Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 585-599.doi: 10.3864/j.issn.0578-1752.2020.03.011

• HORTICULTURE • Previous Articles     Next Articles

Seed Traits and Seedling Performances of Different Types of Citrus Rootstock

ZHU ShiPing1,WANG FuSheng1,CHEN Jiao2,3,YU Xin1,YU Hong1,LUO GuoTao1,HU Zhou1,FENG JinYing1,ZHAO XiaoChun1,HONG QiBin1()   

  1. 1 Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences/ National Citrus Engineering Research Center, Chongqing 400712
    2 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716
    3 Bureau of Agriculture and Rural Affairs of Fushun County, Fushun 643200, Sichuan
  • Received:2019-07-09 Accepted:2019-09-19 Online:2020-02-01 Published:2020-02-13
  • Contact: QiBin HONG E-mail:hongqibin@cric.cn

Abstract:

【Objective】Good rootstock could promote plant growth, improve fruit yield and quality, and enhance stress tolerance and adaptability. Currently in China, mixed genotype of seeds is generally used for propagation of nursery trees. Variable germination, growth, and stress tolerance of seedlings are the common problems significantly affecting the quality of nursery trees, also the performance of orchard plants. This research was aimed to study the key parameters related to the quality of seedlings in different genotypes of rootstocks, to establish the standards for evaluation of rootstock and provide guidelines for selection of superior rootstock. 【Method】 104 different citrus rootstock germplasm accessions were evaluated in five consecutive years on their seed characteristics, such as seed number per fruit, plumpness of seeds, 1 000-grain weight, embryonic type, and the seedling performances, such as germination rate, occurrence of etiolation and blight, and the growth vigor. The uniformity of the seedlings of some rootstock accessions were identified by COS (Conserved Ortholog Sequences) markers. Association of MITE (Miniature inverted-repeat transposable element) insertion with embryonic type was also investigated in some rootstock accessions. 【Result】 (1) Fruits of Poncirus and its hybrids, as well as Citrus junos accessions were highly multi-seeded and multi-seeded. Most of the seeds were plumpy, polyembryonic and mixed-embryonic type. The 1000-grain weight of most accessions was more than 200 g. The seed numbers per fruit in mandarins were highly variable in the range of low-seeded, multi-seeded and highly multi-seeded. Most seeds were medium plumpy and polyembryonic. The 1 000-grain weight in approximately half of the mandarin accessions was less than 100 g. (2) Seedling performances differed among different types of rootstocks. C. junos demonstrated the highest frequency of germination, and lower etiolation rate, but the seedlings were sensitive to blight disease. The germination rates of Poncirus and its hybrids were lower than that of C. junos, but the etiolation rate was higher. Their seedlings were tolerant to blight disease. The germination rates of most mandarin accessions were comparatively low, and the rates of both etiolation and blight were also low. Comparisons of seedling growth at 10 months after sowing, Poncirus showed the strongest growth vigor, followed by its hybrids and C. junos, while those of mandarins were the least measured by both seedling height and stem diameter. (3) Correlation analysis revealed that except for the occurrences of etiolation and blight, parameters between the traits of seeds and seedlings such as seeds per fruit, 1000-grain weight, plumpness, the mono-embryo rate, poly-embryo rate, embryonic type, the height and the stem diameter of seedlings were tightly correlated at the levels of high significance (P<0.01) or significance (P<0.05). The contribution of each individual parameter to the overall variation was highly different. PCA (principle component analysis) could clearly distinguish the genetic differences between the different types of rootstocks. The coefficient variations of the parameters except for etiolation rate were not significantly variable among different years, indicating those traits were comparatively stable. (4) Results of COS marker showed that mono-embryonic seedlings of mandarin were less uniform than that of mono-embyonic seedlings of Poncirus and all the poly-embryonic and mixed-embyonic accessions. MITE insertion was detected in polyembryonic accessions of mandarin, C. junos and Poncirus hybrids, but did not in monoembryonic accessions of mandarin and pummelo. However, MITE insertion did not observed either in monoembryonic or polyembryonic accessions of some Poncirus. 【Conclusion】Parameters between seed traits and seedling performances were highly correlated. These results indicated that the high quality of seedling was greatly associated with good characters of seed. Measured by overall performance, the characters of both seeds and seedlings of Poncirus were the best, followed by Poncirus hybrids and C. junos, those of mandarins were the worst.

Key words: citrus rootstock, seed trait, embryonic type, seedling performance, uniformity

Table 1

Summary of 5 years’ (2013-2017) average value of parameters for seed characteristics of different rootstock germplasms"

类型
Type
数量
No.
单果种子数
Seed No.per fruit
(Seed/fruit)
千粒重
1000-grain weight (g)
饱满度比例
Plumpness (%)
单胚比例
Monoembryo rate (%)
多胚比例
Polyembryo rate (%)
胚型比例
Embryo type (%)

Poncirus trifoliata
47 20-44,多核 Multinuclear 141.6-266.2 饱满 Full,74.5 5.2-99.6 0.4-94.8 单胚 Mono embryo,4.3
一般 Common,25.5 多胚 Poly embryo,2.1
混胚 Mixed embryo,93.6
枳杂种
Poncirus hybrids
10 8-33,较多核 Multiple nuclei,多核 Multinuclear 135.7-239 饱满 Full,60 0-87.5 12.5-100 多胚 Poly embryo,50
一般 Common,40 混胚 Mixed embryo,50
香橙
C. junos
12 12-36,较多核 Multiple nuclei,多核 Multinuclear 147.3-223.3 饱满 Full,75 0-26.3 73.8-100 多胚 Poly embryo,58.3
一般 Common,25 混胚 Mixed embryo,41.7
宽皮柑橘
C. reticulata
27 4-62,少核 Few nuclei,较多核 Multiple nuclei,多核 Multinuclear 55-391 饱满 Full,11.11 0-99.5 0.5-100 多胚 Poly embryo,81.5
一般 Common,62.96 混胚 Mixed embryo,11.1
不饱满 Not full,25.93 单胚Mono embryo,7.4

Table 2

Summary of several years’ average value of parameters for seedling performances of different rootstock germplasms"

类型
Type
数量
No.
出苗率(4年)
Germination
(4 years) (%)
黄化率(4年)
Etiolation (4 years) (%)
立枯率(4年)
Blight rate
(4 years) (%)
株高(3年)
Plant height
(3 years) (cm)
2017年株高
Plant height in 2017 (cm)
3年茎粗(3年)
Stem diameter (3 years) (mm)
2017年茎粗
Stem diameter in 2017 (mm)
Poncirus trifoliata 47 62.60-104.9 0.40-10.09 0-8.33 8.24-15.21 30-59.9 1.3-1.8 2.0-3.2
枳杂种 Poncirus hybrids 10 43.10-115.71 0.26-9.37 0-1.42 5.48-12.98 22.10-32.90 1.5-1.8 2.0-3.1
香橙 C. junos 12 81.96-166.69 0.15-2.26 0-4.02 4.57-9.56 16.10-35 1.2-1.7 2.1-3.2
宽皮柑橘 C. reticulata 27 28.60-103.58 0-5.20 0-3.70 4.03-7.63 7.70-42.1 1.0-1.7 1.4-2.9

Table 3

Coefficient variation of parameters on seed characteristics and seedling traits of different rootstock germplasms in multiple years"

类型
Type
数量
No.
千粒重
1000-grain
weight
单果种子数
Seed No. per
fruit
多胚比例
Polyembryo
rate
单胚比例
Monoembryo
rate
出苗率
Germination
rate
黄化率
Etiolation
rate
株高
Plant height
茎粗
Stem diameter
Poncirus trifoliata 47 3.45-27.64 2.20-38.81 3.20-58.28 0.80-127.30 24.07-50.44 104.46-223.61 21.28-60.57 9.0-36.5
枳杂种 Poncirus hybrids 10 5.66-27.48 4.72-76.48 0-12.9 14.14-84.85 29.95-79.28 41.91-223.61 18.34-54.47 10.6-27.7
香橙 C. junos 12 6.71-52.51 5.14-54.39 0-26 36.00-223.61 21.62-40.92 160.22-223.61 17.54-91.22 8.7-25.7
宽皮柑橘 C. reticulata 27 2.67-36.09 5.41-74.44 0.80-200 0.00-200 32.58-107.03 141.97-223.61 29.81-92.61 8.7-57.8

Fig. 1

Appearance of seeds of different citrus rootstock germplasms A, B: Poncirus hybrids, ZZ2-17, ZZ-004; C, D: C.reticulata, KPJ-029, KPJ-012; E, F: C. junos, XC-004, XC-013"

Fig. 2

Embryonic types of seeds of different citrus rootstock germplasms A, B: Poncirus trifoliata, Z-027, mono embryo; Z-043, mixed embryo; C, D: C.reticulata, KPJ-011, KPJ-020, poly embryo; E: C.junos, XC-011, mixed embryo; F: C.medica, XY-002, mono embryo"

Fig. 3

Seedling performances of different citrus rootstock germplasms"

Table 4

Correlation analysis of the parameters on seed characteristics and seedling traits of different rootstock germplasms"

单果种子数
Seed No. per fruit
千粒重
1000-grain weight
饱满度
Plumpness
单胚比例
Monoembryo rate
多胚比例
Polyembryo rate
胚型
Embryo
type
出苗率
Germination
黄化率
Etiolation
立枯率
Standing rate
株高(2013—2016年)
Plant height (2013-2016)
株高(2017年)
Plant height (2017)
茎粗(2013—2016年)
Stem diameter (2013-2016)
茎粗(2017年)
Stem diameter (2017)
单果种子数
Seed No. per fruit
1.00
千粒重
1000-grain weight
0.53** 1.00
饱满度
Plumpness
0.38** 0.69** 1.00
单胚比例
Monoembryo rate
0.56** 0.28** 0.16 1.00
多胚比例
Polyembryo rate
-0.56** -0.28** -0.16 -1.00** 1.00
胚型
Embryo type
-0.66** -0.42** -0.28** -0.82** 0.82** 1.00
出苗率
Germination
0.08 0.24* 0.27** -0.11 0.11 0.01 1.00
黄化率
Etiolation
0.14 0.22* 0.02 0.10 0.10 -0.02 0.00 1.00
立枯率
Standing rate
-0.09 -0.10 -0.09 -0.18 0.18 0.08 0.16 0.07 1.00
株高(2013—2016年)
Plant height (2013-2016)
0.65** 0.56** 0.52** 0.23* -0.23* -0.54** 0.06 0.20 -0.20 1.00
株高(2017年)
Plant height (2017)
0.63** 0.56** 0.48** 0.20* -0.20* -0.48** 0.06 0.22* -0.22 0.84** 1.00
茎粗(2013—2016年)
Stem diameter (2013-2016)
0.47** 0.58** 0.51** 0.13 -0.13 -0.36** 0.08 0.19* -0.26* 0.75** 0.68** 1.00
茎粗(2017年)
Stem diameter (2017)
0.27 ** 0.45** 0.46** 0.04 -0.04 -0.13 0.15 0.12 -0.02 0.42** 0.69** 0.57** 1.00

Fig. 4

Principal component analysis of the parameters on seed characteristics and seedling traits of different rootstocks"

Fig. 5

Principal component analysis of different rootstocks based on seed characteristics and seedling traits"

Fig. 6

MITE insertion in rootstock germplasms with different embryonic types M: DNA ladder; 1-5: Monoembryony: Y-001 (C. grandis ); KPJ-012, KPJ-023 (C. mangshanensis); Z-040, Z-027 (Poncirus trifoliata); 6-20: Polyembryony: XY-003 (C. medica); KPJ-001, KPJ-007 (C. reticulata); XC-013, XC-007, XC-004 (C. junos); KPJ-011, KPJ-021 (C. reticulata); Y-129 (Pummelo hybrid); Z-006, Z-022 (P. trifoliata); ZZ-004 (Poncirus hybrid); Z-024 (P. trifoliata); ZZ-002 (Poncirus hybrid); SC (C. aurantium)"

Table 5

Detection of uniformity between seed source tree and its seedlings"

胚型
Embryo type
KPJ-023 XC-011 XC-013 KPJ-030 Z-040 ZZ-030 Z-006 Z-022
单胚
Mono embryo
混胚
Mixed embryo
多胚
Poly embryo
混胚
Mixed embryo
单胚
Mono embryo
混胚
Mixed embryo
多胚
Poly embryo
混胚
Mixed embryo
COSC1-1 - - - - - - - -
COSC1-4 - - - - - - - -
COSC1-12 - - + - - - + -
COSC2-5 + - - - - - - -
COSC2-8 - - - - - - - -
COSC2-19 - - - - - - - -
COSC3-7 - - - - - + - -
COSC3-27 + + - - - - - -
COSC3-13 + - - - - - - -
COSC4-10 - - - - - - - -
COSC4-9 - - - - + - + +
COSC4-3 + + - - - - - -
COSC5-7 + - - - - - - -
COSC5-8 + - - - - - - -
COSC5-9 + - - - - - - -
COSC6-7 - - - - - - - -
COS6-3 - - - - - - - -
COSC6-17 - - - - - - - -
COSC7-3 + - - - - - - -
COSC7-4 - - - - - - - -
COSC7-8 - - - - - - - -
COSC8-4 + - - - - - - -
COSC8-13 - - - + - - - -
COSC8-9 - - - - - - - -
COSC9-3 - - - - - - - -
COSC9-5 + - - - - - - -
COSC9-8 - - - - - - - -
位点变异率
Site mutation rate (%)
37 7 4 4 4 4 7 4
变异株率
Mutant rate (%)
1 1 1 1 1 1 1 1
[1] 周肇基 . 中国嫁接技艺的起源与演进. 自然科学史研究, 1994,13(3):364-272.
ZHOU Z J . Origin and development of grafting in ancient China. Studies in the History of Natural Sciences, 1994,13(3):364-272. (in Chinese)
[2] SNOUSSI H, DUVAL M F, GARCIA-LOR A, BELFALAH Z, FROELICHER Y, RISTERUCCI A M, PERRIER X, JACQUEMOUD- COLLET J P, NAVARRO L, HARRABI M, OLLITRAULT P . Assessment of the genetic diversity of the Tunisian citrus rootstock germplasm. BMC Genetics, 2012,13(1):16.
[3] ZHU S P, WANG F S, SHEN W X, JIANG D, HONG Q B, ZHAO X C . Genetic diversity of Poncirus and phylogenetic relationships with its relatives revealed by SSR and SNP/InDel markers. Acta Physiology Plant, 2015,37:141.
[4] 龚桂芝, 洪棋斌, 江东, 彭祝春, 向素琼 . 枳属种质遗传多样性及其与近缘属植物亲缘关系的SSR和cpSSR分析. 园艺学报, 2008,35(12):1742-1750
GONG G Z, HONG Q B, PENG Z C, JIANG D, XIANG S Q . Genetic diversity of Poncirus and its phylogenetic relationships with relatives as revealed by nuclear and chloroplast SSR. Acta Horticulturae Sinica, 2008,35(12):1742-1750. (in Chinese)
[5] 庞晓明, 邓秀新, 胡春根 . 枳属36 份特异种质的AFLP 指纹图谱构建与分析, 园艺学报, 2003,30(4):394-398.
PANG X M, DENG X X, HU C G . Construction of AFLP fingerprint of 36 Poncirus accessions. Acta Horticulturae Sinica, 2003,30(4):394-398. (in Chinese)
[6] 万良珍, 周开隆 . 哈姆林甜橙砧比试验: 1, 枳不同选系的比较. 中国柑橘, 1989,18(4):3-7.
WAN L Z, ZHOU K L . The comparison test of Hamlin sweet orange on rootstocks: 1. Comparisons of different trifoliate orange selections. China Citrus, 1989,18(4):3-7. (in Chinese)
[7] 戴胜根, 李学柱, 马家骐 . 枳砧甜橙砧穗组合与黄化的关系研究初报. 中国柑橘, 1986(3):8-9.
DAI S G, LI X Z, MA J Q . Preliminary research of the relationships between the scion-stock combination of sweet orange onPoncirus and the etiolation. China Citrus, 1986(3):8-9. (in Chinese)
[8] 周开隆, 叶荫民 . 中国果树志(柑橘卷). 北京: 中国林业出版社, 2009: 145-146.
ZHOU K L, YE Y M. Chinese Fruit Trees (Citrus volume). Beijing: China Forestry Publishing House, 2009: 145-146. (in Chinese)
[9] RODRÍGUEZ-GAMIR J, PRIMO-MILLO E, FORNER J B, FORNER-GINER M A . Citrus rootstock responses to water stress. Scientia Horticulturae, 2010,126(2):95-102.
[10] ZANDALINAS S I, RIVERO R M, MARTÍNEZ V, GÓMEZ- CADENAS A, ARBONA V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biology, 2016,16:105
[11] HUSSAIN S, KHALID M F, SAQIB M, AHMAD S, ZAFAR W, RAO M J, MORILLON R, ANJUM M A . Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiologiae Plantarum, 2018,40(8):135.
[12] WU J X, CAO J Y, SU M, FENG G Z, XU Y H, YI H L . Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Horticulture Research, 2019,6:33.
[13] 卿尚模, 易时来, 朱旭荣, 邓烈, 何绍兰, 谢让金 . 不同土壤pH值对资阳香橙等4种柑橘砧木苗生长的影响. 中国南方果树, 2007,36(6):10-12.
QING S M, YI S L, ZHU X R, DENG L, HE S L, XIE R J . The effect of different soil pH on Ziyang xiangcheng and other four kinds of citrus rootstock seedlings. South China Fruits, 2007,36(6):10-12. (in Chinese)
[14] 解凯东, 王晓培, 谢宗周, 郭文武 . 4个柑桔体细胞杂种砧木资源的种子特性评价. 中国南方果树, 2013,42(5):53-55
XIE K D, WANG X P, XIE Z Z, GUO W W . Seed traits evaluation of 4 citrus somatic hybrid rootstock germplasm. South China Fruits, 2013,42(5):53-55. (in Chinese)
[15] WANG X, XU Y T, ZHANG S Q, CAO L, HUANG Y, CHENG J F, WU G Z, TIAN S L, CHEN C L, LIU Y, YU H W, YANG X M, LAN H, WANG N, WANG L, XU J D, JIANG X L, XIE Z Z, TAN M L, LARKIN R M, CHEN L L, MA B G, RUAN Y J, DENG X X, XU Q . Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nature Genetics, 2017,49(5):765-774.
[16] SHIMADA T, ENDO T, FUJII H, NAKANO M, SUGIYAMA A, DAIDO G, OHTA S, YOSHIOKA T, OMURA M . MITE insertion- dependent expression of CitRKD1 with a RWP-RK domain regulates somatic embryogenesis in citrus nucellar tissues. BMC Plant Biology, 2018,18:166.
[17] 王炯, 龚桂芝, 彭祝春, 李一兵, 王艳杰, 洪棋斌 . 基于COS Marker 分析柑橘属及其近缘、远缘属植物的遗传与进化. 中国农业科学, 2017,50(2):320-331.
WANG J, GONG G Z, PENG Z C, LI Y B, WANG Y J, HONG Q B . Genetic and phylogenetic relationships among citrus and its close and distant relatives based on COS Marker. Scientia Agricultura Sinica, 2017,50(2):320-331. (in Chinese)
[18] TOLLY I . Commonsense Citrus. A Hands-on Guide to Propagation & Planting. Openbook Howden Print & Design (ISBN 978-0-646- 52065-0), 2017: 148-151.
[19] 中国农业科学院柑桔研究所. 柑桔单胚类型的调查. 柑桔科技通讯, 1975(4):1-5.
Citrus Research Institute, Chinese Academy of Agricultural Sciences. Survey of mono-embryonic citrus genotypes. Letters of Citrus Science and Technology, 1975(4):1-5. (in Chinese)
[20] 戴胜根 . 培育柑桔优质嫁接苗的关键技术. 中国柑桔, 1995,24(2):26-27.
DAI S G . The key techniques of propagating high quality citrus nursery trees. China Citrus, 1995,24(2):26-27. (in Chinese)
[21] 王炯 . 基于COS Marker构建柑橘连锁图谱及作图群体的光合特性研究[D]. 重庆: 西南大学, 2017.
WANG J . Citrus linkage map construction based on COS marker and photosynthetic characteristics research of the mapping population[D]. Chongqing: Southwest University, 2017. ( in Chinese)
[22] 朱世平, 江东, 洪棋斌, 龚桂芝, 刘小丰, 赵晓春 . 柑橘砧木育种研究进展. 中国南方果树, 2013,42(2):30-34.
ZHU S P, JIANG D, HONG Q B, GONG G Z, LIU X F, ZHAO X C . The research progress of citrus rootstock breeding. South China Fruits, 2013,42(2):30-34. (in Chinese)
[23] LI W B, ZHANG Y N, LIU G G, HE S W . Morphological and isozymic analysis of open-pollinated wild citrus rootstock seedlings// Proceedings of the International Citrus Symposium. Guangzhou, 1990: 253-259.
[24] 朱世平, 陈娇, 刘小丰, 曹立, 陆智明, 赵晓春 . 15种柑橘砧木出苗期耐盐碱性评价. 西南大学学报(自然科学版), 2014,36(6):47-52.
ZHU S P, CHEN J, LIU X F, CAO L, LU Z M, ZHAO X C . Evaluation of salinity and alkalinity tolerances of 15 citrus rootstocks by in vitro culture. Journal of Southwest University (Natural Science Edition), 2014,36(6):47-52. (in Chinese)
[25] 洪棋斌, 向素琼, 陈克玲, 陈力耕 . 两对互补的显性基因控制着柑桔属和枳属的无融合生殖. 遗传学报, 2001,28(11) : 1042-1047.
HONG Q B, XIANG S Q, CHEN K L, CHEN L G . Two complementary dominant genes controlling apomixis in genus Citrus and Poncirus. Acta Genetica Sinica, 2001,28(11):1042-1047. (in Chinese)
[26] SYKES S R . Characterization of citrus rootstock germplasm introduced as seeds to Australia from the People’s Republic of China. Scientia Horticulturae, 2011,127(3):298-304.
[27] XIANG C, ROOSE M L . Frequency and characteristics of nucellar and zygotic seedlings in 12 citrus rootstocks. Scientia Horticulturae, 1988,37:47-59.
[28] 洪棋斌, 李喜庆, 江东, 陈竹生, 向素琼, 龚桂芝, 叶庆亮 . 单胚清见橘橙×椪柑产生高比例多胚种子及多胚有性的分子检测. 中国农业科学, 2003,36(7):829-833.
HONG Q B, LI X Q, JIANG D, CHEN Z S, XIANG S Q, GONG G Z, YE Q L . High ratio of polyembryonic seeds in monoembryony Kiyomi × Ponkan and molecular evidences against asexual origins for polyembryonies. Scientia Agricultura Sinica, 2003,36(7):829-833. (in Chinese)
[29] SCALON S D P Q, MUSSURY R M, RIGONI M R, FILHO H S . Initial growth of Bombacopsis glabra (Pasq.) A. Robyns seedlings under shading conditions. Revista Árvore, 2003,27:753-758.
[30] KISHORE K, MONIKA N, RINCHEN D, LEPCHA B, PANDEY B . Polyembryony and seedling emergence traits in apomictic citrus. Scientia Horticulturae, 2012,138:101-107.
[1] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[2] FAN Wei-guo, LUO Yan. Growth Status, Root Morphology andPhysiologicalCharacteristics of Four Citrus Rootstocks Under Different Phosphorus Levels [J]. Scientia Agricultura Sinica, 2015, 48(3): 534-545.
[3] WANG Zhen, LI Jiu-Sheng, ZHANG Hang, LI Yan-Feng. Analyzing the Influence of Drip Irrigation Uniformity on Spring Maize Yield Using the Spatial Effect Model [J]. Scientia Agricultura Sinica, 2013, 46(23): 4905-4915.
[4] ZHANG Hang, LI Jiu-Sheng. The Effects of Drip Irrigation Uniformity on Spatial and Temporal Distributions of Water and Nitrogen in Soil for Spring Maize in North China Plain [J]. Scientia Agricultura Sinica, 2012, 45(19): 4004-4013.
[5] LIANG Hui-Zhen, YU Yong-Liang, YANG Hong-Qi, ZHANG Hai-Yang, DONG Wei, LI Cai-Yun, GONG Peng-Tao, LIU Xue-Yi, FANG Xuan-Jun. Genetic Analysis and QTL Mapping of Pod-Seed Traits in Soybean Under Different Environments [J]. Scientia Agricultura Sinica, 2012, 45(13): 2568-2579.
[6] ,,,. Responses of Nitrogen Uptake and Yield of Winter Wheat to Nonuniformity of Sprinkler Fertigation [J]. Scientia Agricultura Sinica, 2005, 38(08): 1600-1607 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!