Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (21): 3751-3762.doi: 10.3864/j.issn.0578-1752.2019.21.004

• SPECIAL FOCUS: MAIZE AND SOYBEAN RESPONSE TO LIGHT AND WATER IN STRIP INTERCROPPING • Previous Articles     Next Articles

Effects of Row Spacing on Dry Matter Accumulation, Grain Filling and Yield Formation of Different Nodulation Characteristic Soybeans in Intercropping

PANG Ting1,CHEN Ping1,YUAN XiaoTing1,LEI Lu2,DU Qing1,FU ZhiDan1,ZHANG XiaoNa1,ZHOU Ying1,REN JianRui1,WANG Tian1,WANG Jin1,YANG WenYu1,YONG TaiWen1()   

  1. 1 College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
    2 Renshou Meteorological Bureau of Meishan City, Renshou 620500, Sichuan
  • Received:2019-03-17 Accepted:2019-06-05 Online:2019-11-01 Published:2019-11-12
  • Contact: TaiWen YONG E-mail:yongtaiwen@sicau.edu.cn

Abstract:

【Objective】 Intercropping is an important way to increase the efficient utilization of resources and to solve the contradiction between grain supply and demand. Under intercropping system, crop symbiosis is influenced by interspecific interaction intensity between the species. In this study, maize-soybean intercropping system was used to investigate the effects of strength of root interaction between maize and soybean on the dry matter accumulation and yield formation of different nodule characteristic soybeans, so as to analyze variation trend dry matter accumulation and yield formation of soybean. 【Method】 Field experiments were carried out for two consecutive years from 2016 to 2017 with randomized complete block factorial design: factor A was different row spacing between maize and soybean, intercropped soybean followed by different row spacing (A2: 30 cm, A3: 45 cm, A4: 60 cm, A5: 75 cm); factor B was three soybean varieties (Gongxuan 1: Weak nodulation, Guixia 3: Moderate nodulation, Nandou 25: Strong nodulation).【Result】 The row spacing between soybean and maize had a significant effect on the biomass accumulation and distribution of soybean with different nodulation. Under monoculture, dry matter accumulation of soybean was significantly higher than that of intercropping, and reached the highest at R4 (full pod stage). The dry matter accumulation of intercropping soybean reached the highest at R5 stage, and was gradually higher than monoculture. Soybean had a highest amount of biomass accumulation when the row spacing was 45 cm and 60 cm. In intercropping, each variety had the longest grain filling time under A4, and the maximum grain filling rate, 100-seeds weight and yield were achieved under A4. Interestingly, there was no significant difference between monoculture and intercropping yield. Nandou 25 had the strongest grain filling capacity under all row spacing. Under A4, the average yield of Nandou 25 was 5.435% and 6.3% higher than that of Guixia 3 and Gongxuan 1, respectively. 【Conclusion】 Nandou 25 with strong nodulation could adapt to the intercropping environment well, and showed the best performance at 60 cm. It could promote dry matter accumulation and stabilize the yield through increasing grain filling rate and 100-seeds weight in intercropping. Furthermore, it could be useful to achieve the goal of stable and optimal yield in intercropping and monoculture.

Key words: maize-soybean relay strip intercropping, row spacing, nodular varieties, dry matter accumulation, yield

Table 1

Main characteristics of three soybean varieties"

主要特征 Main characteristic 贡选1号 Gongxuan 1 桂夏3号 Guixia 3 南豆25号 Nandou 25
生育期 Growth time (d) 120 108 134
叶形 Leaf shape 卵圆 Oval 椭圆 Ellipse 卵圆 Oval
株高 Plant height (cm) 96 59.9 67.5
结荚习性 Pod fertility 有限 limited 有限 limited 有限 limited
蛋白质 Protein (%) 47.00 43.62 49.10
脂肪 Fat (%) 17.20 20.11 17.50
始粒期单株平均根瘤个数
Number of nodules per plant at seed formation initiation stage
226.946 252.264 288.016
始粒期单株平均根瘤鲜重
Fresh weight of nodules per plant at seed formation initiation stage (g)
3.6830 4.2320 4.3963
始粒期单株根瘤固氮酶活性
C2H2 reduction per plant at seed formation initiation stage (mL·h-1·g-1)
0.5300 0.6519 1.0498

Fig. 1

Maize-soybean planting patterns"

Table 2

Yield of different soybean varieties under different treatments (kg·hm-2)"

种间距
Row spacing
2016 2017
B1 B2 B3 平均 Mean B1 B2 B3 平均 Mean
A1 1981.34a 1859.04a 2077.37a 1972.58a 1965.05a 1970.65ab 2175.21a 2036.97a
A2 1191.45b 1055.83b 1509.66b 1252.31b 1953.47a 1730.45c 1931.47b 1871.80b
A3 1328.67b 1323.31b 1795.36ab 1452.11b 1900.48a 1874.25b 1974.59b 1916.44b
A4 1807.99a 1819.78a 2007.11a 1878.29a 2015.97a 2039.67a 2071.52ab 2042.39a
A5 1947.57a 1799.39bc 1881.13b 1876.03b
平均 Mean 1627.36b 1491.74b 1847.37a 1956.51a 1882.88b 2006.78a

Table 3

The yield components of soybean under different treatments"

年份
Year
种间距
Row spacing
单株荚数 Pods per plant 单荚粒数 Seeds per pod 百粒重 Weight of 100-seeds (g)
B1 B2 B3 平均Mean B1 B2 B3 平均Mean B1 B2 B3 平均Mean
2016 A1 67.00a 71.67a 65.33a 68.00a 1.66b 1.80a 1.62a 1.69a 20.23a 19.27a 22.98a 20.83a
A2 59.33b 44.33c 50.00c 48.22d 1.46c 1.70a 1.62a 1.59b 17.99c 16.06d 21.17b 18.41c
A3 55.33b 48.33c 57.67b 53.78c 1.46c 1.69a 1.60a 1.59b 18.64b 17.06c 22.18a 19.29b
A4 50.33b 54.67b 60.33a 58.11b 1.82a 1.82a 1.63a 1.76a 20.08a 18.53b 22.19a 20.26a
平均 Mean 58.00b 54.75b 58.33b 1.60b 1.75a 1.62a 19.24b 17.73c 22.13a
2017 A1 63.00a 60.00a 49.00a 57.33a 1.46b 1.54a 1.45a 1.48c 18.24b 18.24a 26.10ab 20.86a
A2 54.40a 57.60a 43.20a 51.73a 1.69a 1.60a 1.50a 1.60ab 18.19b 16.01b 25.43bc 19.87ab
A3 56.00a 60.80a 46.90a 54.57a 1.55ab 1.61a 1.53a 1.56abc 18.68ab 16.39ab 23.59c 19.55b
A4 49.20a 67.20a 43.80a 53.40a 1.70a 1.60a 1.54a 1.62a 20.59a 16.18ab 26.18ab 20.99a
A5 52.80a 63.20a 41.80a 52.60a 1.60ab 1.56a 1.38a 1.51bc 19.72ab 15.59b 27.80a 21.04a
平均 Mean 55.08a 61.76a 44.94a 1.60ab 1.58a 1.48a 19.08ab 16.48ab 25.82b

Table 4

The simulative equation of grain filling process of soybean under different treatments"

处理
Treatment
模拟方程
Simulative equation
相关系数
Correlation coefficient
A1B1 Y=17.5570/(1+e3.6696-0.1501x)1/0.0806 0.9977**
A1B2 Y=17.1461/(1+e3.4713-0.1508x)1/0.0841 0.9947**
A1B3 Y=24.4795/(1+e3.4113-0.2168x)1/0.0134 0.9911**
A2B1 Y=18.7089/(1+e2.3874-0.1275x)1/0.0417 0.9971**
A2B2 Y=15.4204/(1+e9.0364-0.2440x)1/0.4750 0.9954**
A2B3 Y=23.4872/(1+e0.8381-0.1386x)1/0.0131 0.9851**
A3B1 Y=18.5408/(1+e2.6195-0.1380x)1/0.0420 0.9963**
A3B2 Y=16.2227/(1+e3.4650-0.1622x)1/0.0540 0.9961**
A3B3 Y=24.2147/(1+e2.5246-0.1638x)1/0.0269 0.9975**
A4B1 Y=19.9867/(1+e1.8642-0.1218x)1/0.0342 0.9956**
A4B2 Y=16.8530/(1+e1.0419-0.0982x)1/0.0514 0.9950**
A4B3 Y=25.6150/(1+e1.8951-0.1568x)1/0.0191 0.9950**
A5B1 Y=18.2363/(1+e2.4845-0.1506x)1/0.0245 0.9922**
A5B2 Y=18.0886/(1+e0.5033-0.1045x)1/0.0196 0.9983**
A5B3 Y=26.2659/(1+e0.4055-0.1268x)1/0.0136 0.9859**

Table 5

The grain-filling parameters of soybean under different treatments"

处理 Treatment R0 Se (d) Ymax (g) Vmax (g·d-1) (g·d-1) Tmax (d)
A1B1 1.86e 27.71d 6.71e 12.03e 0.3822a 41.21d
A2B1 3.06d 32.03b 7.02b 21.08d 0.3754c 43.66a
A3B1 3.29c 29.60c 6.96c 22.43c 0.3755b 41.97c
A4B1 3.57b 33.40a 7.48a 26.23b 0.3741d 43.02b
A5B1 6.15a 26.89e 6.77d 41.26a 0.3723e 41.13e
平均 Mean 3.59 29.93 6.99 24.61 0.3759 42.20
A1B2 1.79d 27.64c 6.56c 11.31d 0.3828b 39.44d
A2 B2 0.51e 20.28e 6.80a 2.65e 0.4412a 40.08c
A3 B2 3.00b 25.33d 6.13e 17.92b 0.3776c 39.36e
A4 B2 1.91c 41.79a 6.36d 11.86c 0.3771d 40.85b
A5 B2 5.32a 38.66b 6.72b 35.40a 0.3715e 42.43a
平均 Mean 2.51 30.74 6.51 15.83 0.3900 40.43
A1 B3 16.22a 18.58e 9.07c 146.14a 0.3703d 35.64e
A2 B3 10.61b 29.05b 8.70e 91.73b 0.3703d 37.36b
A3 B3 6.08e 24.75d 9.03d 54.24e 0.3728a 37.49a
A4 B3 8.20d 25.75c 9.51b 77.34d 0.3714b 37.31c
A5 B3 9.34c 31.76a 9.73a 90.27c 0.3704c 37.11d
平均 Mean 10.09 25.98 9.21 91.94 0.3714 36.98

Fig. 2

Dry matter weight at different stages with different treatments V5 means fifth trifoliate stage; R1 means beginning flowering stage; R2 means full blooming stage; R3 means beginning pod stage; R4 means full pod stage; R5 means beginning seed stage; R6 means full seed stage; R8 means full maturity stage"

Table 6

The dry matter distribution rate of different vegetative organs in soybean under different treatments (%)"

年份
Year
处理Treatment V5 R2 R5 R8

Root

Steam

Leaf

Root

Steam

Leaf

Root

Steam

Leaf

Pod

Root

Steam

Leaf

Pod
2016 A1B1 14.86a 36.53a 49.61a 12.68b 41.83ab 45.48a 12.26b 27.35a 32.83a 27.56b 18.60a 38.49a 3.12c 39.79b
A2B1 15.41a 36.29a 48.30a 14.33a 41.49ab 44.18a 13.48a 26.41ab 31.05ab 29.06a 16.59 ab 30.36b 9.97a 43.08a
A3B1 14.78a 35.59a 49.62a 14.27a 40.51b 45.22a 13.36a 25.64b 31.60ab 29.41a 15.02b 33.28b 6.02b 45.68a
A4B1 15.35a 37.39a 47.25a 13.68a 42.92a 43.40a 12.69a 26.92ab 30.07b 30.32a 14.28b 37.28a 5.63b 42.81a
平均Mean 15.10a 36.45a 48.70a 13.74a 41.69ab 44.60a 12.95a 26.58a 31.39ab 29.09a 16.12 ab 34.85b 6.18b 42.84a
A1B2 14.21a 31.08c 54.71a 12.15b 36.48b 51.37a 11.67b 23.74b 36.96a 27.63c 13.85a 45.80a 4.61a 35.74c
A2B2 15.24a 38.48a 46.27b 14.30a 43.66a 42.03b 13.20a 27.24a 28.97b 30.59ab 13.41a 37.98a 6.80a 41.81c
A3B2 17.47a 35.68b 46.85b 14.30a 41.79a 43.91b 13.27a 26.21b 30.41b 30.11b 15.51a 30.71b 4.99a 48.78b
A4B2 16.04a 36.42ab 47.54b 14.30a 41.96a 43.83b 12.84a 25.63b 29.58b 31.95a 12.96a 29.17c 5.39a 52.48a
平均Mean 15.74a 35.41b 48.84a 13.74b 40.97a 45.29a 12.75a 25.71b 31.48a 30.07b 13.98a 35.92a 5.45a 44.70b
A1B3 19.75ab 34.61ab 45.63 bc 14.42a 41.69ab 43.89ab 13.27b 25.94a 30.19a 30.60b 11.16b 46.74a 4.60b 37.50b
A2B3 17.10b 33.05b 49.85a 15.44a 38.29c 46.27a 14.38a 24.12b 32.18a 29.32b 16.77a 30.12b 7.37a 45.74b
A3B3 17.74ab 34.85ab 47.41 ab 14.36a 40.99b 44.64a 13.31b 25.69a 30.91a 30.09b 16.10a 22.36b 6.90ab 54.64ab
A4B3 20.81a 36.01a 43.18c 14.36a 43.62a 41.85b 12.80b 25.95a 27.50b 33.76a 14.20ab 23.87b 5.19ab 56.74a
平均Mean 18.85ab 34.63ab 46.52b 14.69a 41.15ab 44.16a 12.80b 25.42a 30.19a 30.94b 14.56ab 30.77b 6.01ab 48.65b
2017 A1B1 22.82a 34.87b 42.31 bc 24.14a 39.64b 36.22ab 8.87a 43.70a 21.29a 26.14a 10.57b 25.42a 15.25b 48.76a
A2B1 16.21b 37.60ab 46.19a 21.58ab 45.33ab 33.09ab 7.42a 36.87a 27.15a 28.55a 7.69c 26.85a 26.02a 39.44b
A3B1 15.11b 40.20a 44.69abc 17.16b 47.66a 35.18ab 8.60a 37.57a 23.41a 30.42a 8.31bc 24.02a 15.47b 52.19a
A4B1 21.70a 36.49b 41.81c 26.55a 41.25ab 32.20b 7.89a 40.69a 24.07a 27.35a 8.69bc 28.68a 23.23a 39.40b
A5B1 14.66b 40.01a 45.33ab 21.09ab 40.94ab 37.97a 7.38a 39.99a 22.67a 29.97a 13.23a 27.79a 17.27b 41.71b
平均Mean 18.10b 37.84ab 44.07abc 22.10ab 42.97ab 34.93ab 8.03a 39.76a 23.72a 28.49a 9.70b 26.55a 19.45b 44.30b
A1B2 20.93a 35.20c 43.87a 24.58a 43.21a 32.21c 11.15a 40.21a 21.08a 27.56c 8.33ab 29.00bc 16.68c 45.99ab
A2B2 16.35a 38.68b 44.97a 14.61c 44.49a 40.90a 5.01b 30.70bc 26.87a 37.42ab 7.15b 23.77c 23.20a 45.88ab
A3B2 16.24a 41.32b 42.44a 14.88c 46.79a 38.33ab 5.72b 37.60ab 25.29a 31.39bc 8.35ab 29.89ab 20.78ab 40.98b
A4B2 18.82a 38.51bc 42.67a 23.34ab 45.65a 31.01c 6.77b 37.60ab 21.25a 34.38b 10.16a 30.53a 12.92d 46.39a
A5B2 9.39b 47.60a 43.01a 17.87bc 47.19a 34.94bc 6.57b 27.41c 24.43a 41.59a 8.83ab 25.43bc 18.36bc 47.39a
平均Mean 16.34a 40.26b 43.39a 19.06b 45.46a 35.48ab 7.04b 34.70b 23.78a 34.47b 8.56ab 27.72bc 18.39bc 45.33ab
A1B3 20.28a 36.25c 43.47a 16.00b 44.88abc 39.11a 7.45ab 40.49a 15.36bc 36.70b 12.63ab 27.97a 16.46ab 42.94c
A2B3 19.55a 39.03bc 41.42a 15.45b 49.83a 34.73a 6.62b 27.75b 24.47a 41.16ab 8.33c 23.68ab 19.15a 48.85b
A3B3 18.37a 40.18b 41.45a 19.56b 41.86c 38.59a 8.85ab 32.33ab 18.37bc 40.44ab 10.71bc 23.51ab 14.53bc 51.25b
A4B3 18.36a 39.96b 41.68a 28.02a 42.88bc 29.10b 9.61a 30.54b 13.37c 46.47a 11.39b 21.62b 9.35d 57.64a
A5B3 11.62b 44.50a 43.88a 14.10b 48.87ab 37.02a 8.68ab 30.62b 21.12ab 39.58b 14.80a 23.14b 12.29cd 49.78b
平均Mean 17.64a 39.98b 42.38a 18.63b 45.66ab 35.71a 8.24ab 32.35ab 18.54bc 40.87ab 11.57b 23.98ab 14.36bc 50.09b

Table 7

Translocation and contribution of dry matter accumulation in vegetative organs (stem and leaf) (%)"

年份
Year
种间距
Row spacing
输出率 Output ratio 贡献率 Contribution ratio
B1 B2 B3 平均 Mean B1 B2 B3 平均 Mean
2016 A1 48.19a 37.82c 35.35b 40.46b 43.98b 41.47b 53.42b 46.29c
A2 50.81a 49.15ab 49.77a 49.91a 57.44a 51.68a 55.65ab 54.92a
A3 50.03a 43.68b 46.54a 46.75a 50.01a 46.97b 55.74ab 50.89b
A4 47.47a 49.93a 44.54a 47.31a 50.49a 49.35a 58.57a 52.80ab
平均Mean 49.13a 45.15b 44.05a 50.50a 47.34b 55.85ab
2017 A1 41.79a 37.36a 44.06a 41.07a 53.64ab 53.70a 57.77a 55.04a
A2 40.82a 38.84a 24.21b 34.62ab 57.70a 44.55b 24.25b 42.17b
A3 44.07a 31.63ab 34.73ab 36.81a 57.96a 50.61ab 33.48b 47.35ab
A4 31.95ab 34.25ab 46.74a 37.64a 39.02bc 37.93bc 57.75a 44.89b
A5 26.69b 24.15b 34.43ab 28.43b 32.56c 23.80c 38.33b 31.56c
平均Mean 37.06a 33.25ab 36.83ab 48.17b 42.12b 42.31ab
[1] 国家统计局农村社会经济调查总队. 中国农村统计年鉴2017. 北京: 中国统计出版社, 2017.
Rural Socio-Economic Survey Detachment of the National Bureau of Statistics. China Rural Statistical Yearbook 2017. Beijing: Statistics Press of China, 2017. (in Chinese)
[2] LI L, LI S M, SUN J H, ZHOU L L, ZHANG F S . Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Science of the United States of America, 2007,104(27):1192-1196.
[3] LITHOURGIDIS A S, DORDAS C A, DAMALAS C A, VLACHOSTERGIOS D N, VLACHOSTERGIOS D N . Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 2011,5(4):396-410.
[4] HENRIK H N, MIKE J G, PER A, GUENAELLE C H, YVES C, DAHLMANN C, AUDREY D, PETER V F, AURELIO P, MICHELE M, ERIK S J . Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009,113(1):64-71.
[5] MARIANNE K M, REINHOLD S . Biomass yield and nitrogen fixation of legumes mono-cropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant and Soil, 2000,218(1/2):215-232.
[6] CHU G X, SHEN Q R, CAO J L . Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant and Soil, 2004,263(1/2):17-27.
[7] 高阳, 段爱旺, 刘祖贵, 孙景生, 陈金平, 王和洲 . 间作种植模式对玉米和大豆干物质积累与产量组成的影响. 中国农学通报, 2009,25(2):214-221.
GAO Y, DUAN A W, LIU Z G, SUN J S, CHEN J P, WANG H Z . Effect of intercropping patterns on dry matter accumulation and yield components of maize and soybean. Chinese Agricultural Science Bulletin, 2009,25(2):214-221. (in Chinese)
[8] 崔亮, 苏本营, 杨峰, 杨文钰 . 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014,47(8):1489-150.
CUI L, SU B Y, YANG F, YANG W Y . Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize-soybean relay strip intercropping systems. Scientia Agricultura Sinica, 2014,47(8):1489-1501. (in Chinese)
[9] 王竹, 杨文钰, 吴其林 . 玉-豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007,33(9):1502-1507.
WANG Z, YANG W Y, WU Q L . Effects of shading in maize-soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agronomica Sinica, 2007,33(9):1502-1507. (in Chinese)
[10] 童平, 杨世民, 马均, 吴合洲, 傅泰露, 李敏, 王明田 . 不同水稻品种在不同光照条件下的光合特性及干物质积累. 应用生态学报, 2008,19(3):505-511 .
TONG P, YANG S M, MA J, WU H Z, FU T L, LI M, WANG M T . Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions. Chinese Journal of Applied Ecology, 2008,19(3):505-511. (in Chinese)
[11] 陈小林, 杨文钰, 陈忠群, 王晶晶 . 不同施氮水平下净、套作大豆茎秆特征比较研究. 大豆科学, 2011,30(1):101-104.
CHEN X L, YANG W Y, CHEN Z Q, WANG J J . Characteristics of stem between sole-cropping and relay-cropping soybean under different nitrogen applied levels. Soybean Science, 2011,30(1):101-104. (in Chinese)
[12] 于晓波, 张明荣, 吴海英, 杨文钰 . 净套作下不同耐荫性大豆品种农艺性状及产量分布的研究. 大豆科学, 2012,31(5):757-761.
YU X B, ZHANG M R, WU H Y, YANG W Y . Agronomic characters and yield distribution of different shade tolerance soybean under monoculture and relay strip intercropping systems. Soybean Science, 2012,31(5):757-761. (in Chinese)
[13] YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y . Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 2014,155:245-253.
[14] 宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵 . 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应. 中国油料作物学报, 2009,31(4):474-479.
SONG Y X, YANG W Y, LI Z X, YU X B, GUO K, XIANG D B . The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. Chinese Journal of Oil Crop Sciences, 2009,31(4):474-479. (in Chinese)
[15] 王竹, 杨文钰, 伍晓燕, 吴其林 . 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008,19(2):323-329.
WANG Z, YANG W Y, WU X Y, WU Q L . Effects of maize plant type and planting width on the early morphological characters and yield of relay planted soybean. Chinese Journal of Applied Ecology, 2008,19(2):323-329. (in Chinese)
[16] 张昆, 万勇善, 刘风珍 . 苗期弱光对花生光合特性的影响. 中国农业科学, 2010,43(1):65-71.
ZHANG K, WAN Y S, LIU F Z . Effects of weak Light on photosynthetic characteristics of peanut seedlings. Scientia Agricultura Sinica, 2010,43(1):65-71. (in Chinese)
[17] 于显枫, 张绪成 . 高CO2 浓度和遮荫对小麦叶片光能利用特性及产量构成因子的影响. 中国生态农业学报, 2012,20(7):895-900.
YU X F, ZHANG X C . Effects of elevated atmospheric CO2 concentration and shading on leaf light utilization and yield of wheat. Chinese Journal of Eco-Agriculture, 2012,20(7):895-900. (in Chinese)
[18] 吴雨珊, 龚万灼, 廖敦平, 武晓玲, 杨峰, 刘卫国, 雍太文, 杨文钰 . 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响. 作物学报, 2015,41(11):1740-1747.
WU Y S, GONG W Z, LIAO D P, WU X L, YANG F, LIU W G, YONG T W, YANG W Y . Effects of shade and light recovery on soybean cultivars(lines) and its relationship with yield in relay strip intercropping system. Acta Agronomica Sinica, 2015,41(11):1740-1747. (in Chinese)
[19] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰 . 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015,41(4):642-650.
YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y . Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015,41(4):642-650. (in Chinese)
[20] 苏本营, 陈圣宾, 李永庚, 杨文钰 . 间套作种植提升农田生态系统服务功能. 生态学报, 2013,33(14):4505-4514.
SU B Y, CHEN S B, LI Y G, YANG W Y . Intercropping enhances the farmland ecosystem services. Acta Ecologica Sinica, 2013,33(14):4505-4514. (in Chinese)
[21] ERENA G Q, ESTÍBALIZ L, AMAIA S, JUAN L D, JOSEFA M A, MANUEL W, CESAR A L, STEFANIE W, ESTHER M G. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. Journal of Experimental Botany, 2013,64(8):2172-2182.
[22] 于晓波, 苏本营, 龚万灼, 罗玲, 刘卫国, 杨文钰, 张明荣, 吴海英, 曾宪堂 . 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响. 中国农业科学, 2014,47(9):1743-1753.
YU X B, SU B Y, GONG W Z, LUO L, LIU W G, YANG W Y, ZHANG M R, WU H Y, ZENG X T . The nodule characteristics and nitrogen fixation of soybean in maize-soybean relay strip intercropping. Scientia Agricultura Sinica, 2014,47(9):1743-1753. (in Chinese).
[23] CARROLL B, MCNEIL D, GRESSHOFF P . Isolation and properties of soybean [Glycine max(L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proceeding of National Academy of Sciences of the United States of America, 1985,82(12):4162-4166.
[24] 邱丽娟, 王署明 . 中国大豆品种志1993-2004 . 北京: 中国农业出版社, 2007: 12.
QIU L J, WANG S M. Chinese Soybean Variety 1993-2004. Beijing: China Agricultural Press, 2007: 12. (in Chinese)
[25] 陈渊, 梁江, 韦清源 . 优质夏大豆新品种——桂夏3号的选育. 作物杂志, 2008(8):417-418.
CHEN Y, LIANG J, WEI Q Y . Breeding of a new high quality summer soybean variety, Guixia No.3.Crops, 2008(8):417-418. (in Chinese)
[26] 吴海英, 梁建秋, 于晓波, 杨鹏, 张明荣 . 大豆新品种南夏豆25的选育及配套高产栽培技术研究. 大豆科技, 2015(2):23-26.
WU H Y, LIANG J Q, YU X B, YANG P, ZHANG M R . Breeding of a new soybean variety Nanxiadou 25 and its supporting high-yield cultivation techniques. Soybean Science & Technology. 2015(2):23-26. (in Chinese)
[27] 雍太文, 刘小明, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰 . 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响. 应用生态学报, 2014,25(2):474-482.
YONG T W, LIU X M, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y . Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system. Chinese Journal of Applied Ecology, 2014,25(2):474-482 .(in Chinese)
[28] YANG J, ZHANG J, WANG Z, ZHU Q, WANG W . Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001,127(1):315-323.
[29] JIANG H, EGLI D B . Soybean seed number and crop growth rate during flowering. Agronomy Journal, 1995,87(2):264-267.
[30] 陈忠群 . 钼肥对净套作大豆固氮特性、光合生理及产量品质的影响[D]. 雅安: 四川农业大学, 2011.
CHEN Z Q . Effects of molybdenum on nitrogen fixation, character of photosynthesis, yield and quality of soybean in sole-cropping and relay strip inter-cropping system[D]. Ya’an: Sichuan Agricultural University, 2011. ( in Chinese)
[31] 伍晓燕, 王竹, 张含彬, 杨文钰 . 玉-豆套作对大豆开花后光合生产的影响. 作物杂志, 2006(3):30-33.
WU X Y, WANG Z, ZHANG H B, YANG W Y . Effect of maize- soybean relay strip intercropping system on photosynthetic production of soybean after anthesis. Crops, 2006(3):30-33. (in Chinese)
[32] 杨继芝 . 播期和品种对套作大豆生长发育特性和产量及品质的影响[D]. 雅安: 四川农业大学, 2006.
YANG J Z . Effects of sowing date and Variety on growth and development characteristics, yield and quality of intercropping soybean[D]. Ya’an: Sichuan Agricultural University, 2006. ( in Chinese)
[33] 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群 . 施氮量对套作大豆花后光合特性、干物质积累及产量的影响. 草业学报, 2011,20(3):233-238.
YAN Y H, YANG W Y, ZHANG X Q, CHEN X L, CHEN Z Q . Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming. Acta Prataculturae Sinica, 2011,20(3):233-238. (in Chinese)
[34] 张正翼 . 不同密度与田间配置对套作大豆产量和品质的影响[D]. 雅安: 四川农业大学, 2008.
ZHANG Z Y . Effects of different densities and field configurations on yield and quality of intercropping soybean[D]. Ya’an: Sichuan Agricultural University, 2008. ( in Chinese)
[35] 陈雨海, 余松烈, 于振文 . 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003,29(5):730-734.
CHEN Y H, YU S L, YU Z W . Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agronomica Sinica, 2003,29(5):730-734. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!