Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3773-3781.doi: 10.3864/j.issn.0578-1752.2019.21.006

• SPECIAL FOCUS: MAIZE AND SOYBEAN RESPONSE TO LIGHT AND WATER IN STRIP INTERCROPPING • Previous Articles     Next Articles

Influence of Light Intensity on Stoma and Photosynthetic Characteristics of Soybean Leaves

CHEN JiYu,FENG LingYang,GAO Jing,SHI JianYi,ZHOU YuChen,TU FaTao,CHEN YuanKai,YANG WenYu,YANG Feng()   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
  • Received:2019-05-19 Accepted:2019-08-06 Online:2019-11-01 Published:2019-11-12
  • Contact: Feng YANG E-mail:f.yang@sicau.edu.cn

Abstract:

【Objective】 To reveal the response mechanism of photosynthetic and stomatal characteristics of soybean leaves to shade, it analyzed the stomatal characteristics, photosynthesis and carbohydrate changes of soybean leaves in seedling stage under different light intensity. 【Method】 A pot experiment was conducted to analyze the impact of four light-intensity levels including CK (normal light), LS (light shading, 20% shading), MS (medium shading, 40% shading) and SS (severe shading treatment, 75% shading) on stomata characteristics of upper and lower epidermis, photosynthetic fluorescence parameters, soluble sugar and starch content of two soybean varieties (Nandou-12, weak shade-sensitive and Guixiadou-7, high shade-sensitive).【Result】 Results revealed that the maximum number of stomata on the upper and lower epidermis of soybean leaves was observed with Nandou-12. Among shading treatments, LS and MS treatments significantly increased the number of stomata on the upper (by 26.9% and 18.5%) and lower (by 13.9% and 39.2%) epidermis as compared with CK. And between soybean varieties, the highest rate of photosynthesis was measured under LS treatment, whose average was 14.33 μmol CO2·m -2·s -1. In addition, the highest values of stomatal conductance in Nandou-12 (0.57 mm·m -2·s -1) and Guixiadou-7 (0.30 mm·m -2·s -1) were measured under LS treatment, and the maximum concentration of carbon dioxide under LS and SS treatments with Nandou-12 was significantly higher than that under CK. These results implied that increasing light intensity decreased the actual quantum yield, however, the actual quantum yield of Nandou-12 was significantly higher than that of Guixiadou-7. In contrast, the non-photochemical quenching coefficient of Nandou-12 and Guixiadou-7 was enhanced with a decline in light intensity. Moreover, the starch content of Nandou-12 and Guixiadou-7 was decreased by 59.0%, 77.8%, and 95.8%, and 47.5%, 67.3%, and 87.8%, respectively, under LS, MS, and SS treatments. Whereas, light shading (LS) significantly increased (72.7%) the soluble sugar content of Nandou-12 as compared with the corresponding values of Guixiadou-7.【Conclusion】 Overall, our results confirmed that shading conditions directly affect the stomata and photosynthetic characteristics of soybean leaves. However, by maintaining appropriate shading, the net photosynthetic rate of soybean leaves could be increased by increasing the rate of stomatal opening, which was conducive to increase the accumulation of carbohydrates and thus enhance the shade resistance of soybeans.

Key words: soybean, shade, stoma characteristics, photosynthetic characteristics, carbohydrate

Table 1

Different shade treatment and light environment of soybean canopy"

处理
Treatment
荫蔽程度
Shading level
光照强度
Light intensity
(μmol·m-2·s-1)
红光/
远红光比值
Red/Far-red
CK 正常光照 (Normal light) 400±3.6 3.8±0.2
LS 遮光20% (20% shading) 320±1.8 3.9±0.3
MS 遮光40% (40% shading) 240±2.9 3.8±0.2
SS 遮光75% (75% shading) 100±1.5 3.9±0.4

Fig. 1

Stomata of soybean under different shade degrees 下同 Different small letters represent significantly different at P<0.05. The same as below"

Table 2

Photosynthetic characteristics of soybean under different shade degrees"

处理
Treatment
净光合速率 Pn (μmol CO2·m-2·s-1) 气孔导度 Gs (mm·m-2·s-1) 胞间二氧化碳浓度 Ci (μmol) 蒸腾速率 Tr (g·m-2·h-1)
南豆12
Nandou12
桂夏豆7号
Guixiadou7
南豆12
Nandou12
桂夏豆7号
Guixiadou7
南豆12
Nandou12
桂夏豆7号
Guixiadou7
南豆12
Nandou12
桂夏豆7号
Guixiadou7
CK 12.25±1.71b 10.08±1.14c 0.18±0.04cd 0.16±0.01d 424.66±10.08d 438.21±12.17c 2.10±0.42c 1.98±0.08cd
LS 14.12±1.20a 14.54±0.50a 0.57±0.31a 0.30±0.04bc 449.65±18.87b 425.31±2.98d 4.18±1.37a 2.92±0.24b
MS 12.29±1.16b 11.96±0.29b 0.16±0.02d 0.20±0.04c 370.37±3.61e 433.35±2.08cd 1.98±0.22cd 3.79±0.17a
SS 10.49±0.15c 5.82±1.47d 0.39±0.02b 0.11±0.04d 500.23±2.53a 450.47±7.98b 3.68±0.13a 1.39±0.45d

Fig. 2

Fluorescence characteristics of soybean under different shade degrees Figure 2-C shows the deeper blue, the photochemical quenching coefficient value is higher"

Fig. 3

Soluble sugar, starch content and starch distribution of soybean leaves under different shade degrees Figure 3-A shows the deeper blue, the starch content is higher"

[1] 王小春, 杨文钰 . 玉米—大豆带状间套作全程机械化迈上新台阶. 大豆科技, 2012(6):48-50.
WANG X C, YANG W Y . Maize-soybean relay strip intercropping system mechanization to a new level.Soybean Science & Technology, 2012(6):48-50. (in Chinese)
[2] 杨文钰, 雍太文, 任万军, 樊高琼, 牟锦毅, 卢学兰 . 发展套作大豆, 振兴大豆产业. 大豆科学, 2008,27(1):1-7.
YANG W Y, YONG T W, REN W J, FAN G Q, MOU J Y, LU X L . Develop relay-planting soybean, revitalize soybean industry. Soybean Science, 2008,27(1):1-7. (in Chinese)
[3] YANG F, WANG X C, LIAO D P, LU F Z, GAO R C, LIU W G, YONG T W, WU X L, DU J B, LIU J . Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agronomy Journal, 2015,107(1):296-304.
[4] 李雯琳 . LED光源不同光质对叶用莴苣种子发芽及幼苗生理生化特性的影响[D]. 兰州: 甘肃农业大学, 2009.
LI W L . Effect of different light qualities on seed germination and physiological and biochemical characteristics of lettuce (Lactuca sativa L.) seedlings by using the LED light[D]. Lanzhou: Gansu Agricultural University, 2009.
( in Chinese)
[5] 杨惠敏, 王根轩 . 干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响. 植物生态学报, 2001,25(3):312-316.
YANG H M, WANG G X . Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Chinese Journal of Plant Ecology, 2001,25(3):312-316. (in Chinese)
[6] 于显枫, 张绪成, 方彦杰, 王红丽, 侯慧芝, 马一凡, 赵记军 . 高大气CO2浓度下遮阴对小麦叶片气孔特性及光合特性的影响. 甘肃农业科技, 2017(6):31-36.
YU X F, ZHANG X C, FANG Y J, WANG H L, HOU H Z, MA Y F, ZHAO J J . Effects of shading on stomatal and photosynthetic characteristics of spring wheat under elevated atmospheric CO2 concentration.Gansu Agricultural Science & Technology, 2017(6):31-36. (in Chinese)
[7] 周玉霞, 巨天珍, 王引弟, 万子栋, 杨颖丽 . 3种旱生植物的叶绿素荧光参数日变化研究. 干旱区资源与环境, 2019,33(5):164-170.
ZHOU Y X, JU T Z, WANG Y D, WAN Z D, YANG Y L . Diurnal variation of chlorophyll fluorescence parameters of three xerophytes. Journal of Arid Land Resources & Environment, 2019,33(5):164-170.
( in Chinese)
[8] 高彦萍, 冯莹, 马志军, 李强, 张秀娟 . 水分胁迫下不同抗旱类型大豆叶片气孔特性变化研究. 干旱地区农业研究, 2007,25(2):77-79.
GAO Y P, FENG Y, MA Z J, LI Q, ZHANG X J . Stomatal character changes of soybean leaves under water stress. Agricultural Research in the Arid Areas, 2007,25(2):77-79.
( in Chinese)
[9] 王孝威, 段艳红, 曹慧, 郑王义 . 水分胁迫对短枝型果树光合作用的非气孔限制. 西北植物学报, 2003,23(9):1609-1613.
WANG X W, DUAN Y H, CAO H, ZHENG W Y . The photosynthetic nonstomatal limitation of spur-apple young trees under water stress. Acta Botanica Boreali-Occidentalia Sinica, 2003,23(9):1609-1613. (in Chinese)
[10] 刘卫国, 蒋涛, 佘跃辉, 杨峰, 杨文钰 . 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011,33(2):141-146.
LIU W G, JIANG T, SHE Y H, YANG F, YANG W Y . Preliminary study on physiological response mechanism of soybean ( Glycine max) stem to shade stress at seedling stage. Chinese Journal of Oil Crop Sciences, 2011,33(2):141-146. (in Chinese)
[11] 任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰 . 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报, 2016,42(9):1319-1331.
REN M L, LIU W G, LIU T, DU Y L, DENG Y C, ZOU J L, YUAN J, YANG W Y . Transcriptome analysis of stem morphogenesis under shade stress in soybean. Acta Agronomica Sinica, 2016,42(9):1319-1331. (in Chinese)
[12] 龚万灼, 吴雨珊, 雍太文, 刘卫国, 杨峰 . 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响. 中国油料作物学报, 2015,37(4):475-480.
GONG W Z, WU Y S, YONG T W, LIU W G, YANG F . Effects of shade and lighting recovery on growth and yield of soybean in maize- soybean relay strip intercropping. Chinese Journal of Oil Crop Sciences, 2015,37(4) : 475-480. (in Chinese)
[13] 任梦露, 刘卫国, 刘小明, 方萍, 杨文钰 . 荫蔽信号对大豆幼苗生长和光合特性的影响. 中国生态农业学报, 2016,24(4):499-505.
REN M L, LIU W G, LIU X M, FANG P, YANG W Y . Effect of shading signal on growth and photosynthetic characteristics of soybean seedlings. Chinese Journal of Eco-Agriculture, 2016,24(4):499-505. (in Chinese)
[14] 范元芳, 杨峰, 何知舟, 王锐, 刘沁林 . 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应. 中国生态农业学报, 2016,24(5):608-617.
FAN Y F, YANG F, HE Z Z, WANG R, LIU Q L . Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system. Chinese Journal of Eco-Agriculture, 2016,24(5):608-617. (in Chinese)
[15] 范元芳, 杨峰, 刘沁林, 谌俊旭, 王锐, 罗式伶, 杨文钰 . 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响. 作物学报, 2017,43(2):277-285.
FAN Y F, YANG F, LIU Q L, CHEN J X, WANG R, LUO S L, YANG W Y . Effects of shading on leaf structure and photosynthetic fluorescence characteristics of soybean seedlings in maize-soybean relay intercropping system. Acta Agronomica Sinica, 2017,43(2):277-285. (in Chinese)
[16] YANG F, FENG L Y, LIU Q L, WU X L, FAN Y F, RAZA M A, CHENG Y J, CHEN J X, WANG X C, YONG T W . Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental & Experimental Botany, 2018,150:79-87.
[17] 蔡志全, 齐欣, 曹坤芳 . 七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应. 应用生态学报, 2004,15(2):201-204.
CAI Z Q, QI X, CAO K F . Response of stomatal characteristics and its plasticity to different light intensities in leaves of seven tropical woody seedlings. Chinese Journal of Applied Ecology, 2004,15(2):201-204. (in Chinese)
[18] 宋杰, 李树发, 李世峰, 蔡艳飞 . 遮阴对高山杜鹃叶片解剖和光合特性的影响. 广西植物, 2019,39(6):802-811.
SONG J, LI S F, LI S F, CAI Y F . Effects of shading on photosynthesis and anatomical structure in leaves of Rhododendron. Guihaia, 2019, 39(6):802-811. (in Chinese)
[19] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰 . 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015,48(13):2497-2507.
WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y . Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015,48(13):2497-2507. (in Chinese)
[20] 李海英, 倪红涛, 杨庆凯 . 大豆叶片结构与灰斑病抗性的研究Ⅰ. 大豆叶片气孔密度、茸毛密度与灰斑病抗性的关系. 中国油料作物学报, 2001,23(3):52-53.
LI H Y, NI H T, YANG Q K . Study on stomatal and hair density in soybean leaves of resistant and susceptible cultivars of Cercospora sojina Hara. Chinese Journal of Oil Crop Sciences, 2001,23(3):52-53. (in Chinese)
[21] 苏本营, 宋艳霞, 陈圣宾, 杨文钰 . 大豆幼苗对套作玉米遮荫环境的光合生理生态响应. 生态学报, 2015,35(10):3298-3308.
SU B Y, SONG Y X, CHEN S B, YANG W Y . Photosynthetic responses of soybean ( Glycine max) seedlings to shading caused by maize in an intercropping system. Acta Ecologica Sinica, 2015,35(10):3298-3308. (in Chinese)
[22] 李瑞, 文涛, 唐艳萍, 孙歆, 夏超 . 遮阴对大豆幼苗光合和荧光特性的影响. 草业学报, 2014,23(6):198-206.
LI R, WEN T, TANG Y P, SUN X, XIA C . Effect of shading on photosynthetic and chlorophyll fluorescence characteristics of soybean. Acta Prataculturae Sinica, 2014,23(6):198-206. (in Chinese)
[23] HU W H, YU J Q . Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves. Acta Horticulture Sinica, 2001,28(1):41-46.
[24] DEMMIG A B, ADAMS III W . The role of xanthophyll cycled carotenoids in the protection of photosynthesis. Trends in Plant Science, 1996,1(1):21-26.
[25] ZHANG Z W, LUO S, ZHANG G C, FENG L Y, ZHENG C, ZHOU Y H, DU J B, YUAN M, CHEN Y E, WANG C Q, LIU W J, XU X C, HU Y, BAI S L, KONG D D, YUAN S, HE Y K . Nitric oxide induces monosaccharide accumulation through enzyme s-nitrosylation. Plant Cell & Environment, 2017,40(9):1834-1848.
[26] HU Y B, SUN G Y, WANG X C . Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants. Journal of Plant Physiology, 2007,164(8):959-968.
[27] ERIK M . Effect of CO2-concentration on the morphological, histological and cytological changes on tomatoes plants. Acta Agriculture Scandinavica, 1973,23(4):241-246.
[28] 谭春燕, 刘作易, 朱星陶, 杜月红, 黄建斌 . 不同密度间作大豆的光合生理响应. 贵州农业科学, 2012,40(8):49-52.
TAN C Y, LIU Z Y, ZHU X T, DU Y H, HUANG J B . The photosynthetic physiology responses of intercropping soybean under different planting density. Guizhou Agricultural Sciences, 2012,40(8):49-52. (in Chinese)
[29] DRAKE P L, FROEND R H, FRANKS P J . Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 2013,64(2):495-505.
[30] HETHERINGTON A M, WOODWARD F I . The role of stomata in sensing and driving environmental change. Nature, 2003,424(6951):901-908.
[31] 杨再强, 张静, 江晓东, 张继波, 朱静, 顾礼力, 张波 . 不同R:FR值对菊花叶片气孔特征和气孔导度的影响. 生态学报, 2012,32(7):2135-2141.
YANG Z Q, ZHANG J, JIANG X D, ZHANG J B, ZHU J, GU L L, ZHANG B . The effect of red: far red ratio on the stomata characters and stomata conductance of Chrysanthemum leaves. Acta Ecologica Sinica, 2012,32(7):2135-2141. (in Chinese)
[32] 邱磊, 吴丽丽 . 大豆不同时期不同节位叶片光合速率、气孔导度、蒸腾速率的研究. 黑龙江农业科学, 2009(3):35-37, 49.
QIU L, WU L L . Study on photosynthetic rate, stomatal conductance and transpiration rate of different periods and sections in soybean.Heilongjiang Agricultural Sciences, 2009(3):35-37, 49. (in Chinese)
[33] 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰 . 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018,51(14):2655-2663.
CHENG Y J, CHEN J X, WANG Z L, FAN Y F, CHEN S Y, LI Z L, LIU Q L, LI Z C, YANG F, YANG W Y . Effects of light intensity and light quality on morphological and photosynthetic characteristics of soybean seedlings. Scientia Agricultura Sinica, 2018, 51(14):2655-2663. (in Chinese)
[34] 张哲, 杨姝, 杜桂娟, 黄淑萍, 马凤江 . 遮阴对三种豆科牧草光合特性和叶绿素荧光参数的影响. 草业学报, 2013,22(5):212-219.
ZHANG Z, YANG S, DU G J, HUANG S P, MA F J . Effects of shade on the photosynthetic characteristics and chlorophyll fluorescence parameters of three kinds of leguminous forage. Acta Prataculturae Sinica, 2013,22(5):212-219. (in Chinese)
[35] KUMUDINI S, HUME D J, CHU G . Genetic improvement in short season soybeans. Crop Science, 2002,41(1):141-145.
[36] WILCOX J R . Sixty years of improvement in publicly developed elite soybean lines. Crop Science, 2001,41(6):1711-1716.
[37] HERBERT S J . Some eco-physiological characteristics at R4-R5 stage in relation to soybean yield differing in maturities. Agricultural Sciences in China, 2004,3(6):425-434.
[38] 程亚娇, 范元芳, 谌俊旭, 王仲林, 谭婷婷, 李佳凤, 李盛蓝, 杨峰, 杨文钰 . 光照强度对大豆叶片光合特性及同化物的影响. 作物学报, 2018,44(12):129-136.
CHENG Y J, FAN Y F, CHEN J X, WANG Z L, TAN T T, LI J F, LI S L, YANG F, YANG W Y . Effects of light intensity on photosynthetic characteristics and assimilates of soybean leaf. Acta Agronomica Sinica, 2018,44(12):129-136. (in Chinese)
[39] 周艳虹, 黄黎锋, 喻景权 . 持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响. 植物生理与分子生物学报, 2004,30(2):153-160.
ZHOU Y H, HUANG L F, YU J Q . Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves. Journal of Plant Physiology & Molecular Biology, 2004,30(2):153-160. (in Chinese)
[40] 米国全, 刘丽英, 金宝燕, 张振贤, 任华中 . 弱光对不同生态型黄瓜幼苗光合速率及蔗糖代谢相关酶活性的影响. 华北农学报, 2011,26(1):146-150.
MI G Q, LIU L Y, JIN B Y, ZHANG Z X, REN H Z . Influence of low light on net photosynthesis rate and activities of enzymes related to sucrose metabolism in cucumber seedlings. Acta Agriculturae Boreali-Sinica, 2011,26(1):146-150. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[8] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[9] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[10] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[11] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[12] BAI Fei,BAI GuiPing,WANG ChunYun,LI Zhen,GONG DePing,HUANG Wei,CHENG YuGui,WANG Bo,WANG Jing,XU ZhengHua,KUAI Jie,ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[13] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[14] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[15] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!