Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4191-4200.doi: 10.3864/j.issn.0578-1752.2019.23.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Heat Tolerance in Wheat Germplasm Resources

WANG XiaoBo1,GUAN PanFeng1,XIN MingMing1,WANG YongFa1,CHEN XiYong2,ZHAO AiJu2,LIU ManShuang3,LI HongXia3,ZHANG MingYi4,LU LaHu4,WEI YiQin5,LIU WangQing5,ZHANG JinBo6,NI ZhongFu1,YAO YingYin1,HU ZhaoRong1,PENG HuiRu1,SUN QiXin1()   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Key Laboratory of Crop Genetic Improvement, Beijing 100193
    2 Institute of Cereal and Oil Crops of Hebei Academy of Agriculture and Forestry Sciences/Hebei Crop Genetic Breeding Laboratory, Shijiazhuang 050035
    3 Agronomy College, Northwest A&F University, Yangling 712100, Shaanxi;
    4 Institute of Wheat, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi
    5 Crop Research Institute of Ningxia Agriculture and Forestry Sciences, Yongning 750105, Ningxia
    6 Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2019-05-15 Accepted:2019-08-03 Online:2019-12-01 Published:2019-12-01
  • Contact: QiXin SUN E-mail:qxsun@cau.edu.cn

Abstract:

【Objective】 High-throughput evaluation of winter and spring wheat accessions for heat tolerance via heat susceptibility index (HSI) could provide the potentially superior accessions for heat-tolerant breeding programs. 【Method】 In order to expose plants to high temperatures during grain filling period, winter wheat accessions were sown in normal and late seasons, and spring wheat accessions were sown in different geographical environments with contrasting temperatures. The thousand grain weight (TGW) of winter and spring wheat accessions were measured under normal and heat stress environments, respectively. HSI was calculated from the TGW data of two different conditions. Using heat susceptibility index, 1 325 wheat germplasms from different wheat ecological zones of China, and international areas and organizations, including 688 winter wheat accessions and 637 spring wheat accessions, were evaluated for heat tolerance. Genotypes were classified into four tolerant grades, i.e. highly heat-tolerant (HSI<0.50), medium heat-tolerant (0.5≤HSI<1), medium heat-susceptible (1≤HSI<1.5) and highly heat-susceptible (HSI>1.5). 【Result】 The average maximum temperature at grain filling stage under heat stress condition was higher than that of the controls by 1.91℃ for winter wheat and 7.09℃ for spring wheat, respectively. TGW under heat stress condition was significantly lower than that of the corresponding control. According to the grading evaluation results of HSI, thirty-one and 48 highly heat-tolerant winter and spring wheat accessions accounted for 4.51% and 7.54% of the test materials, 19 and 58 highly heat-susceptible winter and spring wheat accessions accounted for 2.76% and 9.11% of the tested materials, and the rest were medium germplasms (medium heat-tolerant and medium heat-susceptible). According to the geographical distribution of wheat ecological regions, winter wheat from the southern wheat region (Southwestern Winter Wheat Zone, Qinghai Tibetan Plateau Spring and Winter Wheat Zone, and Middle and Lower Yangtze Valley Winter Wheat Zone) were more tolerant than that from northern wheat region (Northern Winter Wheat Zone, and Yellow and Huai River Winter Wheat Zone). For spring wheat, the average HSI of accessions from Xinjiang Spring and Winter Wheat Zone was 0.70, which was the most heat-tolerant, and 88.00% of the accessions belong to heat-tolerant (highly heat-tolerant or medium heat-tolerant) germplasms. In addition, the average HSI of spring wheat from the International Center for Agricultural Research in the Dry Areas (ICARDA) with 0.88 showed heat-tolerant. The synthetic hexaploid wheats from CIMMYT had the weakest heat tolerance, with an average HSI of 1.18, of which 69.58% were heat-susceptible germplasms (medium heat-susceptible and highly heat-susceptible). 【Conclusion】 Delayed sowing or planting in environment with high temperatures can make wheat encounter high temperature stress at grain filling stage. High-throughput method based on the HSI of TGW was performed to evaluate heat tolerance of 1 325 winter and spring wheat germplasms. Overall, one hundred and three heat-tolerant germplasms with high yield potential were identified, which could be used as parents developing heat-tolerant wheat varieties.

Key words: wheat, germplasm, heat-tolerance, heat susceptible index, ecological zone

Table 1

Comparison of heat tolerance in wheat from different geographic environments"

材料类型
Material type
材料来源
Material source
材料数
Number of
genotype
热感系数HSI 极耐热
所占比率
Percent of extreme heat resistant (%)
中等耐热
所占比率
Percent of medium heat resistant (%)
中等热敏感
所占比率
Percent of medium heat sensitive (%)
极热敏感
所占比率
Percent of extreme heat sensitive (%)
平均BLUP
Mean BLUP
标准差
SD
冬小麦 北部冬麦区 NWWZ 218 1.05 0.26 1.38 44.95 49.54 4.13
Winter 黄淮冬麦区 YHRVWWZ 363 0.95 0.25 4.13 51.79 43.80 0.28
wheat 青藏春冬麦区 QTPSWWZ 4 0.56 0.37 25.00 75.00 0 0
西南冬麦区 SCWWZ 16 0.59 0.27 31.25 68.75 0 0
国外引进品种 GRA 59 1.18 0.33 1.69 25.42 57.63 15.25
长江中下游冬麦区 MLYVWWZ 28 0.74 0.30 21.43 64.29 14.29 0
春小麦 CIMMYT 194 1.18 0.42 5.15 25.26 48.45 21.13
Spring ICARDA 237 0.88 0.27 8.86 54.85 35.86 0.42
wheat 长江中下游冬麦区 MLYVWWZ 60 1.07 0.39 5.00 25.00 51.67 18.33
东北春麦区 NSWZ 7 0.83 0.50 28.57 28.57 42.86 0
青藏春冬麦区 QTPSWWZ 103 1.00 0.29 4.85 41.75 49.51 3.88
西北春麦区 NSEZ 11 1.16 0.27 0 36.36 54.55 9.09
新疆春冬麦区 XSWWZ 25 0.70 0.26 28.00 60.00 12.00 0

Table 2

Variance analysis of thousand grain weight"

材料类型
Material type
变异来源
Source of variation
自由度
Degree of freedom
平方和SS
Sum of squares
均方和MS
Mean squares
F
F value
变异所占百分数
Total variation (%)
冬小麦
Winter wheat
基因型Genotype(G) 基因型Genotype(G) 687 762885 1110 102.753*** 31.76
环境Environment(E) 地点Local(L) 2 137384 68692 6356.252*** 5.72
年份Year(Y) 2 21980 10990 1016.95*** 0.92
处理Treatment(T) 1 1023122 1023122 94672.04*** 42.60
交互作用Interaction(G×E) 基因型×地点(G×L) 1374 47536 35 3.201*** 1.98
基因型×年份(G×Y) 1374 39622 29 2.668*** 1.65
基因型×处理(G×T) 687 118705 173 15.988*** 4.94
剩余方差 Residual 23188 250593 11 10.43
春小麦
Spring wheat
基因型Genotype(G) 基因型Genotype(G) 636 111558 175 19.58*** 45.63
环境Environment(E) 地点Local(L) 1 53702 53702 5994.457*** 21.97
年份Year(Y) 2 294 147 16.433*** 0.12
交互作用Interaction(G×E) 基因型×地点(G×L) 636 14966 24 2.627*** 6.12
基因型×年份(G×Y) 845 17975 21 2.375*** 7.35
剩余方差 Residual 5131 45966 9 18.80

Fig. 1

Line chart of the average maximum temperature of winter (a) and spring (b) wheat under normal and heat stress during grain filling"

Table 3

Effect of heat stress at grain filling stage on thousand grain weight of wheat"

材料类型
Material type
试验处理
Test measures
千粒重 Thousand grain weight (g)
最高值Maximum 最低值Minimum 平均值Mean
冬小麦
Winter wheat
对照Control group 57.37 23.93 44.89
热胁迫Heat stress group 43.99 17.12 32.47
春小麦
Spring wheat
宁夏Ningxia 55.65 31.61 44.88
新疆Xinjiang 48.47 28.41 38.95

Fig. 2

Distribution of thousand grain weight (BLUP) in winter wheat (688 accessions) and spring wheat (637 accessions) under normal and heat stress environmental conditions"

Table 4

Distribution of heat tolerance for winter (688 accessions) and spring (637 accessions) wheat"

评价
Evaluation
热感指数
Heat susceptibility index
材料数Number of genotype 比率Percent (%)
冬小麦Winter wheat 春小麦Spring wheat 冬小麦Winter wheat 春小麦Spring wheat
极耐热Extreme heat resistant HSI<0.5 38 48 4.51 7.54
中等耐热Medium heat resistant 0.5≤HSI<1 323 258 48.40 40.50
中等热敏感Medium heat sensitive 1≤HSI<1.5 303 273 44.33 42.86
极敏感Extreme heat sensitive HSI≥1.5 24 58 2.76 9.11

Table 5

Selected wheat germplasm with high yield potential and heat resistance"

材料类型
Material type
材料来源
Material source
材料名称
Material name
冬小麦
Winter wheat
北部冬麦区 NCPWWZ 农大189 Nongda 189,农大3634 Nongda 3634,晋麦47 Jinmai 47,晋50 Jin 50,农大413 Nongda 413,京冬8号 Jingdong 8,农大212 Nongda 212,农大3659 Nongda 3659,农大3677 Nongda 3677,京冬6号 Jingdong 6,农大3097 Nongda 3097
黄淮冬麦区 YHRVWWZ 济南8号 Jinan 8,04洛7671 04 luo 7671,中原麦 Zhongyuanmai,04洛7427 04 luo 7427,武农6 Wunong 6,泰山4606 Taishan 4606,洛麦23 Luomai 23,新麦208 Xinmai 208,新麦20 Xinmai 20,项麦969 Xiangmai 969,跃进5号 Yuejin 5,豫农9901 Yunong 9901,藳优1533-1 Gaoyou 1533-1,偃展4110 Yanzhan 4110,郑农17号 Zhengnong 17,中育8号 Zhongyu 8,新麦19 Xinmai 19,郑麦9962 Zhengmai 9962,新麦21 Xinmai 21,石麦12 Shimai 12,石麦22 Shimai 22,藳优9618 Gaoyou 9618,博农6号 Bonong 6,新麦2111 Xinmai 2111,中育5号 Zhongyu 5,04中36 04zhong 36,山农矮2号 Shannongai 2,新麦11 Xinmai 11,衡6632 Heng 6632,泰山24 Taishan 24,济麦19 Jimai 19,济麦23 Jimai 23,兰考926 Lankao 926,山农辐63 Shannongfu 63,新原9558 Xinyuan 9558,洛麦24 Luomai 24,烟农19 Yannong 19,衡观216 Hengguan 216,邯6628 Han 6628
西南冬麦区 SCWWZ 安麦1号 Anmai 1,安麦7号 Anmai 7
国外引进品种 ERA Haruminori,VICTO,TAM107
春小麦
Spring wheat
CIMMYT HC-18,HC-23,HC-100,HC-106,HC-107,HC-108,HC-114,HC-117,HC-126,HC-133,HC-136,HC-151,HC-176,
ICARDA ICARDA244,ICARDA251,ICARDA263,ICARDA277,ICARDA283,ICARDA301,ICARDA302,ICARDA320,ICARDA330,ICARDA340,ICARDA345,ICARDA350,ICARDA376,ICARDA419
长江中下游冬麦区 MLYVWWZ 鄂恩4号 Een 4,皖麦54 Wanmai 54,华麦8 Huamai 8,荆麦66 Jingmai 66,襄专27 Xiangzhuan 27,扬麦15 Yangmai 15,鄂麦504060 Emai 504060
青藏春冬麦区QTPSWWZ 川麦45 Chuanmai 45,川育19 Chuanyu 19,西科麦1号 Xikemai 1,良麦2号 Liangmai 2,川麦55 Chuanmai 55
西北春麦区 NSEZ 宁春53号 Ningchun 53,宁2038 Ning 2038
新疆春冬麦区 XSWWZ 新春7号 Xinchun 7,新春8号 Xinchun 8,新春11号 Xinchun 11,新春16号 Xinchun 16,新春20号 Xinchun 20,新春24号 Xinchun 24,新春29号 Xinchun 29
[1] HANSEN J, SATO M, RUEDY R . Perception of climate change. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(37):E2415-E2423.
doi: 10.1073/pnas.1205276109
[2] MORIONDO M, GIANNAKOPOULOS C, BINDI M . Climate change impact assessment: The role of climate extremes in crop yield simulation. Climatic Change, 2011,104(3/4):679-701.
doi: 10.1016/j.scitotenv.2018.02.322 pmid: 29554771
[3] SEMENOV M A, SHEWRY P R . Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports, 2011,1:66.
doi: 10.1038/srep00066 pmid: 22355585
[4] GOUACHE D, LE BRIS X, BOGARD M, DEUDON O, PAGE C, GATE P . Evaluating agronomic adaptation options to increasing heat stress under climate change during wheat grain filling in France. European Journal of Agronomy, 2012,39:62-70.
doi: 10.1016/j.eja.2012.01.009
[5] TEIXEIRA E I, FISCHER G, VAN VELTHUIZEN H, WALTER C, EWERT F . Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 2013,170(SI):206-215.
doi: 10.1016/j.agrformet.2011.09.002
[6] WARDLAW I F, DAWSON I A, MUNIBI P . The tolerance of wheat to high-temperatures during reproductive growth: 2. Grain development. Australian Journal of Agricultural Research, 1989,40(1):15-24.
doi: 10.1071/AR9890015
[7] 北方十三省市小麦干热风科研协作组. 小麦干热风伤害机理的研究. 作物学报, 1984(2):105-112.
COLLABORATION GROUP OF WHEAT DRY-HOT WIND IN NORTHERN CHINA. Study on damage mechanism of wheat dry hot air. Acta Agronomica Sinica, 1984(2):105-112. (in Chinese)
[8] 赵娜, 刘赟 . 我国小麦干热风危害及其防御措施研究. 农业灾害研究, 2011,1(2):68-73.
ZHAO N, LIU Y . Research of the damage and prevention measures of the wheat dry hot wind in china. Journal of Agricultural Catastrophology, 2011,1(2):68-73. (in Chinese)
[9] 孙道杰, 宋仁刚, 王辉 . 调整小麦生长发育对环境因子的敏感性培育可应对气候变化的新品种. 安徽农业科学, 2007,35(33):10642-10644.
SUN D J, SONG R G, WANG H . Breeding photosensitivity enhanced wheat varieties to deal with the losses caused by climate change. Journal of Anhui Agricultural Sciences, 2007,35(33):10642-10644. (in Chinese)
[10] NI Z, LI H, ZHAO Y, PENG H, HU Z, XIN M, SUN Q . Genetic improvement of heat tolerance in wheat: recent progress in understanding the underlying molecular mechanisms. Crop Journal, 2018,6(1):32-41.
doi: 10.1016/j.cj.2017.09.005
[11] HAYS D, MASON E, DO JH, MENZ M, REYNOLDS M . Expression quantitative trait loci mapping heat tolerance during reproductive development in wheat ( Triticum aestivum). Developments in Plant Breeding, 2007,12:373-382.
[12] BOHNERT H J, GONG Q Q, LI P H, MA S S . Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology, 2006,9(2):180-188.
doi: 10.1016/j.pbi.2006.01.003 pmid: 16458043
[13] KUMAR S, KUMARI P, KUMAR U, GROVER M, SINGH A K, SINGH R, SENGAR R S . Molecular approaches for designing heat tolerant wheat. Journal of Plant Biochemistry and Biotechnology, 2013,22(4):359-371.
doi: 10.1007/s13562-013-0229-3
[14] 徐如强, 孙其信, 张树榛 . 不同冬小麦品种对高温胁迫反应的研究. 中国农业大学学报, 1998,3(1):99-104.
XU R Q, SUN Q X, ZHANG S Z . Studies on the responses of winter wheat genotypes to high temperature stress. Journal of China Agricultural University, 1998,3(1):99-104. (in Chinese)
[15] PALIWAL R, RÖDER M S, KUMAR U, SRIVASTAVA J P, JOSHI A K . QTL mapping of terminal heat tolerance in hexaploid wheat. Theoretical and Applied Genetics, 2012,125(3):561-575.
doi: 10.1007/s00122-012-1853-3
[16] 李召锋, 张东海, 王竹琼, 张锦宏, 杨茂深, 李卫华 . 新疆春小麦品种耐热性评价. 麦类作物学报, 2017,37(11):1497-1502.
LI Z F, ZHANG D H, WANG Z Q, ZHANG J H, YANG M S, LI W H . Analysis and evaluation the heat resistance of spring wheat cultivars in Xinjiang. Journal of Triticeae Crops, 2017,37(11):1497-1502. (in Chinese)
[17] 耿晓丽, 张月伶, 臧新山, 赵月, 张金波, 尤明山, 倪中福, 姚颖垠, 辛明明, 彭惠茹, 孙其信 . 北方冬麦区与黄淮北片优良小麦品种(系)耐热性评价. 麦类作物学报, 2016,36(2):172-181.
GENG X L, ZHANG Y L, ZANG X S, ZHAO Y, ZHANG J B, YOU M S, NI Z F, YAO Y Y, XIN M M, PENG H R, SUN Q X . Evaluation the thermotolerance of the wheat (Triticum aestivum L.) cultivars and advanced lines collected from the northern China and north area of Huang-huai winter wheat regions. Journal of Triticeae Crops, 2016,36(2):172-181. (in Chinese)
[18] AYENEH A, van GINKEL M, REYNOLDS M P, AMMAR K . Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research, 2002,79(2):173-184.
doi: 10.1016/S0378-4290(02)00138-7
[19] BARAKAT M N, AL-DOSS A A, ELSHAFEI A A, MOUSTAFA K A, . Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in f-2 wheat population. Australian Journal of Crop Science, 2011,5(2):104-110.
[20] 李世平, 靖金莲, 安晓东, 刘玲玲, 阎翠萍, 王全亮, 黄丽波, 单杰 . 错期播种在小麦耐热性鉴定中的应用. 山西农业科学, 2017,45(4):530-533.
LI S P, JING J L, AN X D, LIU L L, YAN C P, WANG Q L, HUANG L B, SHAN J . Different sowing date used to evaluate the difference of the heat resistant in identification genotype materials of wheat. Journal of Shanxi Agricultural Sciences, 2017,45(4):530-533. (in Chinese)
[21] 温辉芹, 程天灵, 裴自友, 李雪, 张立生, 朱玫 . 山西省冬小麦品种(系)耐热性评价. 中国种业, 2018(6):63-65.
WEN H Q, CHENG T L, PEI Z Y, LI X, ZHANG L S, ZHU M . Evaluation of heat tolerance of winter wheat varieties (lines) in Shanxi province. China Seed Industry, 2018(6):63-65. (in Chinese)
[22] 陈冬梅, 马永安, 刘保华, 苏玉环, 王雪香 . 小麦耐热种质资源的鉴定与筛选. 河北农业科学, 2017,21(4):64-69.
CHEN D M, MA Y A, LIU B H, SU Y H, WANG X X . Appraisal and screening of heat resistant wheat germplasm resources. Journal of Hebei Agricultural Sciences, 2017,21(4):64-69. (in Chinese)
[23] 傅晓艺, 何明琦, 史占良, 赵彦坤, 王秀堂, 郭进考 . 灌浆期高温胁迫对小麦灌浆特性和品质的影响. 麦类作物学报, 2015,35(6):867-872.
FU X Y, HE M Q, SHI Z L, ZHAO Y K, WANG X T, GUO J K . Effects of high temperature stress during grain-filling period on wheat grain-filling characteristics and quality. Journal of Triticeae Crops, 2015,35(6):867-872. (in Chinese)
[24] 仪小梅, 孙爱清, 韩晓玉, 张杰道, 王振林, 王春微, 杨敏, 王琳琳, 尹燕枰 . 黄淮麦区小麦主推品种(系)干热风抗性鉴定. 麦类作物学报, 2015,35(2):274-284.
YI X M, SUN A Q, HAN X Y, ZHANG J D, WANG Z L, WANG C W, YANG M, WANG L L, YI Y P . Identification of dry-hot wind resistance of major wheat cultivars (strains) in Huanghuai wheat region. Journal of Triticeae Crops, 2015,35(2):274-284. (in Chinese)
[25] WANG X L, WANG H W, LIU S X, FERJANI A, LI J S, YAN J B, YANG X H, QIN F . Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016,48(10):1233-1241.
doi: 10.1038/ng.3636 pmid: 27526320
[26] FISCHER R A, MAURER R . Drought resistance in spring wheat cultivars: 1. Grain-yield responses. Australian Journal of Agricultural Research, 1978,29(4):897-912.
doi: 10.1071/AR9780897
[27] 高美玲, 张旭博, 孙志刚, 孙楠, 李仕冀, 高永华, 张崇玉 . 中国不同气候区小麦产量及发育期持续时间对田间增温的响应. 中国农业科学, 2018,51(2):386-400.
doi: 10.3864/j.issn.0578-1752.2018.02.017
GAO M L, ZHANG X B, SUN Z G, SUN N, LI S Y, GAO Y H, ZHANG C Y . Wheat yield and growing period in response to field warming in different climatic zones in China. Scientia Agricultura Sinica, 2018,51(2):386-400. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.017
[28] LIZANA X C, CALDERINI D F . Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. Journal of Agricultural Science, 2013,151(2):209-221.
doi: 10.1017/S0021859612000639
[29] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌 . 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003(11):2030-2038.
LI S Q, SHAO M A, LI Z Y, WU W M, ZHANG X C . Review of characteristics of wheat grain fill and factors to influence it. Acta Botanica Boreali-Occidentlia Sinica, 2003(11):2030-2038. (in Chinese)
[30] WANG R X, HAI L, ZHANG X Y, YOU G X, YAN C S, XIAO S H . QTL mapping for grain filling rate and yield-related traits in Rils of the Chinese winter wheat population Heshangmai×Yu8679. Theoretical and Applied Genetics, 2009,118(2):313-325.
doi: 10.1007/s00122-008-0901-5
[31] WU X, CHANG X, JING R . Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE, 2012,7(2):e312492.
doi: 10.1371/journal.pone.0031249 pmid: 22363596
[32] GAO F, WEN W, LIU J, RASHEED A, YIN G, XIA X, WU X, HE Z . Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425b/Chinese spring. Frontiers in Plant Science, 2015,6:1099.
doi: 10.3389/fpls.2015.01099 pmid: 26734019
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!