Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3924-3933.doi: 10.3864/j.issn.0578-1752.2019.21.019

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of Tannic Acid Addition in Milk Replacer on Development of Gastrointestinal Tract of 7 to 28 Days Old Hu Lambs

ZHENG Chen1,LI FaDi2,3,LI Fei2,ZHOU JuWang1,DUAN PengWei1,LIU HuiHui1,FAN HaiMiao1,ZHU WeiLi1,LIU Ting1()   

  1. 1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070
    2 State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University/Key laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University/College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020
    3 Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, Gansu
  • Received:2019-06-24 Accepted:2019-08-06 Online:2019-11-01 Published:2019-11-12

Abstract:

【Objective】 This study was conducted to investigate the effects of tannic acid supplementation to milk replacer on the development of gastrointestinal tract of 7 to 28 day-old Hu lambs. 【Method】 Thirty 7 day-old Hu male lambs were chosen and divided into 2 groups, fifteen lambs in each group and each lamb as a duplication. Lambs were fed milk replacer with or without 0.2% tannic acid, respectively. The test lasted 21 days. Eight lambs were selected from each group randomly and slaughtered at 28 day-old. The weights of the compound stomach and the intestinal tract with and without content, and lengths of the intestinal tract were measured, then the relative quality and length were calculated. While the tissue samples from fundus gland region of the abomasum, the middle part of duodenum, jejunum and ileum were fixed in paraformaldehyde to analyse the histomorphology, and the apoptotic rate of intestinal epithelial cells as well. And the mRNA expression of occludin, ZO-1 and claudin 1 protein of duodenum, jejunum and ileum mucosa were measured.【Result】 The results showed that except relative weights of duodenum (% body weight, P=0.012; % intestinal tract weight, P=0.034; % gastrointestinal tract weight, P=0.017), relative length of jejunum and colon (% intestinal tract length, P=0.030, P=0.004), and content of colon (% body weight, P=0.039), the relative weights (% body weight, % stomach weight, % intestinal tract weight, and % gastrointestinal tract weight), relative lengths (% intestinal tract length), content of stomach and intestinal tract (% body weight, % stomach content weight, % intestinal tract content weight, and % gastrointestinal tract content weight), and mRNA expression of claudin 1 protein in intestinal tract of lambs were not affected by tannic acid (P>0.05). However, tannic acid elongated the muscular thickness of duodenum and decreased the villus width of lamb duodenum significantly (P=0.013,P=0.001), and up-regulated mRNA expression of ZO-1 protein of jejunum (P=0.003). And there was a tendency that tannic acid up-regulated mRNA expression of occludin protein of jejunum (P=0.077), and decreased villus width and crypt depth of jejunum and the apoptotic rate of jejunum and ileum cells (P=0.073, P=0.062, P=0.097, P=0.052). 【Conclusion】 In conclusion, tannic acid decreased the relative weights of duodenum and relative length of jejunum of 7-28 day-old Hu lambs, but improved the barrier function of intestinal tract via elongating the muscular thickness of duodenum, up-regulating the mRNA expression of ZO-1 and occludin protein of jejunum, and decreasing the crypt depth of jejunum and the apoptotic rate of jejunum and ileum cells.

Key words: tannic acid, lamb, milk replacer, gastrointestinal tract, development

Table 1

The nutrients concentration in lamb milk replacer (air-dry basis, %)"

营养成分 Ingredient 含量 Concentration
干物质 Dry matter 95.68
粗蛋白质 Crude protein 24.89
粗脂肪 Ether extract 17.50
粗纤维 Crude fiber 2.16
粗灰分 Crude ash 5.81
钙 Calcium 1.02
总磷 Total phosphorus 0.59

Table 2

Effects of tannic acid on relative quality of gastrointestinal tract of lamb"

项目
Item
对照组
Control
单宁酸组
Tannic acid
SEM P
P value
胃室 Stomach
瘤胃 Rumen %活体质量 % body weight 0.54 0.55 0.02 0.856
%全胃质量 % the quality of total stomach 29.70 31.03 1.10 0.564
%全胃肠质量 % the quality of total gastrointestinal tract 6.69 7.50 0.34 0.247
网胃 Reticulum %活体质量 % body weight 0.16 0.16 0.01 0.864
%全胃质量 % the quality of total stomach 9.16 9.03 0.35 0.859
%全胃肠质量 % the quality of total gastrointestinal tract 2.04 2.19 0.09 0.426
瓣胃 Omasum %活体质量 % body weight 0.08 0.08 0.01 0.659
%全胃质量 % the quality of total stomach 4.08 4.59 0.32 0.450
%全胃肠质量 % the quality of total gastrointestinal tract 0.92 1.14 0.10 0.304
皱胃 Abomasum %活体质量 % body weight 1.04 1.00 0.05 0.683
%全胃质量 % the quality of total stomach 57.05 55.34 1.23 0.506
%全胃肠质量 % the quality of total gastrointestinal tract 12.77 13.40 0.40 0.448
肠道 Intestinal tract
十二指肠 Duodenum %活体质量 % body weight 0.20a 0.15b 0.01 0.012
%全肠质量 % the quality of total intestinal tract 3.21a 2.69b 0.12 0.034
%全胃肠质量 % the quality of total gastrointestinal tract 2.48a 2.04b 0.10 0.017
空肠Jejunum %活体质量 % body weight 4.00 3.59 0.15 0.162
%全肠质量 % the quality of total intestinal tract 63.93 63.29 0.73 0.675
%全胃肠质量 % the quality of total gastrointestinal tract 49.63 47.98 0.79 0.317
回肠 Ileum %活体质量 % body weight 0.15 0.14 0.01 0.878
%全肠质量 % the quality of total intestinal tract 2.35 2.52 0.17 0.642
%全胃肠质量 % the quality of total gastrointestinal tract 1.83 1.91 0.14 0.772
盲肠 Cecum %活体质量 % body weight 0.35 0.29 0.02 0.072
%全肠质量 % the quality of total intestinal tract 5.54 5.16 0.25 0.456
%全胃肠质量 % the quality of total gastrointestinal tract 4.30 3.90 0.19 0.321
结肠 Colon %活体质量 % body weight 1.18 1.11 0.05 0.522
%全肠质量 % the quality of total intestinal tract 18.85 19.64 0.53 0.477
%全胃肠质量 % the quality of total gastrointestinal tract 14.61 14.88 0.40 0.750
直肠 Rectum %活体质量 % body weight 0.38 0.37 0.02 0.755
%全肠质量 % the quality of total intestinal tract 6.11 6.70 0.34 0.407
%全胃肠质量 % the quality of total gastrointestinal tract 4.73 5.06 0.24 0.517

Table 3

Effects of tannic acid on relative length of intestinal tract of lambs (% intestinal tract length)"

项目Item 对照组Control 单宁酸组 Tannic acid SEM PP value
十二指肠 Duodenum 2.28 2.08 0.11 0.361
空肠Jejunum 81.90a 80.33b 0.37 0.030
回肠 Ileum 0.84 0.84 0.06 0.990
盲肠 Cecum 0.90 0.93 0.05 0.848
结肠 Colon 11.84b 13.56a 0.33 0.004
直肠 Rectum 2.23 2.26 0.13 0.886

Table 4

Effects of tannic acid on relative quality of gastrointestinal tract content of lambs"

项目
Item
对照组
Control
单宁酸组
Tannic acid
SEM P
P value
胃室内容物 Stomach content
瘤胃内容物
Rumen content
%活体质量 % body weight 1.44 1.75 0.32 0.648
%全胃内容物质量 % the quality of total stomach content 26.96 37.02 4.58 0.287
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 17.32 22.73 3.15 0.410
网胃内容物
Reticulum content
%活体质量 % body weight 0.27 0.20 0.06 0.553
%全胃内容物质量 % the quality of total stomach content 4.99 3.39 0.91 0.405
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 3.51 2.13 0.71 0.358
瓣胃内容物
Omasum content
%活体质量 % body weight 0.01 0.01 0.0005 0.776
%全胃内容物质量 % the quality of total stomach content 0.23 0.31 0.03 0.191
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 0.14 0.17 0.01 0.333
皱胃内容物
Abomasum content
%活体质量 % body weight 3.43 2.27 0.30 0.053
%全胃内容物质量 % the quality of total stomach content 68.58 60.65 4.65 0.412
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 43.32 34.89 3.00 0.168
肠道内容物 Intestinal tract content
十二指肠内容物
Duodenum content
%活体质量 % body weight 0.15 0.09 0.02 0.111
%全肠内容物质量 % the quality of total intestinal tract content 7.25 3.46 1.44 0.198
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 1.99 1.47 0.29 0.392
空肠内容物
Jejunum content
%活体质量 % body weight 1.26 1.10 0.18 0.670
%全肠内容物质量 % the quality of total intestinal tract content 39.64 44.17 2.75 0.429
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 14.33 18.16 1.91 0.332
回肠内容物
Ileum content
%活体质量 % body weight 0.08 0.04 0.02 0.218
%全肠内容物质量 % the quality of total intestinal tract content 1.75 1.77 0.32 0.978
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 0.80 0.75 0.16 0.904
盲肠内容物
Cecum content
%活体质量 % body weight 0.43 0.33 0.08 0.554
%全肠内容物质量 % the quality of total intestinal tract content 12.85 13.20 1.82 0.928
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 4.90 4.89 0.64 0.991
结肠内容物
Colon content
%活体质量 % body weight 1.08a 0.57b 0.13 0.039
%全肠内容物质量 % the quality of total intestinal tract content 33.28 25.72 2.57 0.148
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 12.53 10.96 1.42 0.596
直肠内容物
Rectum content
%活体质量 % body weight 0.17 0.23 0.04 0.449
%全肠内容物质量 % the quality of total intestinal tract content 6.10 11.68 2.09 0.192
%全胃肠内容物质量 % the quality of total gastrointestinal tract content 2.08 4.70 0.87 0.137

Table 5

Effects of tannic acid on abomasum and intestinal tract histomorphology of lambs"

项目Item 对照组Control 单宁酸组 Tannic acid SEM PP value
皱胃 Abomasum
黏膜厚度 Mucosa thickness (μm) 333.36 343.82 8.54 0.605
肌层厚度 Muscular thickness (μm) 548.48 278.36 52.15 0.810
十二指肠 Duodenum
绒毛高度 Villus height (μm) 361.99 425.00 21.54 0.150
绒毛宽度 Villus width (μm) 80.04a 54.80b 4.43 0.001
隐窝深度 Crypt depth (μm) 148.87 156.30 8.10 0.665
肌层厚度 Muscular thickness (μm) 161.93b 208.41a 10.01 0.013
绒隐比 V / C 2.57 2.76 0.13 0.505
空肠Jejunum
绒毛高度 Villus height (μm) 431.59 378.90 19.85 0.194
绒毛宽度 Villus width (μm) 71.13 64.74 1.79 0.073
隐窝深度 Crypt depth (μm) 173.48 143.65 8.05 0.062
肌层厚度 Muscular thickness (μm) 157.73 146.10 7.41 0.451
绒隐比 V / C 2.59 2.79 0.07 0.154
回肠 Ileum
绒毛高度 Villus height (μm) 373.81 383.77 29.23 0.883
绒毛宽度 Villus width (μm) 68.91 78.12 2.76 0.108
隐窝深度 Crypt depth (μm) 176.96 207.92 11.78 0.228
肌层厚度 Muscular thickness (μm) 274.31 302.91 46.72 0.792
绒隐比 V / C 2.19 1.85 0.12 0.194

Table 6

Effects of tannic acid on mRNA expression of intercellular tight junction protein of intestinal tract mucosa and apoptosis of intestinal epithelial cell of lambs"

项目Item 对照组Control 单宁酸组 Tannic acid SEM PP value
十二指肠 Duodenum
Occludin 0.86 1.16 0.10 0.124
ZO-1 0.91 1.07 0.08 0.317
Claudin 1 0.91 0.94 0.09 0.850
细胞凋亡 Apoptosis (%) 11.27 7.90 2.97 0.595
空肠Jejunum
Occludin 0.82 1.39 0.16 0.077
ZO-1 0.71b 1.29a 0.11 0.003
Claudin 1 0.97 1.10 0.25 0.800
细胞凋亡 Apoptosis (%) 21.09 3.99 5.13 0.097
回肠 Ileum
Occludin 0.95 1.02 0.10 0.744
ZO-1 0.88 1.11 0.10 0.249
Claudin 1 0.80 1.00 0.16 0.544
细胞凋亡 Apoptosis (%) 47.29 20.76 7.00 0.052
[1] 张庆丽, 孙志洪, 张恩平, 贺志雄, 谭支良 . 哺乳动物胃肠道发育特征和早期营养调控研究进展. 基因组学与应用生物学, 2009,28(3):594-600.
ZHANG Q L, SUN Z H, ZHANG E P, HE Z X, TAN Z L . The development features and early nutritional regulation of mammalian gastrointestinal tracts. Genomics and Applied Biology, 2009,28(3):594-600. (in Chinese)
[2] SANGILD P T, SCHMIDT M, ELNIF J, BJORNVAD C R, WESTROM B R, BUDINGTON R K . Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction. Pediatric Research, 2002,52(3):416-424.
[3] JENSEN A R, ELNIF J, BURRIN D G, SANGILD P T . Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet-dependent. Journal of Nutrition, 2001,131:3259-3265.
[4] DARVIN P, JOUNG Y H, KANG D Y, SP N, BYUN H J, HWANG T S, SASIDHARAKURUP H, LEE C H, CHO K H, PARK K D, LEE H K, YANG Y M . Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. Journal of Cellular and Molecular Medicine, 2017,21(4):720-734.
[5] 宋妍妍, 陈代文, 余冰, 虞洁 . 单宁酸的营养生理功能及其在单胃动物生产中的应用研究进展. 动物营养学报, 2019,31(6):2544-2551.
SONG Y Y, CHEN D W, YU B, YU J . Physiological functions of tannic acid and its application in monogastric animal production. Chinese Journal of Animal Nutrition, 2019, 31(6):2544-2551. (in Chinese)
[6] FRASCA G, CARDILE V, PUGLIA C, BONINA C, BONINA F . Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clinical and Experimental Gastroenterology,2012, 5:61-67.
[7] 侯海锋, 刘彦慈, 马可为, 李茜 . 水解单宁酸对肉仔鸡生产性能、屠宰性能及肉品质的影响. 今日畜牧兽医, 2016(2):51-53.
HOU H F, LIU Y C, MA K W, LI Q . Effects of hydrolyzed tannic acid on production performance, slaughter performance and meat quality of broiler chicken.Current Animal Husbandry and Veterinary, 2016(2):51-53. (in Chinese)
[8] REZAR V, SALOBIR J . Effects of tannin-rich sweet chestnut (Castanea sativa mill. ) wood extract supplementation on nutrient utilisation and excreta dry matter content in broiler chickens. European Poultry Science, 2014,78. DOI: 10. 1399/eps. 2014. 42.
[9] 隋慧, 付莉, 史丽华, 庄天中 . 单宁酸对断奶仔猪腹泻率和生长性能的影响. 饲料研究, 2013(7):50-53.
SUI H, FU L, SHI L H, ZHUANG T Z . Effects of tannic acid on diarrhea rate and growth performance of weaned piglets.Feed Research, 2013(7):50-53. (in Chinese)
[10] 孙展英, 李建涛, 陈宝江 . 单宁酸对仔猪生长性能、营养物质利用率及相关消化酶活性的影响. 饲料研究, 2014(1):46-49.
SUN Z Y, LI J T, CHEN B J . Effects of tannic acid on growth performance, nutrients utilization, and related digestive enzyme activity of piglets.Feed Research
[16] LIU H W, DONG X F, TONG J M, ZHENG Q . A comparative study of growth performance and antioxidant status of rabbits when fed with or without chestnut tannins under high ambient temperature. Animal Feed Science and Technology, 2011,164(1/2):89-95.
[17] THEISEN L L ,ERDELMEIER C A J,SPODEN G A,BOUKHALLOUK F,SAUSY A,FLORIN L,MULLER C P. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus. PLoS ONE, 2014,9(1):e88062.
[18] LIU S H, CHEN R, HAGEDORN C H . Tannic acid inhibits hepatitis C virus entry into Huh 7. 5 cells. PLoS ONE, 2015,10(7):e0131358.
[19] HOSTE H, JACKSON F, ATHANASIADOU S, THAMSBORG S M, HOSKIN S O . The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology, 2006,22(6):253-261.
[20] RHODES M J C . Physiologically active compounds in plant foods: An overview. Proceedings of the Nutrition Society, 1996,55:371-384.
[21] JAMROZ D, WILICZKIEWICZ A ,SKORUPIŃSKA J, ORDA J, KURYSZKO J, TSCHIRCH H. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. British Poultry Science, 2009,50(6):687-699.
[22] LIU H W, LI K, ZHAO J S, DENG W . Effects of chestnut tannins on intestinal morphology, barrier function, pro-inflammatory cytokine expression, microflora and antioxidant capacity in heat-stressed broilers. Journal of Animal Physiology and Animal Nutrition, 2018,102:717-726.
[23] ZHAO M D, DI L F, TANG Z Y, JIANG W, LI C Y . Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep. Asian-Australasian Journal of Animal Science, 2019,32. DOI: 10. 5713/ ajas. 18. 0901.
[24] 刘洋, 张亚峰, 张宇 . 栗木水解单宁对产气荚膜梭菌的抑菌作用及对坏死性肠炎肠道损伤的影响. 饲料工业, 2017,38(4):61-64.
LIU Y, ZHANG Y F, ZHANG Y . Effects of chestnut tannin on the intestinal lesions of necrotizing enterocolitis and its restraining function on clostridium perfringens. Feed Industry, 2017,38(4):61-64. (in Chinese)
[25] 马仲华 . 家畜解剖学及组织胚胎学. 3版. 北京: 中国农业出版社, 2001.
MA Z H. Animal Anatomy,Histology and Embryology. 3rd ed. Beijing: China Agriculture Press, 2001. ( in Chinese)
[26] LIU J H, XU T T, LIU Y J, ZHU W Y, MAO S Y . A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2013,305:R232-R241.
[27] WARNER R G, FLATT W P, LOOSLI J K . Dietary factors influencing the development of the ruminant stomach. Journal of Agricultural and Food Chemistry, 1956,4:788-801.
[28] 刘敏雄 . 反刍动物消化生理学. 北京: 北京农业大学出版社, 1991.
LIU M X. Ruminant Digestive Physiology . Beijing: Beijing Agricultural University Press, 1991. ( in Chinese)
[29] 李辉, 刁其玉, 张乃锋, 屠焰 . 不同蛋白质来源对早期断奶犊牛胃肠道形态发育的影响(二). 动物营养学报, 2009,21(2):186-191.
LI H, DIAO Q Y, ZHANG N F, TU Y . Effects of different protein sources on gastrointestinal characteristics in early-weaning calve (Ⅱ). Chinese Journal of Animal Nutrition, 2009,21(2):186-191. (in Chinese)
[30] ZHOU K, BAO Y, ZHAO G Y . Effects of dietary crude protein and tannic acid on rumen fermentation, rumen microbiota and nutrient digestion in beef cattle. Archives of Animal Nutrition, 2019,73(1):30-43.
[31] KHAN M A, LEE H, LEE W, KIM H, KIM S, PARK S B, BAEK K S, HA J K, CHOI Y . Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. Journal of Dairy Science, 2008,91(3):1140-1149.
doi: 10.3168/jds.2007-0337
[32] 赵如茜 . 动物生理学. 五版. 北京: 中国农业出版社, 2011.
ZHAO R Q . Animal Physiology.5th ed. Beijing: China Agricultural Press, 2011. ( in Chinese)
[33] SUN D M, LI H W, MAO S Y, ZHU W Y, LIU J H . Effects of different starch source of starter on small intestinal growth and endogenous GLP-2 secretion in preweaned lambs. Journal of Animal Science, 2018,96:306-317.
[34] BALDWIN R, MCLEOD K, KLOTZ J, HEITMANN R . Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. Journal of Dairy Science, 2004,87:E55-E65.
[35] WOOD I S, DYER J, HOFMANN R R , SHIRAZI-BEECHEY S P. Expression of the Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants . Pflugers Archiv-European Journal of Physiology, 2000,441:155-162.
[36] 马致远 . 早期断奶对湖羊羔羊生产性能及胃肠道发育的影响[D]. 兰州: 兰州大学, 2015.
MA Z Y . Effect of early weaning on performance and gastrointestinal tract development of Hu lambs[D]. Lanzhou: Lanzhou University, 2015. ( in Chinese)
[37] 欧阳五庆 . 动物生理学. 北京: 科学出版社, 2010.
OUYANG W Q . Animal Physiology. Beijing: Science Press, 2010. ( in Chinese)
[38] 祁敏丽 . 日粮能量和蛋白质水平对羔羊生长性能和胃肠道发育的影响[D]. 北京: 中国农业科学院, 2016.
QI M L . Effects of dietary energy and protein level on growth performance and gastrointestinal development of lambs[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[39] 王远孝 . IUGR猪的生长与肠道发育及L-精氨酸和大豆卵磷脂的营养调控研究[D]. 南京: 南京农业大学, 2011.
WANG Y X . Effect of IUGR on the growth and the intestinal development in postnatal pigs and the nutrition regulation by L-arginine and soya lecithine[D]. Nanjing: Nanjing Agricultural University, 2011. ( in Chinese)
[40] GONZÁLEZ-MARISCAL L, LECHUGA S, GARAY E . Role of tight junctions in cell proliferation and cancer. Progress in Histochemistry and Cytochemistry, 2007,42(1):1-57.
[41] 魏晨, 游伟, 张相伦, 万发春 . 单宁的生物活性及其在反刍动物生产中的应用.中国饲料, 2019(3):10-13.
WEI C, YOU W, ZHANG X L, WAN F C . Bioactivity and application in ruminant of tannins.China Feed, 2019(3):10-13. (in Chinese)
[42] HUANG Q Q, LIU X L, ZHAO G Q, HU T M, WANG Y X . Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 2018,4:137-150.
[43] LIU J B, DING Y S, ZHANG Y, CHEN J B, CUI B S, BAI J Y, LIN M B, HOU Q, ZHANG P C, LI S . Anti-inflammatory hydrolyzable tannins from Myricaria bracteata. Journal of Natural Products, 2015,78(5):1015-1025.
[44] HOFFMANN J, CASETTI F, BULLERKOTTE U, HAARHAUS B, VAGEDES J, SCHEMPP C M, WOLFLE U . Anti-inflammatory effects of agrimoniin-enriched fractions of Potentilla erecta.Molecules, 2016,21(6):792.
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[5] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[6] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[7] MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index [J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[10] YAN TongJing,ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi. Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb [J]. Scientia Agricultura Sinica, 2022, 55(15): 3029-3041.
[11] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[12] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[13] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[14] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[15] ZHANG HongCheng,HU YaJie,YANG JianChang,DAI QiGen,HUO ZhongYang,XU Ke,WEI HaiYan,GAO Hui,GUO BaoWei,XING ZhiPeng,HU Qun. Development and Prospect of Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!