Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3841-3853.doi: 10.3864/j.issn.0578-1752.2022.19.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Characterization of Chilled Mutton by ATP from Different Sources

SU YuanYuan1(),ZHANG DeQuan1,GU MingHui1,ZHANG ChunJuan1,2,LI ShaoBo1,ZHENG XiaoChun1(),CHEN Li1()   

  1. 1Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
    2School of Food and Wine, Ningxia University, Yinchuan 750021
  • Received:2022-02-24 Accepted:2022-06-06 Online:2022-10-01 Published:2022-10-10
  • Contact: XiaoChun ZHENG,Li CHEN E-mail:suy2021@126.com;group2_meat@163.com;chenliwork@126.com

Abstract:

【Objective】 In order to explore a new method for predicting the freshness of chilled mutton, the changes of adenosine triphosphate (ATP in meat, microbial ATP and ATP of meat surface) from different sources during storage were systematically studied, then the ATP that could characterize the change of chilled mutton was screened, and finally the prediction models for the total viable counts and volatile base nitrogen were established. 【Method】 The longissimus dorsi muscle of Small Tailed Han sheep was stored in air sealed packaging at 0℃ for 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, and 21 days, respectively. The freshness indexes (pH, color, volatile base nitrogen, and total viable counts) and ATP from three sources (ATP in meat, microbial ATP, and ATP of meat surface) of chilled mutton were analyzed during storage. The changes of ATP from different sources were evaluated, and the predictive models of freshness indicators were built. 【Result】 The freshness index of total viable counts and volatile base nitrogen in chilled mutton showed an upward trend during storage, and both of them exceeded the national standard limit after 17 days; the ATP in meat showed a decreasing trend, while the microbial ATP and the ATP of meat surface were increased, which was consistent with the change trend of the freshness index; the correlation coefficients (R) between ATP in meat, microbial ATP, ATP of meat surface and total viable counts, total volatile base nitrogen were -0.399, 0.910, 0.943 and -0.357, 0.725, 0.907, respectively. The optimal model for predicting the total viable counts in chilled mutton by ATP of meat surface was Boltzmann, which the formula was TVC (lg cfu/g)=7.649-4.069/(1+exp(x-5.807)/0.632), (R2 =0.903, P<0.001); the optimal model for predicting total volatile base nitrogen in chilled mutton by ATP of meat surface was Expedc1, which the formula was TVB-N (mg/100 g)=2.493*exp(x/3.745)+ 3.057 (R2=0.888, P<0.001). 【Conclusion】 The results showed that the ATP of meat surface of chilled mutton had the significant positive correlations with the total viable counts and volatile basic nitrogen, and then confirmed that the ATP of meat surface could be used as an indicator to characterize the freshness of chilled mutton. The optimal prediction model of the total viable counts and volatile base nitrogen could provide a new idea for rapid detection of chilled mutton freshness.

Key words: chilled mutton, ATP of meat surface, prediction model, freshness

Table 1

The change of color and pH of chilled mutton during storage"

贮藏天数
Storage time (d)
指标 Index
L* a* b* pH
0 36.72±1.99b 11.09±0.66ef 9.75±0.98b 5.54±0.02c
1 42.41±2.02b 11.25±0.80def 13.61±1.53a 5.56±0.03c
3 38.32±0.74b 14.27±0.44ab 11.42±1.96ab 5.66±0.04bc
5 40.89±0.6b 12.47±0.22bcde 12.86±0.52a 5.69±0.15bc
7 41.02±0.82b 14.53±1.05a 12.58±0.75a 5.73±0.07bc
9 41.36±0.76b 13.60±1.04abc 12.89±1.27a 5.85±0.10b
11 41.78±0.96b 13.20±2.26abcd 12.06±0.61ab 5.98±0.17a
13 41.85±0.41b 12.17±0.44cde 12.89±1.31a 5.75±0.17bc
15 45.55±0.01a 11.57±1.19de 13.71±1.89a 6.01±0.13a
17 38.43±2.54b 9.52±0.50f 11.98±1.94ab 6.01±0.26a
19 41.08±0.83b 10.84±1.21ef 11.77±0.82ab 5.69±0.08bc
21 37.68±0.60b 10.51±1.58ef 11.83±1.79ab 6.02±0.14a

Fig. 1

The change of TVB-N of chilled mutton during storage Different lowercase letters indicate significant differences at different storage time (P<0.05). The same as below"

Fig. 2

The change of TVC of chilled mutton during storage"

Fig. 3

The change of ATP in meat of chilled mutton during storage"

Fig. 4

The standard curve of ATP"

Fig. 5

The change of microbial ATP of chilled mutton during storage"

Fig. 6

The change of ATP of meat surface of chilled mutton during storage"

Table 2

Correlation analysis"

指标
Index
菌落总数
TVC
挥发性盐基氮
TNB-N
微生物ATP
Microbial ATP
表面ATP
ATP of meat surface
肉中ATP
ATP in meat
菌落总数 TVC 1
挥发性盐基氮 TVB-N 0.965** 1
微生物ATP Microbial ATP 0.910** 0.725** 1
表面ATP ATP of meat surface 0.943** 0.907** 0.979** 1
肉中ATP ATP in meat -0.399 -0.357 -0.371 -0.455 1

Table 3

Mathematical simulation"

预测名称 Forecast name 拟合模型 Fitted model 模型公式 Model formula 决定系数 R2
表面ATP预测
TVC(n=72)
Boltzmann y=A2+(A1-A2)/(1+exp((x-x0)/dx)) 0.903
Logistic y=A1+Section1+Section2 0.897
Line y=ax+b 0.694
DoseResp y=A1+(A2-A1)/(1+10^((LOGx0-x)*p)) 0.899

Fig. 7

Boltzmann simulation model for predicting TVC of chilled mutton by ATP of meat surface Figure a shows the Boltzmann fitting model for predicting TVC by ATP of meat surface of chilled mutton, and Figure b shows the linear relationship between the measured and predicted TVC in the fitting model"

Table 4

Mathematical simulation"

预测名称
Forecast name
拟合模型
Fitted model
模型公式
Model formula
决定系数
R2
表面ATP预测
TVB-N(n=72)
Line y=ax+b 0.852
ExpDec1 y=a*exp(x/b)+c 0.888
Exp2P y=a*x^b 0.885
Exponential y=y0+A*exp(R0*x) 0.885

Fig. 8

ExpDec1 simulation model for predicting TVB-N of chilled mutton by ATP of meat surface Figure a shows the ExpDec 1 fitting model for predicting TVB-N by ATP of meat surface of chilled mutton, and Figure b shows the linear relationship between the measured and predicted TVB-N values in the fitting model"

[1] 中国冷藏肉行业发展现状分析与投资趋势研究报告(2022-2029年). 观研报告网, https://www.sohu.com/a/521800223_121222943, 2022-02-10.
Development and investment trends of frozen meat industry in China (2022-2029). https://www.sohu.com/a/521800223_121222943, 2022-02-10.
[2] 张晋豪, 王浩东, 邵良婷, 徐幸莲, 王虎虎. 生鲜肉新鲜度快速新型表征技术研究进展. 食品科学, 2022, 43(13): 210-217.
ZHANG J H, WANG H D, SHAO L T, XU X L, WANG H H. Progress and trends in rapid novel technologies for characterization of fresh meat freshness: A review. Food Science, 2022, 43(13): 210-217. (in Chinese)
[3] HYUN B, CHA H G, LEE N, YUM S, BAEK S H, SHIN K. Development of an ATP assay for rapid onboard testing to detect living microorganisms in ballast water. Journal of Sea Research, 2018, 133: 73-80. doi: 10.1016/j.seares.2017.03.003.
doi: 10.1016/j.seares.2017.03.003
[4] TRŠAN M, VEHOVC M, SEME K, SRČIČ S. Evaluation of ATP bioluminescence for monitoring surface hygiene in a hospital pharmacy cleanroom. Journal of Microbiological Methods, 2020, 168: 105785. doi: 10.1016/j.mimet.2019.105785.
doi: 10.1016/j.mimet.2019.105785
[5] SCIORTINO C V, GILES R A. Validation and comparison of three adenosine triphosphate luminometers for monitoring hospital surface sanitization: A Rosetta Stone for adenosine triphosphate testing. American Journal of Infection Control, 2012, 40(8): e233-e239. doi: 10.1016/j.ajic.2012.04.318.
doi: 10.1016/j.ajic.2012.04.318
[6] SHAMA G, MALIK D J. The uses and abuses of rapid bioluminescence-based ATP assays. International Journal of Hygiene and Environmental Health, 2013, 216(2): 115-125. doi: 10.1016/j.ijheh.2012.03.009.
doi: 10.1016/j.ijheh.2012.03.009 pmid: 22541898
[7] AMODIO E, DINO C. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: A review of the published literature (1990-2012). Journal of Infection and Public Health, 2014, 7(2): 92-98. doi: 10.1016/j.jiph.2013.09.005.
doi: 10.1016/j.jiph.2013.09.005 pmid: 24231159
[8] ROADY L. The role of ATP luminometers in infection control. Infection Control and Hospital Epidemiology, 2015, 36(11): 1367. doi: 10.1017/ice.2015.209.
doi: 10.1017/ice.2015.209 pmid: 26387800
[9] ZHANG K J, PAN R J, ZHANG T Q, XU J, ZHOU X Y, YANG Y L. A novel method: Using an adenosine triphosphate (ATP) luminescence- based assay to rapidly assess the biological stability of drinking water. Applied Microbiology and Biotechnology, 2019, 103(11): 4269-4277. doi: 10.1007/s00253-019-09774-3.
doi: 10.1007/s00253-019-09774-3
[10] HAMMES F, GOLDSCHMIDT F, VITAL M, WANG Y, EGLI T. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Research, 2010, 44(13): 3915-3923. doi: 10.1016/j.watres.2010.04.015.
doi: 10.1016/j.watres.2010.04.015 pmid: 20605621
[11] BAUTISTA D A. ATP Bioluminescence. Encyclopedia of Food Microbiology. 2nd ed. 2014: 97-104. doi: 10.1016/B978-0-12-384730-0.00013-6.
doi: 10.1016/B978-0-12-384730-0.00013-6
[12] 舒柏华, 孙丹陵, 王胜利, 徐顺清. 肉类食品细菌污染生物发光快速分析技术研究. 中国公共卫生, 2003, 19(4): 483-484. doi: 10.3321/j.issn:1001-0580.2003.04.049.
doi: 10.3321/j.issn:1001-0580.2003.04.049
SHU B H, SUN D L, WANG S L, XU S Q. Rapid bioluminescent technique to detect bacteria in meat. Chinese Journal of Public Health, 2003, 19(4): 483-484. doi: 10.3321/j.issn:1001-0580.2003.04.049. (in Chinese)
doi: 10.3321/j.issn:1001-0580.2003.04.049
[13] RATPHITAGSANTI W, PARK E, LEE C S, WU R Y A, LEE J. High-throughput detection of spore contamination in food packages and food powders using tiered approach of ATP bioluminescence and real-time PCR. LWT-Food Science and Technology, 2012, 46(1): 341-348. doi: 10.1016/j.lwt.2011.09.003.
doi: 10.1016/j.lwt.2011.09.003
[14] WADHAWAN T, MVEVOY J, PRUSS B M, KHAN E. Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzyme and Microbial Technology, 2010, 47(4): 166-173. doi: 10.1016/j.enzmictec.2010.05.003.
doi: 10.1016/j.enzmictec.2010.05.003
[15] 李海月. ATP荧光技术快速检测8种常见食源性致病菌研究[D]. 郑州: 河南工业大学, 2017.
LI H Y. Study on rapid detection of eight kinds of food-born Pathogen by Luminescence method[D]. Zhengzhou: Henan University of Technology, 2017. (in Chinese)
[16] BAUTISTA D A, SPRUNG D W, BARBUT S, GRIFFITHS M W. A sampling regime based on an ATP bioluminescence assay to assess the quality of poultry carcasses at critical control points during processing. Food Research International, 1997, 30(10): 803-809. doi: 10.1016/S0963-9969(98)00049-0.
doi: 10.1016/S0963-9969(98)00049-0
[17] OTO N, OSHITA S, MAKINO Y, KAWAGOE Y, SUGIYAMA J, YOSHIMURA M.Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy. Meat Science, 2013, 93(3): 579-585. doi: 10.1016/j.meatsci.2012.11.010.
doi: 10.1016/j.meatsci.2012.11.010 pmid: 23273467
[18] SZERMAN N, RAO W L, LI X, YANG Y, VAUDAGNA S R, DE QUAN ZHANG. Effects of the application of dense phase carbon dioxide treatments on technological parameters, physicochemical and textural properties and microbiological quality of lamb sausages. Food Engineering Reviews, 2015, 7(2): 241-249. doi: 10.1007/s12393-014-9092-9.
doi: 10.1007/s12393-014-9092-9
[19] LI X, ZHANG Y, LI Z, LI M, LIU Y, ZHANG D. The effect of temperature in the range of -0.8 to 4℃ on lamb meat color stability. Meat Science, 2017, 134: 28-33. doi: 10.1016/j.meatsci.2017.07.010.
doi: 10.1016/j.meatsci.2017.07.010
[20] 王柏辉, 韩利伟, 王德宝, 杜瑞, 刘畅, 要铎, 任军, 靳烨. 绒山羊宰后成熟过程中羊肉品质和风味的变化分析. 食品工业科技, 2020(8): 230-235.
WANG B H, HAN L W, WANG D B, DU R, LIU C, YAO D, REN J, JIN Y. Analysis of change of quality and flavor in cashmere goat meat during postmortem aging. Science and Technology of Food Industry, 2020(8): 230-235. (in Chinese)
[21] 罗晓蓉, 陈晨枫, 丁欲晓, 徐炜新. 基于Origin软件正确评定韧脆性转变温度. 物理测试, 2010, 28(2): 37-39, 43. doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005.
doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005
LUO X R, CHEN C F, DING Y X, XU W X. Evaluation of ductile-brittle transition temperature based on origin software. Physics Examination and Testing, 2010, 28(2): 37-39, 43. doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005. (in Chinese)
doi: 10.13228/j.boyuan.issn1001-0777.2010.02.005
[22] 柏松, 杨英. 食品微生物检验检测中的新技术研究. 现代食品, 2019(10): 173-175.
BAI S, YANG Y. Study on new technologies in food microbial inspection and detection. Modern Food, 2019(10): 173-175. (in Chinese)
[23] SKOTTRUP P D, NICOLAISEN M, JUSTESEN A F.Towards on-site pathogen detection using antibody-based sensors. Biosensors & Bioelectronics, 2008, 24(3): 339-348. doi: 10.1016/j.bios.2008.06.045.
doi: 10.1016/j.bios.2008.06.045
[24] 胡斐斐, 钱书意, 黄峰, 姜薇, 强宇, 江峰, 胡海梅, 李侠, 张春晖. 低压静电场辅助短期冻藏对猪肉品质的影响. 中国农业科学, 2021, 54(9): 1993-2005.
HU F F, QIAN S Y, HUANG F, JIANG W, QIANG Y, JIANG F, HU H M, LI X, ZHANG C H. Effect of low voltage electrostatic field-assisted short-term frozen storage on quality of pork. Scientia Agricultura Sinica, 2021, 54(9): 1993-2005. (in Chinese)
[25] 杜曼婷, 李培迪, 李欣, 李铮, 陈丽, 田建文, 张德权. 冰温贮藏结合不同包装方式对羊肉品质的影响. 食品工业科技, 2016, 37(14): 324-328, 343.
DU M T, LI P D, LI X, LI Z, CHEN L, TIAN J W, ZHANG D Q. Effects of controlled freezing point combined with package on mutton quality during storage. Science and Technology of Food Industry, 2016, 37(14): 324-328, 343. (in Chinese)
[26] HUDSON N J. Mitochondrial treason: A driver of pH decline rate in post-mortem muscle? Animal Production Science, 2012, 52(12): 1107-1110. doi: 10.1071/AN12171.
doi: 10.1071/AN12171
[27] HUFF LONERGAN E, ZHANG W G, LONERGAN S M. Biochemistry of postmortem muscle-lessons on mechanisms of meat tenderization. Meat Science, 2010, 86(1): 184-195. doi: 10.1016/j.meatsci.2010.05.004.
doi: 10.1016/j.meatsci.2010.05.004
[28] ALIANI M, FARMER L J, KENNEDY J T, MOSS B W, GORDON A. Post-slaughter changes in ATP metabolites, reducing and phosphorylated sugars in chicken meat. Meat Science, 2013, 94(1): 55-62. doi: 10.1016/j.meatsci.2012.11.032.
doi: 10.1016/j.meatsci.2012.11.032 pmid: 23376434
[29] 任驰. 贮藏温度和时间对宰后羊肉蛋白质磷酸化的影响[D]. 北京: 中国农业科学院, 2019.
REN C. Effects of storage temperature and time on protein phosphorylation in postmortem ovine muscle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[30] YOSHIHIRO Y, MORIHIKO S, FUMIO K, MASAO K. Effects of storage temperature on postmortem changes of ATP and its related compounds and freshness indices in oyster tissues. Fisheries Science, 1994, 60(2): 217-223. doi: 10.2331/fishsci.60.217.
doi: 10.2331/fishsci.60.217
[31] LIU Z N, ZHONG Y H, HU Y, YUAN L, LUO R, CHEN D, WU M, HUANG H, LI Y X. Fluorescence strategy for sensitive detection of adenosine triphosphate in terms of evaluating meat freshness. Food Chemistry, 2019, 270: 573-578. doi: 10.1016/j.foodchem.2018.07.041.
doi: S0308-8146(18)31180-4 pmid: 30174088
[32] OSHITA S, AL-HAQ M, KAWAGISHI S, MAKINO Y, KAWAGOE Y, YE X J, SHINOZAKI S, HIRUMA N. Monitoring of ATP and viable cells on meat surface by UV-Vis reflectance spectrum analysis. Journal of Food Engineering, 2011, 107(2): 262-267. doi: 10.1016/j.jfoodeng.2011.06.007.
doi: 10.1016/j.jfoodeng.2011.06.007
[33] SHIRAI H, OSHITA S, MAKINO Y. Detection of fluorescence signals from ATP in the second derivative excitation-emission matrix of a pork meat surface for cleanliness evaluation. Journal of Food Engineering, 2016, 168: 173-179. doi: 10.1016/j.jfoodeng.2015.07.032.
doi: 10.1016/j.jfoodeng.2015.07.032
[34] OTO N, OSHITA S, KAWAGISHI S, MAKINO Y, KAWAGOE Y, AL-HAQ M, SHINOZAKI S, HIRUMA N. Non-destructive estimation of ATP contents and plate count on pork meat surface by UV-Vis reflectance spectrum analysis. Journal of Food Engineering, 2012, 110(1): 9-17. doi: 10.1016/j.jfoodeng.2011.12.017.
doi: 10.1016/j.jfoodeng.2011.12.017
[1] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[2] HU FeiFei,QIAN ShuYi,HUANG Feng,JIANG Wei,QIANG Yu,JIANG Feng,HU HaiMei,LI Xia,ZHANG ChunHui. Effect of Low Voltage Electrostatic Field-Assisted Short-Term Frozen Storage on Quality of Pork [J]. Scientia Agricultura Sinica, 2021, 54(9): 1993-2005.
[3] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[4] ZHU ZhiFeng,LIU Ping,XU RangWei,CHEN ChuanWu,DENG ChongLing,NIU Ying,ZHU Yi,WANG PengWei,DENG XiuXin,CHENG YunJiang. Influence of Plastic Film Covering of Tree Canopy on Fruit Postharvest Storage Performance in Shatangju Tangerine [J]. Scientia Agricultura Sinica, 2021, 54(12): 2630-2643.
[5] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[6] XIANG FangLin,LI XinGe,MA JiFeng,LIU XiaoJun,TIAN YongChao,ZHU Yan,CAO WeiXing,CAO Qiang. Using Canopy Time-Series Vegetation Index to Predict Yield of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(18): 3679-3692.
[7] FU LiXia,MA Tao,DIAO QiYu,CHENG ShuRu,SONG YaZhe,SUN ZhuoLin. Establishment of a Prediction Model of Metabolizable Protein of Concentrate for Mutton Sheep [J]. Scientia Agricultura Sinica, 2019, 52(3): 539-549.
[8] ZHOU Yan, DONG LiFeng, DENG KaiDong, XU GuiShan, DIAO QiYu. Development of Models of Methane Emissions from Growing Sheep [J]. Scientia Agricultura Sinica, 2019, 52(10): 1797-1806.
[9] TAN ChangWei, DU Ying, TONG Lu, ZHOU Jian, LUO Ming, YAN WeiWei, CHEN Fei. Comparison of the Methods for Predicting Wheat Yield Based on Satellite Remote Sensing Data at Anthesis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3101-3109.
[10] WANG Hui, SUN Qi, LIU Lu, ZHANG Shu-Wen, DUAN Yu-Quan, Lu Jia-Ping . Establishment and Test of Prediction Model for UHT Milk Shelf Life [J]. Scientia Agricultura Sinica, 2013, 46(3): 586-594.
[11] JIANG Hai-yang,WU Cong-ming,DING Shuang-yang,ZHAO Si-jun,XU Fei,LI Jian-cheng,XIA Xi,LIU Jin-feng,SHEN Jian-zhong
. Study on Prediction Model of Eprinomectin Residue in Bovine Tissues After Subcutaneous Administration#br# [J]. Scientia Agricultura Sinica, 2010, 43(13): 2813-2819 .
[12] HUANG Fen,ZHU Yan,JIANG Dong,JING Qi,CAO Wei-xing
. Spatial Variation Analysis of Wheat Grain Quality Based on Model and GIS#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3087-3095 .
[13] Yangzai-qiang . Predicting the Leaf Area of Greenhouse Single Flower Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2007, 40(11): 2569-2574 .
[14] ,. An Ecological Model for Predicting Grain Protein Content in Winter Wheat [J]. Scientia Agricultura Sinica, 2005, 38(04): 684-691 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!