学报, 2012,31(6):67-70.
WANG K, XUE Y F, WANG Y Z, TANG G M, HU T S, YUAN H W . Experimental study of relationship between water and yield of maize. Journal of Irrigation and Drainage, 2012,31(6):67-70. (in Chinese)
[21] 刘祖贵, 刘战东, 肖俊夫, 南纪琴, 巩文军 . 苗期与拔节期淹涝抑制夏玉米生长发育降低产量. 农业工程学报, 2013,29(5):44-52.
LIU Z G, LIU Z D, XIAO J F, NAN J Q, GONG W J . Waterlogging at seedling and jointing stages inhibits growth and development, reduces yield in summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(5):44-52. (in Chinese)
[22] LU C P, XUE B, LU C Y, WANG T, JIANG L, ZHANG Z L, REN W X . Sustainability investigation of resource-based cities in Northeastern China. Sustainability, 2016,8:1058.
[23] 刘兵, 朱广石, 王平, 金剑, 王光华, 刘晓冰 . 东北农田涝渍成因和治理研究概况. 广东农业科学, 2010,37(11):276-278.
LIU B, ZHU G S, WANG P, JIN J, WANG G H, LIU X B . Research advances on cause of water logging and administrating technologies in farm land of Northeast China. Guangdong Agricultural Sciences, 2010,37(11):276-278. (in Chinese)
[24] 中国科学院长春地理研究所沼泽研究室. 三江平原沼泽. 北京: 科学出版社, 1983: 58-59.
Swamp Research Laboratory , Changchun Institute of Geography, Chinese Academy of Sciences. Sanjiang Plain Marsh. Beijing: Science Press, 1983: 58-59. (in Chinese)
[25] 张桂香, 霍治国, 杨建莹, 张蕾, 吴立, 汪天颖, 杨宏毅 . 江淮地区夏玉米涝渍灾害时空分布特征和风险分析. 生态学杂志, 2017,36(3):747-756.
ZHANG G X, HUO Z G, YANG J Y, ZHANG L, WU L, WANG T Y, YANG H Y . Spatiotemporal characteristics and risk analysis of summer corn waterlogging disaster in Jianghuai region. Chinese Journal of Ecology, 2017,36(3):747-756. (in Chinese)
[26] 杨宏毅, 霍治国, 杨建莹, 张桂香, 吴立, 范雨娴 . 江汉和江南西部春玉米涝渍指标及风险评估. 应用气象学报, 2017,28(02):237-246.
YANG H Y, HUO Z G, YANG J Y, ZHANG G X, WU L, FAN Y X . Indicators and risk of spring corn waterlogging disaster in Jianghan and west region of Jiangnan. Journal of Applied Meteorological Science, 2017,28(2):237-246. (in Chinese)
[27] LU E . Determining the start, duration, and strength of flood and drought with daily precipitation: Rationale. Geophysical Research Letters, 2009,36(12):L12707.
doi: 10.1029/2009GL038817
[28] ALLEN R G, PEREIRA L S, RAES D, SMITH M . Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, 1998.
[29] 陈玉民, 郭国双, 王广兴, 康绍忠, 罗怀彬, 张大中 . 中国主要作物需水量与灌溉. 北京: 水利电力出版社, 1995: 77-95.
CHEN Y M, GUO G S, WANG G X, KANG S Z, LUO H B, ZHANG D Z. Main Crop Water Requirement and Irrigation of China. Beijing: Water Power Press, 1995: 77-95. (in Chinese)
[30] 王建林, 毛留喜 . 现代农业气象业务. 北京: 气象出版社, 2010.
WANG J L, MAO L X. Modern Agricultural Meteorological Business. Beijing: Meteorological Press, 2010. ( in Chinese)
[31] MASSEY E J . The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 1951,46:68-78.
[32] 张文彤 . SPSS统计分析基础教程. 北京: 高等教育出版社, 2011.
ZHANG W T. Basic Course of SPSS Statistical Analysis. Beijing: Higher Education Press, 2011. ( in Chinese)
[33] 胡晓华 . Logistic曲线参数估计及应用. 数学理论与应用, 2011,12(4):26-50.
HU X H . Parameters estimation for logistic curve and application. Mathematical Theory and Applications, 2011,12(4):26-50. (in Chinese)
[34] 郭建平, 庄立伟, 陈玥熤 . 东北玉米热量指数预测方法研究(Ⅰ) ——热量指数与玉米产量. 灾害学, 2009,24(4):6-10.
GUO J P, ZHUANG L W, CHEN W Y . Study on prediction method of northeast corn thermal index (I)-thermal index and corn yield. Journal of Catastrophology, 2009,24(4):6-10. (in Chinese)
[35] 高晓容, 王春乙, 张继权, 薛绪掌 . 近50年东北玉米生育阶段需水量及旱涝时空变化. 农业工程学报, 2012,28(12):101-109.
GAO X R, WANG C Y, ZHANG J Q, XUE X Z . Crop water requirement and temporal-spatial variation of drought and flood disaster during growth stages for maize in Northeast during past 50 years. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(12):101-109. (in Chinese)
[36] YANG J Y, HUO Z G, WU L, WANG T Y, ZHANG G X . Indictor-based evaluation of spationtemporal characteristics of rice food in Southwest China. Agriculture, Ecosystems and Environment, 2016,230:221-230.
[37] 汪天颖, 霍治国, 李旭辉, 杨建莹, 吴立, 张桂香 . 基于生育时段的湖南省早稻洪涝等级指标及时空变化特征. 生态学杂志, 2016,35(3):709-718.
WANG T Y, HUO Z G, LI X H, YANG J Y, WU L, ZHANG G X . Level indicators and temporal-spatial distribution features of early rice flood disaster in Hunan province based on different growth stages. Chinese Journal of Ecology, 2016,35(3):709-718. (in Chinese)
[38] WU X, WANG P J, HUO Z G, WU D R, YANG J Y . Crop drought identification index for winter wheat based on evapotranspiration in the Huang-Huai-Hai plain, China. Agriculture, Ecosytems and Environment, 2018,263:18-30.
[39] 王培娟, 霍治国, 杨建莹, 吴霞 . 基于热量指数的东北春玉米冷害指标. 应用气象学报, 2019,30(1):13-24.
WANG P J, HUO Z G, YANG J Y, WU X . Indicators of chilling damage for spring maize based on heat index in Northeast China. Journal of Applied Meteorological Science, 2019,30(1):13-24. (in Chinese)
[1] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[6] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[7] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[8] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[9] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[10] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[11] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[12] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[13] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[14] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[15] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!