Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4777-4790.doi: 10.3864/j.issn.0578-1752.2020.23.005

• PLANT PROTECTION • Previous Articles     Next Articles

The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot

WANG BaoBao1,GUO Cheng2,SUN SuLi1,XIA YuSheng1,ZHU ZhenDong1,DUAN CanXing1()   

  1. 1Institute of Crop Sciences/National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2020-03-26 Accepted:2020-05-06 Online:2020-12-01 Published:2020-12-09
  • Contact: CanXing DUAN E-mail:duancanxing@caas.cn

Abstract:

【Objective】The objective of this study is to clarify the genetic structure, pathogenicity, toxigenic chemotypes, and their relationship of Fusarium graminearum species complex (FGSC) causing maize ear rot in China, and to provide reference information for prevention and control of Fusarium ear rot of maize. 【Method】The samples were collected from the main maize producing areas in China. Twenty-two pairs of SSR and 10 pairs of VNTR primers, along with TEF-1α, β-tubulin and RPB2 gene sequences were used for genetic diversity and Popgen32, NTsys2.1, and STRUCTURE2.3.4 software were used to analyze the data and construct the phylogenetic tree. The pathogenicity of FGSC was determined using the silk channel injection inoculation method, and the specific primers were used to detect the toxigenic chemotypes. 【Result】A total of 48 alleles were detected by SSR and VNTR primers, 39 polymorphic sites were found, with a polymorphic band ratio of 81.25% among 45 strains, the polymorphic bands ranged from 2 to 4. The average Shannon’s information index and Nei’s genetic diversity index of the 7 FGSC geographic populations were 0.41 and 0.29, respectively, the genetic similarity in 7 regions was 0.6677-0.8797, and the genetic distance was 0.1282-0.4039, indicating that there existed rich genetic diversity among the flora. Based on the Nei’s genetic distance, 7 FGSC geographical populations were divided into 3 groups by UPGMA clustering. The population structure of FGSC stains could be divided into two different groups by STRUCTURE2.3.4. Most of the strains from Northwest China belonged to group A, those in Central China and South China belonged to group B, and more than 50% of the strains in Northeast China belonged to group B. Based on the sequences of TEF-1α, β-tubulin and RPB2, FGSC was composed of F. graminearum, F. asiaticum, F. boothii, and F. meridionale. There were 142 single nucleotide polymorphisms (SNPs) among these Fusarium strains. The dendrogram constructed by these differential sequences could clearly show the genetic differentiation within and between species. The genetic diversity within each Fusarium species was rich. Among four Fusarium species, the pathogenicity of F. graminearum was the strongest, with an average diseased ear area of 20.79%. The average diseased areas of F. asiaticum, F. boothii, and F. meridionale were 15.79%, 11.77%, and 8.12%, respectively. The difference in the percentage of average diseased area was significant between Fusarium species. The toxigenic chemotypes of F. graminearum were 15ADON, 3ADON, NIV, and 3ADON + 15ADON + NIV, F. boothii contained 15ADON, 3ADON, NIV, 3ADON + 15ADON, and 3ADON + 15ADON + NIV chemotypes, the toxigenic chemotypes of F. meridionale were 15ADON, 3ADON, and 15ADON+ NIV, the 15ADON chemotype was the most frequently detected, while F. asiaticum merely contained 3ADON chemotype. In addition, the average diseased ear areas of 15ADON, NIV and 3ADON type strains were 17.87%, 17.20%, and 12.37%, respectively. 【Conclusion】There existed frequent gene exchanges between different FGSC geographical populations, especially in adjacent regions. 15ADON type is the predominant toxigenic chemotype of FGSC in 7 geographic regions. The pathogenicity of F. graminearum is the strongest, followed by F. asiaticum, F. boothii, and F. meridionale according to the percentage of the diseased area caused by different Fusarium species. In this study, the correlation between toxigenic chemotypes and Fusarium species is not significant, and the pathogenicity is mainly related to Fusarium species.

Key words: maize ear rot, Fusarium graminearum species complex (FGSC), genetic diversity, toxigenic chemotype, pathogenicity

Table 1

Primers used in this study"

引物 Primer 序列 Sequence (5′ to 3′) 退火温度 Tm (℃) 扩增片段大小 Product size (bp) 参考文献 Reference
SSR-L1 R: AGAAGAAGGGCAAATGG 57 378 [19]
F: TGTCCGAGTCGTCTGAAT
SSR-L2 R: GGTGGTGGTTTCCGTGAG 60 214 [19]
F: GCGTTGAGATACCCTTTCG
SSR-L3 R: CTGCTGCTATCACTTCCAC 58 344 [19]
F: TTCACAACGACCGTATTTC
SSR-L4 R: GTTGTTGGGTTGCTTGTG 59 160 [19]
F: GTCTCGTCCAGATTCCTATT
SSR-L5 R: GGTGGTGGTTTCCGTGAG 60 214 [19]
F: GCGTTGAGATACCCTTTCG
SSR-L6 R: AATAGTGGCGGTGCGTAG 60 386 [19]
F: GTCTCCCGAGTAGTTGGC
SSR-L7 R: TAGTGGCGGTGCGTAGTG 62 379 [19]
F: GTCTCCCGAGTAGTTGGC
SSR-L8 R: GGTCCGCAACATAGAGGG 60 403 [19]
F: CCGAAGAGGAGAACGAGC
SSR-G11 R: TTTTGGGTGTTGAAGAAGCC 56 200-300 [20]
F: TTTTTGTTTGCGTCGTTCTG
SSR-G12 R: AATGCAGTCGATGGGAAACT 56 200-300 [20]
F: GGGTTCCTTGTAAGTGGCTG
SSR-G13 R: AGTATCAGACAGGTTGGCCG 56 200-300 [20]
F: GTATGCAAAGCAGCGTCGTA
SSR-G14 R: GCCCATTACGTTGAGCAAAT 56 200-300 [20]
F: TTTTTCGGTCTGGCTATTGG
SSR-G15 R: CTCTAGTGGCAGACCCTTCG 56 200-300 [20]
F: CTTGACATGTCGCGCTTTTA
SSR-G16 R: CTGATCTGCGGACATCTTCA 56 200-300 [20]
F: GTTTTGGTTTGCCTGTCGTT
SSR-G17 R: TCTGTCGTTGACAAGCAAGC 56 200-300 [20]
F: ACGGACCGACGACATAACTC
SSR-G18 R: GCGTCGACTAAAGGAACCAG 56 200-300 [20]
F: TCCCGACGTTAGAGTGGAGT
SSR-G19 R: CCTTGTTCTTTCCACCCTGA 56 200-300 [20]
F: ACGAGGACGAACTTGTTGCT
引物 Primer 序列 Sequence (5′ to 3′) 退火温度 Tm (℃) 扩增片段大小 Product size (bp) 参考文献 Reference
SSR-G20 R: AAGCTTGGGGGCTAACATCT 56 200-300
F: CAGCTTTGGCGGACATTATT [20]
SSR-G21 R: TCACATATTCAACCGACCCA 56 200-300 [20]
F: GCTCCGTGTCCTTTCATTTC
SSR-G22 R: GACGGATCGTCGGATAGGTA 56 200-300 [20]
F: CACTAAGCTGCTCCTCCACC
VNTR-F1 F: ACAGGCATCCAAGGACATTT 56 286 [21]
R: GTTTGATGGCGCATTCAAAG
VNTR-F2 F: GCAGGACCTGGATGATGAA 56 234 [21]
R: ATGTGTGCAGCCATGAGATT
VNTR-F3 F: ATCTCCCAAGCTGGCTAATT 56 234 [21]
R: AGAACCGGCAAAGTTCGATT
VNTR-F4 F: TCCGAAGGTAGAAGCGTTGT 56 298
R: TCAAGCCCATCTATGCTGTT [21]
VNTR-F5 F: GAGATGGCAACATTATTTGCA 56 252
R: ATTGGCAGCAGGGCTTGATT [21]
VNTR-F6 F: AAGAGGGCGTGTCTCTGTTTT 56 215
R: CGCTTCCTTCCTTTCAATTC [21]
VNTR-F7 F: AAGACTGGTCAGCAGTAGGGA 56 248
R: TGAGAGCGAGACTGAGCATGA [21]
VNTR-F8 F: AAACGTAAACGGATCAACGG 56 210
R: AGATTCGCAACTTTGTGCTG [21]
VNTR-F9 F: TGGATATGGTTCCCCAGCT 56 239
R: TACTGACCTTGAGGAGCACCATAC [21]
VNTR-F10 F: TATGATGCAGCGAATGCAAC 56 221 [21]
R: TAGAGACCTGGCCCATACCA
TEF-1α R: ATGGGTAAGGAR-GACAAGAC 58 680 [22]
F: GGAR-GTACCAGTSATCATGTT
β-tubulin R: GGTAACCAAATCGGTGCTGCTTTC 55 380 [23]
F: ACCCTCAGTGTAGTGACCCTTGGC
RPB2 R: CCCATRGCTTGYTTRCCCAT 55 900 [24]
F: GGGGWGAYCAGAAGAAGGC
Tri13a/b R: CTCSACCGCATCGAAGASTCTC 58 583, 644, 859 [25]
F: GAASGTCGCARGACCTTGTTTC
Tri13F/R R: GGTGTCCCAGGATCTGCG 57 415 [26]
F: TACGTGAAACATTGTTGGC
Tri303F/R R: GCCGGACTGCCCTATTG 52 586 [27]
F: GATGGCCGCAAGTGGA
Tri315F/R R: GTCTATGCTCTCAACGGACAAC 58 864 [27]
F: CTCGCTGAAGTTGGACGTAA

Table 2

Genetic diversity of FGSC"

种群
Population
多态性位点数
Number of polymorphic loci
多态性位点百分比
Percentage of
polymorphic loci (%)
等位基因数
Observed number
of alleles
有效等位基因数
Effective number
of alleles
Shannon’s信息指数
Shannon’s information index
Nei’s遗传多样性指数
Nei’s genetic diversity index
华北North China 18 46.15 1.46 1.46 0.32 0.23
华中Central China 10 25.64 1.26 1.26 0.18 0.13
华东East China 14 35.90 1.36 1.36 0.25 0.18
东北Northeast China 39 100.00 2.00 1.79 0.62 0.43
华南South China 26 66.67 1.67 1.46 0.40 0.27
西北Northwest China 37 94.87 1.95 1.65 0.55 0.37
西南Southwest China 36 92.31 1.92 1.71 0.56 0.39
平均Average 25.71 66.00 1.66 1.53 0.41 0.29

Table 3

Nei’s genetic identity (above diagonal) and genetic distance (below diagonal) of FGSC"

种群
Population
华北
North China
华中
Central China
华东
East China
东北
Northeast China
华南
South China
西北
Northwest China
西南
Southwest China
华北North China 0.6888 0.7100 0.7979 0.7011 0.8120 0.7910
华中Central China 0.3727 0.8489 0.8484 0.7067 0.6934 0.6677
华东East China 0.3424 0.1638 0.8572 0.7782 0.7556 0.7452
东北Northeast China 0.2257 0.1644 0.1540 0.8170 0.8797 0.8502
华南South China 0.3551 0.3471 0.2508 0.2021 0.8196 0.8609
西北Northwest China 0.2083 0.3662 0.2803 0.1282 0.1990 0.8775
西南Southwest China 0.2345 0.4039 0.2942 0.1623 0.1498 0.1307

Fig. 1

Cluster analysis of 7 geographic-based FGSC populations"

Fig. 2

ΔK value curve of FGSC at different K values"

Fig. 3

Population structure of FGSC (when K=2)"

Fig. 4

RPB2 + TEF-1α + β-tubulin gene clusters of FGSC"

Table 4

Pathogenicity and toxigenic chemotype of FGSC"

菌株
Strain
菌种
Species
发病面积
Diseased area (%)
毒素类型 采集地点
Collection location
地理区域
Geographical area
3ADON 15ADON NIV
3HLJ 禾谷镰孢F. graminearum 10.70 黑龙江肇源Zhaoyuan, Heilongjiang 东北Northeast China
8HLJ 布氏镰孢F. boothii 4.00 黑龙江安达Anda, Heilongjiang 东北Northeast China
20HLJ 禾谷镰孢F. graminearum 10.09 黑龙江尚志Shangzhi, Heilongjiang 东北Northeast China
94HLJ 禾谷镰孢F. graminearum 42.63 黑龙江鹤岗Hegang, Heilongjiang 东北Northeast China
106HLJ 布氏镰孢F. boothii 6.88 黑龙江穆棱Muling, Heilongjiang 东北Northeast China
113HLJ 禾谷镰孢F. graminearum 27.58 黑龙江虎林Hulin, Heilongjiang 东北Northeast China
131HLJ 布氏镰孢F. boothii 11.63 黑龙江饶河Raohe, Heilongjiang 东北Northeast China
136HLJ 禾谷镰孢F. graminearum 23.36 黑龙江密山Mishan, Heilongjiang 东北Northeast China
162HLJ 布氏镰孢F. boothii 16.91 黑龙江依安Yian, Heilongjiang 东北Northeast China
180HLJ 禾谷镰孢F. graminearum 26.54 黑龙江嫩江Neijiang, Heilongjiang 东北Northeast China
184HLJ 禾谷镰孢F. graminearum 42.63 黑龙江龙江Longjiang, Heilongjiang 东北Northeast China
185HLJ 布氏镰孢F. boothii 22.54 黑龙江密山Mishan, Heilongjiang 东北Northeast China
195HLJ 禾谷镰孢F. graminearum 30.20 黑龙江宁安Ningan, Heilongjiang 东北Northeast China
200HLJ 禾谷镰孢F. graminearum 39.27 黑龙江穆棱Muling, Heilongjiang 东北Northeast China
212HLJ 禾谷镰孢F. graminearum 35.60 黑龙江五常Wuchang, Heilongjiang 东北Northeast China
231HLJ 禾谷镰孢F. graminearum 4.29 黑龙江哈尔滨Harbin, Heilongjiang 东北Northeast China
244HLJ 禾谷镰孢F. graminearum 13.70 黑龙江绥化Suihua, Heilongjiang 东北Northeast China
g1-CQ 南方镰孢F. meridionale 6.66 重庆合川Hechuan, Chongqing 西南Southwest China
g2-SXXA 禾谷镰孢F. graminearum 11.38 陕西西安Xian, Shaanxi 西北Northwest China
g3-SXSL 南方镰孢F. meridionale 9.67 陕西商洛Shangluo, Shaanxi 西北Northwest China
g4-SXSL 禾谷镰孢F. graminearum 25.33 陕西商洛Shangluo, Shaanxi 西北Northwest China
g5-YN 南方镰孢F. meridionale 6.56 云南弥勒Mile, Yunnan 西南Southwest China
g6-SD 禾谷镰孢F. graminearum 7.00 山东兖州Yanzhou, Shandong 华东East China
g7-HNZK 禾谷镰孢F. graminearum 12.44 河南周口Zhoukou, Henan 华中Central China
g8-HNSMX 禾谷镰孢F. graminearum 14.86 河南三门峡Sanmenxia, Henan 华中Central China
g9-SD 禾谷镰孢F. graminearum 29.00 山东微山Weishan, Shandong 华东East China
g10-SXYL 禾谷镰孢F. graminearum 2.75 陕西榆林Yulin, Shaanxi 西北Northwest China
g11-CQ 南方镰孢F. meridionale 4.71 重庆秀山Xiushan, Chongqing 西南Southwest China
g12-SXXY 亚洲镰孢F. asiaticum 12.36 陕西乾县Qianxian, Shaanxi 西北Northwest China
g14-BJ 布氏镰孢F. boothii 7.38 北京昌平Changping, Beijing 华北North China
g15-GZ 南方镰孢F. meridionale 6.00 贵州遵义Zunyi, Guizhou 西南Southwest China
g16-BJ 禾谷镰孢F. graminearum 20.10 北京顺义Shunyi, Beijing 华北North China
g17-LN 禾谷镰孢F. graminearum 17.60 辽宁锦州Jinzhou, Liaoning 东北Northeast China
g18-LN 禾谷镰孢F. graminearum 15.40 辽宁沈阳Shenyang Liaoning 东北Northeast China
g19-LN 禾谷镰孢F. graminearum 11.80 辽宁铁岭Tieling, Liaoning 东北Northeast China
g20-LN 禾谷镰孢F. graminearum 24.60 辽宁沈阳Shenyang, Liaoning 东北Northeast China
g23-GX 南方镰孢F. meridionale 13.11 广西德保Debao, Guangxi 华南South China
g24-GX 亚洲镰孢F. asiaticum 14.00 广西河池Hechi, Guangxi 华南South China
g25-GX 亚洲镰孢F. asiaticum 22.58 广西大新Daxin, Guangxi 华南South China
g26-GX 亚洲镰孢F. asiaticum 11.17 广西田林Tianlin, Guangxi 华南South China
g27-SC 亚洲镰孢F. asiaticum 16.64 四川巴中Bazhong, Sichuan 西南Southwest China
g28-SC 亚洲镰孢F. asiaticum 18.00 四川浦江Pujiang, Sichuan 西南Southwest China
g29-GS 布氏镰孢F. boothii 18.60 甘肃张掖Zhangye, Gansu 西北Northwest China
g30-GS 布氏镰孢F. boothii 6.20 甘肃张掖Zhangye, Gansu 西北Northwest China
g32-YN 南方镰孢F. meridionale 10.10 云南玉溪Yuxi, Yunnan 西南Southwest China

Table 5

Statistics of the percentage of average diseased area caused by different Fusarium species"

菌种
Species
菌株数
Number of strains
发病面积和
Summary of diseased area (%)
平均发病面积
Percentage of average diseased area (%)
方差
Variance
禾谷镰孢F. graminearum 24 498.84 20.79±2.44A 137.3899
亚洲镰孢F. asiaticum 6 94.75 15.79±1.87B 17.6138
布氏镰孢F. boothii 8 94.12 11.77±2.56c 46.2450
南方镰孢F. meridionale 7 56.81 8.12±1.20d 8.6493

Table 6

Analysis of variance of pathogenicity for different Fusarium species"

差异源
Source of difference
平方和
SS
自由度
df
平均平方和
MS
统计量
F
P
P-value
组间Intergroup 1115.080 3 371.6934 4.206 0.011
组内Intragroup 3623.646 41 88.3816
总计Total 4738.727 44
[1] 王晓鸣, 段灿星 . 玉米病害和病原名称整理及其汉译名称规范化探讨. 中国农业科学, 2020,53(2):288-316.
doi: 10.3864/j.issn.0578-1752.2020.02.006
WANG X M, DUAN C X . Reorganization of maize disease and causal agent names and disscution on their standardized translation of Chinese names. Scientia Agricultura Sinica, 2020,53(2):288-316. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.02.006
[2] 王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星 . 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020,29(1):163-174.
WANG B B, BI S G, XIAO M G, ZHANG D Y, YAN Q, ZHANG Y Y, YANG S L, ZHU Z D, DUAN C X . Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang Province. Acta Prataculturae Sinica, 2020,29(1):163-174. (in Chinese)
[3] DUAN C X, QIN Z H, YANG Z H, LI W X, SUN S L, ZHU Z D, WANG X M . Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016,8(6):186.
doi: 10.3390/toxins8060186
[4] 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东 . 玉米抗穗腐病研究进展. 中国农业科学, 2015,48(11):2152-2164.
doi: 10.3864/j.issn.0578-1752.2015.11.007
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D . Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015,48(11):2152-2164. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.11.007
[5] 秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣 . 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014,41(5):589-596.
QIN Z H, REN X, JIANG K, WU X F, YANG Z H, WANG X M . Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. Journal of Plant Protection, 2014,41(5):589-596. (in Chinese)
[6] 周丹妮, 王晓鸣, 李丹丹, 杨洋, 陈国康, 段灿星 . 重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定. 植物保护学报, 2016,43(5):782-788.
ZHOU D N, WANG X M, LI D D, YANG Y, CHEN G K, DUAN C X . Isolation and identification of Fusarium species causing maize ear rot in Chongqing and its vicinity. Journal of Plant Protection, 2016,43(5):782-788. (in Chinese)
[7] LI L, QU Q, CAO Z, GUO Z, JIA H, LIU N, WANG Y, DONG J . The relationship analysis on corn stalk rot and ear rot according to Fusarium species and fumonisin contamination in kernels. Toxins, 2019,11(6):320.
doi: 10.3390/toxins11060320
[8] ZHU Z, HAO Y, MERGOUM M, BAI G, HUMPHREYS G, CLOUTIER S, XIA X, HE Z . Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA and Canada. The Crop Journal, 2019,7(6):730-738.
doi: 10.1016/j.cj.2019.06.003
[9] 支叶, 孙菲菲, 孙素丽, 段灿星, 朱振东 . 黑龙江省大豆根腐病菌锐顶镰孢鉴定. 中国油料作物学报, 2014,36(6):789-793.
ZHI Y, SUN F F, SUN S L, DUAN C X, ZHU Z D . Identification of Fusarium acuminatum causing soybean root rot in Heilongjiang Province. Chinese Journal of Oil Crop Sciences, 2014,36(6):789-793. (in Chinese)
[10] DONG F, ZHANG X, XU J, SHI J, LEE Y W, CHEN X, LI Y, MOKOENA M P, OLANIRAN A O . Analysis of Fusarium graminearum species complex from freshly harvested rice in Jiangsu Province (China). Plant Disease, 2020,104(8): DOI: 10.1094/PDIS- 01-20-0084-RE.
doi: 10.1094/PDIS-11-19-2473-SR pmid: 32525450
[11] GROMADZKA K, BLASZCZYK L, CHELKOWSKI J, WASKIEWICZ A . Occurrence of mycotoxigenic Fusarium species and competitive fungi on preharvest maize ear rot in Poland. Toxins, 2019,11(4):224.
doi: 10.3390/toxins11040224
[12] MIEDANER T, GWIAZDOWSKA D, WASKIEWICZ A . Editorial: Management of Fusarium species and their mycotoxins in cereal food and feed. Frontiers in Microbiology, 2017,8:1543.
doi: 10.3389/fmicb.2017.01543 pmid: 28861058
[13] GAIKPA D S, MIEDANER T . Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. Theoretical and Applied Genetics, 2019,132(10):2721-2739.
doi: 10.1007/s00122-019-03412-2 pmid: 31440772
[14] GAI X T, XUAN Y H, GAO Z G . Diversity and pathogenicity of Fusarium graminearum species complex from corn stalk and ear rot strains in northeast China. Plant Pathology, 2017,66(8):1267-1275.
doi: 10.1111/ppa.2017.66.issue-8
[15] 马红霞, 孙华, 郭宁, 张海剑, 石洁, 常佳迎 . 禾谷镰孢复合种毒素化学型及遗传多样性分析. 中国农业科学, 2018,51(1):82-95.
doi: 10.3864/j.issn.0578-1752.2018.01.008
MA H X, SUN H, GUO N, ZHANG H J, SHI J, CHANG J Y . Analysis of toxigenic chemotype and genetic diversity of the Fusarium graminearum species complex. Scientia Agricultura Sinica, 2018,51(1):82-95. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.01.008
[16] YERKOVICH N, FUMERO M V, CANTORO R, PALAZZINI J M, CHULZE S N . Population structure and genetic diversity of Fusarium graminearum sensu stricto, the main wheat pathogen producing Fusarium head blight in Argentina. European Journal of Plant Pathology, 2020,156(2):635-646.
doi: 10.1007/s10658-019-01913-w
[17] SNEIDERIS D, IVANAUSKAS A, SUPRONIENE S, KADZIENE G, SAKALAUSKAS S . Genetic diversity of Fusarium graminearum isolated from weeds. European Journal of Plant Pathology, 2019,153(2):639-643.
doi: 10.1007/s10658-018-1543-3
[18] 任旭 . 我国玉米穗腐病主要致病镰孢菌多样性研究[D]. 北京: 中国农业科学院, 2011.
REN X . Diversity analyses of Fusarium spp., the main causal agents of maize ear rot in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. ( in Chinese)
[19] 李新凤, 王建明, 姜晓东, 郝晓娟, 张祖维, 田宏先 . 拟轮枝镰孢菌EST-SSR信息分析与标记开发. 植物保护学报, 2018,45(4):819-826.
LI X F, WANG J M, JIANG X D, HAO X J, ZHANG Z W, TIAN H X . EST-SSR information analysis and marker development for genetic diversity analysis of Fusarium verticillioides. Journal of Plant Protection, 2018,45(4):819-826. (in Chinese)
[20] SCOTT J B, CHAKRABORTY S . Identification of 11 polymorphic simple sequence repeat loci in the phytopathogenic fungus Fusarium pseudograminearum as a tool for genetic studies. Molecular Ecology Resources, 2008,8(3):628-630.
doi: 10.1111/j.1471-8286.2007.02025.x pmid: 21585853
[21] SUHA H, GALE L R, KISTLER H C . Development of VNTR markers for two Fusarium graminearum clade species. Molecular Ecology Notes, 2004,4(3):468-470.
doi: 10.1111/men.2004.4.issue-3
[22] O’DONNELL K, WARD T J, ABERRA D, KISTLER H C, AOKI T, ORWIG N, KIMURA M, BJORNSTAD A, KLEMSDAL S S . Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology, 2008,45(11):1514-1522.
doi: 10.1016/j.fgb.2008.09.002
[23] HUBKA V, KOLARIK M . β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: Primer specificity testing and taxonomic consequences. Persoonia - Molecular Phylogeny and Evolution of Fungi, 2012,29:1-10.
doi: 10.3767/003158512X658123
[24] LOFGREN L A, LEBLANC N R, CERTANO A K, NACHTIGALL J, LABINE K M, RIDDLE J, BROZ K, DONG Y, BETHAN B, KAFER C W, KISTLER H C . Fusarium graminearum: Pathogen or endophyte of North American grasses?. New Phytologist, 2018,217(3):1203-1212.
doi: 10.1111/nph.14894 pmid: 29160900
[25] WANG J H, LI H P, QU B, ZHANG J B, HUANG T, CHEN F F, LIAO Y C . Development of a generic PCR detection of 3- acetyldeoxynivalenol-, 15-acetyldeoxynivalenol- and nivalenol- chemotypes of Fusarium graminearum clade. International Journal of Molecular Sciences, 2008,9(12):2495-2504.
doi: 10.3390/ijms9122495 pmid: 19330088
[26] WAALWIJK C, KASTELEIN P, DE VRIES I, KERÉNYI Z, VAN DER LEE T, HESSELINK T, KÖHL J, KEMA G . Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology, 2003,109(7):743-754.
doi: 10.1023/A:1026086510156
[27] JENNINGS P, COATES M E, TURNER J A, CHANDLER E A, NICHOLSON P . Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathology, 2004,53(2):182-190.
doi: 10.1111/ppa.2004.53.issue-2
[28] DUAN C X, WANG B B, SUN F F, YANG Z H, ZHU Z D, WANG X M . Occurrence of maize ear rot caused by Fusarium fujikuroi in China. Plant Disease, 2020,104(2):587.
[29] EVANNO G, REGNAUT S, GOUDET J . Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005,14(8):2611-2620.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739
[30] BEUKES I, ROSE L J, VAN COLLER G J, VILJOEN A . Disease development and mycotoxin production by the Fusarium graminearum species complex associated with South African maize and wheat. European Journal of Plant Pathology, 2018,150:893-910.
doi: 10.1007/s10658-017-1331-5
[31] COAN M, SENHORINHO H J, PINTO R J, SCAPIM C A, TESSMANN D J, WILLIAMS W P, WARBURTON M L . Genome-wide association study of resistance to ear rot by Fusarium verticillioides in a tropical field maize and popcorn core collection. Crop Science, 2018,58(2):564-578.
doi: 10.2135/cropsci2017.05.0322
[32] AAMOT H U, WARD T J, BRODAL G, VRALSTAD T, LARSEN G B, KLEMSDAL S S, ELAMEEN A, UHLIG S, HOFGAARD I S . Genetic and phenotypic diversity within the Fusarium graminearum species complex in Norway. European Journal of Plant Pathology, 2015,142(3):501-519.
doi: 10.1007/s10658-015-0629-4
[33] WARD T J, CLEAR R M, ROONEY A P, O’DONNELL K, GABA D, PATRICK S, STARKEY D E, GILBERT J, GEISER D M, NOWICKI T W . An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 2008,45(4):473-484.
doi: 10.1016/j.fgb.2007.10.003
[34] 李伟, 胡迎春, 陈莹, 张爱香, 陈怀谷 . 长江流域禾谷镰孢菌群部分菌株系统发育学、产毒素化学型及致病力研究. 菌物学报, 2010,29(1):51-58.
LI W, HU Y C, CHEN Y, ZHANG A X, CHEN H G . Phylogenetic analysis, chemotype diversity, and pathogenicity of the Fusarium graminearum clade in the Yangtze basin. Mycosystema, 2010,29(1):51-58. (in Chinese)
[35] 杜青, 唐照磊, 李石初, 上官玲玲, 李华娇, 段灿星 . 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019,52(11):1895-1907.
doi: 10.3864/j.issn.0578-1752.2019.11.005
DU Q, TANG Z L, LI S C, SHANGGUAN L L, DUAN C X . Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Scientia Agricultura Sinica, 2019,52(11):1895-1907. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.11.005
[36] LAURENT B, MOINARD M, SPATARO C, PONTS N, BARREAU C, FOULONGNE-ORIOL M . Landscape of genomic diversity and host adaptation in Fusarium graminearum. BMC Genomics, 2017,18:203.
doi: 10.1186/s12864-017-3524-x pmid: 28231761
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[12] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[13] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[14] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[15] LI QinCheng,SHI Jie,HE KangLai,WANG ZhenYing. Effects of Chemical Control of Ear Borers on Reducing Fusarium verticillioides Ear Rot and Fumonisin Level [J]. Scientia Agricultura Sinica, 2021, 54(17): 3702-3711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!