Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (13): 2654-2666.doi: 10.3864/j.issn.0578-1752.2022.13.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak

RAN HongBiao(),ZHAO LiLing,WANG Hui(),CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng()   

  1. Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041
  • Received:2021-05-12 Accepted:2021-12-16 Online:2022-07-01 Published:2022-07-08
  • Contact: Hui WANG,JinCheng ZHONG E-mail:haluxi_7@163.com;wanghui892321@sina.cn;zhongjincheng518@126.com

Abstract:

【Objective】The aim of this study was to analyze the effects of lncFAM200B in the lipid deposition in intramuscular preadipocytes of yak, which laid a foundation for further mechanism research. 【Method】 The longissimus dorsi muscle tissue of yak was collected and used to separate intramuscular preadipocytes. The adenovirus mediated overexpression technology was used to realize the overexpression of lncFAM200B, and the siRNA interference technology was used to analyze the function of lncFAM200B. The mRNA expression level of fat differentiation marker (PPARγ, C/EBPα and AP2) and the potential target (SIRT1 and PTEN) genes of lncFAM200B were detected via real-time fluorescent quantitative PCR (RT-qPCR). Oil red O staining, triacylglycerol (TAG) determination and CCK-8 determination methods were used to detect intracellular lipid droplet deposition and preadipocyte proliferation.【Result】The overexpression of lncFAM200B not only significantly increased the fat differentiation genes (C/EBPα and AP2, P<0.05) expression level, but also increased the lipid droplets deposition with large lipid droplets in the cells during induced differentiation. Conversely, lncFAM200B interference reduced the expression of PPARγ, C/EBPα and AP2 (P<0.05), and lipid droplet deposition. Furthermore, the triacylglycerol content after lncFAM200B overexpression 4 days was significantly higher than that of the control group (P<0.05), but lower after siRNA interference 6 days. Moreover, the SIRT1 levels increased with time was first decreased and then increased trend, and the PTEN had the opposite trend during lncFAM200B overexpression, and the opposite results of the two genes obtained during lncFAM200B interference. In addition, the results of CCK-8 experiment showed that there was a significant difference in cell proliferation activity both in overexpression or interference group after 72 hours. 【Conclusion】lncFAM200B could regulate yak adipose differentiation by influencing the expression of fat differentiation marker (C/EBPα and AP2), and further affect the triacylglycerol content and the lipid droplet deposition, but the detail mechanism need to be further research efforts.

Key words: yak, lncFAM200B, intramuscular preadipocytes, overexpression, interference

Table 1

The primer sequence for RT-qPCR"

基因名称 Gene name 登录号 Login ID 引物序列 (5′-3′) Primer sequence (5′-3′) 产物长度 Product size (bp)
lncFAM200B F:GCTTCCCATCAGAAAGTATCAGG
R:TTGTGTTGGTAGCTTGACTACG
141
GAPDH NM_001034034.2 F:CCACGAGAAGTATAACAACACC
R:GTCATAAGTCCCTCCACGAT
120
SIRT1 XM_024986766.1 F:TGGGGTTTCTGTTTCTTGTGG
R:CTTGAGGATCTGGAAGGTCTGG
98
PTEN NM_001319898.1 F:GGAAAGGGACGAACTGGTGTAA
R:TGTCTCTGGTCCTTACTTCCCC
109
AP2 XM_005897260 F:GGAAAGTCAAGAGCATCGTAAAC
R:CACCATCTTATCATCCACGAGTT
110
C/EBPα NM_176784.2 F:GTGGACAAGAACAGCAACGAGTA
R:GCGGTCATTGTCACTGGTCAG
138
PPARγ NM_181024.2 F:CGTGGACCTTTCTATGATGGA
R:GCTCTTGGGAACGGAATG
117

Fig. 1

Cell adhesion (100×) A: Cell adherent after 1 h; B: Cell adherent after 24 h; C: Cell adherent after 6 days; D: Cell adherent after 8 days"

Fig. 2

The results of Oil Red O staining at different time after preadipocyte differentiation (200×) A: Differentiation day 0, B: Differentiation day 2, C: Differentiation day 4, D: Differentiation day 6, E: Differentiation day 8; F: Absorbance of Oil Red in different differentiation time. The same lowercase letter in picture F indicates that the difference is not significant (P>0.05), the different lowercase letters indicate significant differences (P<0.05). The same as Fig.3"

Fig. 3

Detection of triglyceride in preadipocyte differentiation at different time"

Fig. 4

RT-qPCR results of preadipocyte differentiation at different time points"

Fig. 5

Screening of experimental conditions A: Verification of restriction endonuclease digestion of overexpression vector, M: 1kb plus DNA Ladder; 1: Single enzyme digestion of PacⅠ; 2: Intact plasmid. B: Fluorescence detection of preadipocytes transfected with different MOI values(100×). C: Interference efficiency determination of siRNAs, the same letter indicates that the difference is not significant (P>0.05), the different letters indicate significant differences (P<0.05)"

Fig. 6

Effect of lncFAM200B overexpression on the expression of genes involved in lipid metablosim"

Fig. 7

Effect of lncFAM200B overexpression on the lipid droplet deposition A: The effects of lncFAM200B overexpression on lipid deposition(200×), a: Negative control group; b: Overexpression group. B: Detection of Oil Red absorption at different time after overexpression"

Fig. 8

The changes of triglyceride content after lncFAM200B overexpression"

Fig. 9

Effect of lncFAM200B interference on the expression of target genes"

Fig. 10

Effect of lncFAM200B interfering on the lipid droplet deposition A: The effects of lncFAM200B interfering on lipid deposition(200×), a: negative control group; b: interfering group. B: Detection of Oil Red absorption at different time after interfering"

Fig. 11

Detection of triglyceride content in cells after lncFAM200B interference"

Fig. 12

CCK-8 detection results A: Overexpression results; B: siRNA interference results. None * indicates the difference is not significant (P>0.05), * indicate significant differences (P<0.05)"

[19] WANG G Q. The role and mechanism of adiponectin as lncRNA in preadipocytes diffrentiation[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[20] 崔胜, 林亚秋, 许晴, 朱江江, 王永. 干扰Smad3促进山羊脂肪细胞分化. 畜牧兽医学报, 2020, 51(3): 475-489. doi: 10.11843/j.issn.0366-6964.2020.03.008.
doi: 10.11843/j.issn.0366-6964.2020.03.008
CUI S, LIN Y Q, XU Q, ZHU J J, WANG Y. Interfering Smad3 promotes goat adipocyte differentiation. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 475-489. doi: 10.11843/j.issn.0366-6964.2020.03.008. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2020.03.008
[21] 张萌萌, 魏胜娟, 王艺如, 王深圳, 郑月英, 郑豪, 颜培实. 牛肌内前体脂肪细胞的分离培养及分化相关基因的表达规律研究. 畜牧与兽医, 2018, 50(5): 1-6.
ZHANG M M, WEI S J, WANG Y R, WANG S Z, ZHENG Y Y, ZHENG H, YAN P S. Primary culture and expression of differentiation-related genes in bovine intramuscular preadipocytes. Animal Husbandry & Veterinary Medicine, 2018, 50(5): 1-6. (in Chinese)
[22] 郑月英, 魏胜娟, 董书圣, 张萌萌, 颜培实. 梅山猪前体脂肪细胞的分离培养及分化相关基因的表达规律研究. 畜牧与兽医, 2017, 49(6): 9-14.
ZHENG Y Y, WEI S J, DONG S S, ZHANG M M, YAN P S. Primary culture and differentiation related gene expressions of Meishan pig preadipocytes. Animal Husbandry & Veterinary Medicine, 2017, 49(6): 9-14. (in Chinese)
[23] 徐小春, 陈文娟, 赵瑞, 马森. 滩羊肌内前体脂肪细胞的分离培养及分化相关基因的表达规律研究. 家畜生态学报, 2020, 41(11): 35-41. doi: 10.3969/j.issn.1673-1182.2020.11.007.
doi: 10.3969/j.issn.1673-1182.2020.11.007
XU X C, CHEN W J, ZHAO R, MA S. Culture and induced differentiation of intramuscular preadipocytes and expression of related genes from tan sheep. Acta Ecologae Animalis Domastici, 2020, 41(11): 35-41. doi: 10.3969/j.issn.1673-1182.2020.11.007. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2020.11.007
[24] WANG L, NA W, WANG Y X, WANG Y B, WANG N, WANG Q G, LI Y M, LI H. Characterization of chicken PPARγ expression and its impact on adipocyte proliferation and differentiation. Hereditas (Beijing), 2012, 34(4): 454-464. doi: 10.3724/sp.j.1005.2012.00454.
doi: 10.3724/sp.j.1005.2012.00454
[25] ZHANG Y F, WU X Y, LIANG C N, BAO P J, DING X Z, CHU M, JIA C J, GUO X, YAN P. microRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens. Gene, 2018, 650: 41-48. doi: 10.1016/j.gene.2018.01.054.
doi: 10.1016/j.gene.2018.01.054
[26] 常永芳. bta-miR-2400对牦牛前体脂肪细胞增殖与分化的调控机制研究[D]. 兰州: 西北民族大学, 2020.
[1] HOCQUETTE J F, GONDRET F, BAÉZA E, MÉDALE F, JURIE C, PETHICK D W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal, 2010, 4(2): 303-319. doi: 10.1017/S1751731109991091.
doi: 10.1017/S1751731109991091
[2] 吕亚宁, 叶文文, 兰旅涛. 牛肌内脂肪沉积影响因素及相关基因研究进展. 中国草食动物科学, 2019, 39(4): 55-57. doi: 10.3969/j.issn.2095-3887.2019.04.012.
doi: 10.3969/j.issn.2095-3887.2019.04.012
[26] CHANG Y F. Study on the regulation mechanism of bta-miR-2400 in yak (Bos grunniens) preadipocyte proliferation and differentiation[D]. Lanzhou: Northwest University for Nationalities, 2020. (in Chinese)
[27] LUO G, HU S Q, LAI T F, WANG J, WANG L, LAI S J. miR-9-5p promotes rabbit preadipocyte differentiation by suppressing leptin gene expression. Lipids in Health and Disease, 2020, 19(1): 126. doi: 10.1186/s12944-020-01294-8.
doi: 10.1186/s12944-020-01294-8
[2] LÜ Y N, YE W W, LAN L T. Research progress on influencing factors and related genes of fat deposition in bovine muscle. China Herbivore Science, 2019, 39(4): 55-57. doi: 10.3969/j.issn.2095-3887.2019.04.012. (in Chinese)
doi: 10.3969/j.issn.2095-3887.2019.04.012
[3] 刘晓畅, 张寿, 孙宝忠, 谢鹏, 徐晨晨, 雷元华, 张松山, 参木友, 鲍宇红. 牦牛肉品质特性研究进展. 肉类研究, 2020, 34(11): 78-83. doi: 10.7506/rlyj1001-8123-20200917-230.
doi: 10.7506/rlyj1001-8123-20200917-230
[28] 蒋金航, 马云, 王新庄. PPARγ基因调控脂肪细胞分化的研究进展. 中国畜牧杂志, 2014, 50(9): 91-95. doi: 10.3969/j.issn.0258-7033.2014.09.020.
doi: 10.3969/j.issn.0258-7033.2014.09.020
JIANG J H, MA Y, WANG X Z. Recent advance in regulation of adipogenesis by PPARγ gene. Chinese Journal of Animal Science, 2014, 50(9): 91-95. doi: 10.3969/j.issn.0258-7033.2014.09.020. (in Chinese)
doi: 10.3969/j.issn.0258-7033.2014.09.020
[29] GUO X P, QIN M D, HONG H, XUE X F, FANG J, JIANG L H, KUANG Y T, GAO L. Circular RNA hsa_circ_0072309 inhibits the proliferation, invasion and migration of gastric cancer cells via inhibition of PI3K/AKT signaling by activating PPARγ/PTEN signaling. Molecular Medicine Reports, 2021, 23(5): 349. doi: 10.3892/mmr.2021.11988.
doi: 10.3892/mmr.2021.11988
[30] PICARD F, KURTEV M, CHUNG N, TOPARK-NGARM A, SENAWONG T, MACHADO DE OLIVEIRA R, LEID M, MCBURNEY M W, GUARENTE L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-Γ. Nature, 2004, 429(6993): 771-776. doi: 10.1038/nature02583.
doi: 10.1038/nature02583
[3] LIU X C, ZHANG S, SUN B Z, XIE P, XU C C, LEI Y H, ZHANG S S, SHEN M Y, BAO Y H. Progress in understanding quality characteristics of yak meat. Meat Research, 2020, 34(11): 78-83. doi: 10.7506/rlyj1001-8123-20200917-230. (in Chinese)
doi: 10.7506/rlyj1001-8123-20200917-230
[4] 蔡立. 中国牦牛. 北京: 农业出版社, 1992.
[31] ILBEIGI D, NOURBAKHSH M, PASALAR P, MESHKANI R, SHOKRI AFRA H, PANAHI G H, BORJI M, SHARIFI R. Nicotinamide phosphoribosyltransferase knockdown leads to lipid accumulation in HepG2 cells through the SIRT1-AMPK pathway. Cell Journal, 2020, 22(Suppl 1): 125-132. doi: 10.22074/cellj.2020.7013.
doi: 10.22074/cellj.2020.7013
[32] LI D M, CUI Y, WANG X J, LIU F, LI X L. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytotherapy Research: PTR, 2021, 35(3): 1416-1431. doi: 10.1002/ptr.6902.
doi: 10.1002/ptr.6902
[4] CAI L. Chinese Yak. Beijing: Agricultural Press, 1992. (in Chinese)
[5] CAI R, TANG G R, ZHANG Q, YONG W L, ZHANG W R, XIAO J Y, WEI C S, HE C, YANG G S, PANG W J. A novel lnc-RNA, named lnc-ORA, is identified by RNA-seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells, 2019, 8(5): 477. doi: 10.3390/cells8050477.
doi: 10.3390/cells8050477
[33] 马颖, 马玲, 马明. SIRT1通过增强分子伴侣介导的自噬降低细胞内脂质堆积改善非酒精性脂肪肝. 肝脏, 2020, 25(12): 1320-1322. doi: 10.14000/j.cnki.issn.1008-1704.2020.12.023.
doi: 10.14000/j.cnki.issn.1008-1704.2020.12.023
MA Y, MA L, MA M. SIRT1 improves nonalcoholic fatty liver disease by enhancing chaperone mediated autophagy(CMA)and reducing intracellular lipid accumulation. Chinese Hepatology, 2020, 25(12): 1320-1322. doi: 10.14000/j.cnki.issn.1008-1704.2020.12.023. (in Chinese)
doi: 10.14000/j.cnki.issn.1008-1704.2020.12.023
[6] CAI R, SUN Y M, QIMUGE N, WANG G Q, WANG Y Q, CHU G Y, YU T Y, YANG G S, PANG W J. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating Adiponectin mRNA translation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2018, 1863(4): 420-432. doi: 10.1016/j.bbalip.2018.01.005.
doi: 10.1016/j.bbalip.2018.01.005
[7] LI M X, SUN X M, CAI H F, SUN Y J, PLATH M, LI C J, LAN X Y, LEI C Z, LIN F P, BAI Y Y, CHEN H. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2016, 1859(7): 871-882. doi: 10.1016/j.bbagrm.2016.05.003.
doi: 10.1016/j.bbagrm.2016.05.003
[34] HUANG W, QUEEN N J, MCMURPHY T B, ALI S, CAO L. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Molecular Metabolism, 2019, 30: 48-60. doi: 10.1016/j.molmet.2019.09.008.
doi: 10.1016/j.molmet.2019.09.008
[35] 何洪炳. miR-148a-3p靶向PTEN促进家兔前体脂肪细胞分化[D]. 雅安: 四川农业大学, 2018.
[8] ZHANG Y, MA Y H, GU M Y, PENG Y D. lncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR-204- targeted SIRT1 in diabetic mice. International Journal of Molecular Medicine, 2020, 46(6): 2225-2234. doi: 10.3892/ijmm.2020.4741.
doi: 10.3892/ijmm.2020.4741
[9] WANG Z G, LUO Z C, DAI Z, ZHONG Y T, LIU X G, ZUO C Q. Long non-coding RNA lnc-OAD is required for adipocyte differentiation in 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications, 2019, 511(4): 753-758. doi: 10.1016/j.bbrc.2019.02.133.
doi: 10.1016/j.bbrc.2019.02.133
[35] HE H B. miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese)
[10] ZHANG S H, KANG Z H, SUN X M, CAO X K, PAN C Y, DANG R H, LEI C Z, CHEN H, LAN X Y. Novel lncRNA lncFAM200B: Molecular characteristics and effects of genetic variants on promoter activity and cattle body measurement traits. Frontiers in Genetics, 2019, 10: 968. doi: 10.3389/fgene.2019.00968.
doi: 10.3389/fgene.2019.00968
[11] 张思欢. 牛肌肉与脂肪发育相关lncRNA lncFAM200B的鉴定、启动子活性及遗传变异研究[D]. 杨凌:西北农林科技大学, 2017.
ZHANG S H. Identification, promoter activity and genetic variationof lncRNA lncFAM200B brelated to muscle and fat in cattle[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[12] ZHANG S H, KANG Z H, CAI H F, JIANG E H, PAN C Y, DANG R H, LEI C Z, CHEN H, LAN X Y. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. Journal of Cellular Physiology, 2021, 236(1): 601-611. doi: 10.1002/jcp.29887.
doi: 10.1002/jcp.29887
[13] WANG L G, ZHOU Z Y, ZHANG T, ZHANG L C, HOU X H, YAN H, WANG L X. IRLnc: A novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genomics, 2021, 22(1): 95. doi: 10.1186/s12864-020-07349-5.
doi: 10.1186/s12864-020-07349-5
[14] WANG J, CHEN M Y, CHEN J F, REN Q L, ZHANG J Q, CAO H, XING B S, PAN C Y. LncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1. BMC Molecular and Cell Biology, 2020, 21(1): 77. doi: 10.1186/s12860-020-00324-8.
doi: 10.1186/s12860-020-00324-8
[15] SUN Y M, CAI R, WANG Y Q, ZHAO R, QIN J, PANG W J. A newly identified LncRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals: An Open Access Journal from MDPI, 2020, 10(6): 926. doi: 10.3390/ani10060926.
doi: 10.3390/ani10060926
[16] ZHANG M, LI F, SUN J W, LI D H, LI W T, JIANG R R, LI Z J, LIU X J, HAN R L, LI G X, WANG Y B, TIAN Y D, KANG X T, SUN G R. LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p. Frontiers in Genetics, 2019, 10: 42. doi: 10.3389/fgene.2019.00042.
doi: 10.3389/fgene.2019.00042
[17] CAI H F, LI M X, JIAN W, SONG C C, HUANG Y Z, LAN X Y, LEI C Z, CHEN H. A novel lncRNA BADLNCR1 inhibits bovine adipogenesis by repressing GLRX5 expression. Journal of Cellular and Molecular Medicine, 2020, 24(13): 7175-7186. doi: 10.1111/jcmm.15181.
doi: 10.1111/jcmm.15181
[18] 赵丽玲, 王会, 柴志欣, 王吉坤, 王嘉博, 武志娟, 信金伟, 钟金城, 姬秋梅. 牦牛lncFAM200B的克隆鉴定、表达及生物信息学分析. 华北农学报, 2020, 35(5): 220-230. doi: 10.7668/hbnxb.20191071.
doi: 10.7668/hbnxb.20191071
ZHAO L L, WANG H, CHAI Z X, WANG J K, WANG J B, WU Z J, XIN J W, ZHONG J C, JI Q M. Cloning, expression and bioinformatics analysis of yak lncFAM200B. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 220-230. doi: 10.7668/hbnxb.20191071. (in Chinese)
doi: 10.7668/hbnxb.20191071
[19] 王国强. Adiponectin AS lncRNA对前体脂肪细胞分化的作用及调控机制[D]. 杨凌: 西北农林科技大学, 2017.
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[3] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[4] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[5] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[6] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[9] LI XueRu,SHI XiXiong,WANG JianZhong,ZHANG PanGao,TIAN Zhu,HAN Ling. Effect of Nitric Oxide Synthetase Inhibitor on Yak Meat Quality During Post-Mortem Aging [J]. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626.
[10] MingYue GONG,XiaoTian DUAN,TingTing YU,Jie WANG,LiLi SHEN,Ying LI,MingHong LIU,YongLiang LI,HongKun LÜ,SongBai ZHANG,JinGuang YANG. Cloning of Hsc70-2 and Its Promoting Effect on Potato virus Y Infection in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2020, 53(4): 771-781.
[11] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[12] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[13] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[14] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
[15] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!