Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3536-3545.doi: 10.3864/j.issn.0578-1752.2019.20.005

• SPECIAL FOCUS: HIGH-YIELDING AND HIGH NUTRIENT EFFICIENT SPRING MAIZE IN NORTHEAST CHINA • Previous Articles     Next Articles

Effects of Sources Reduction on Accumulation and Remobilization of Dry Matter and Nitrogen, Phosphors and Potassium of Spring Maize Under Different Densities After Flowering

YuJun CAO1,3,Yang WU1,ZhiMing LIU1,Hong CUI1,2,YanJie LÜ1,FanYun YAO1,WenWen WEI1,YongJun WANG1()   

  1. 1 Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/State Engineering Laboratory of Maize, Changchun 130033
    2 College of Agricultural Resources and Environment, Jilin Agricultural University, Changchun 130118
    3 College of Agriculture, Northeast Agricultural University, Haerbin 150030
  • Received:2018-10-13 Accepted:2018-12-20 Online:2019-10-16 Published:2019-10-28
  • Contact: YongJun WANG E-mail:yjwang2004@126.com

Abstract:

【Objective】 The effects of source reduction on yield, dry matter, and nutrient accumulation and transport of nitrogen, phosphorus, and potassium under different density populations were discussed in this study, in order to provide more effective ways for further improvement of maize yield and nutrient use efficiency and to provide a reference for the selection and breeding of density-resistant varieties.【Method】 The cultivar Xianyu335 was used for experimental material, which was planted most popularly in local production. A split plot design with three replicates was used in the experiment. The main plot was different densities with 60 000 plants/hm 2 (conventional density) and 90 000 plants/hm 2(high density), respectively; The subplot was different sources reduction intensity by cutting the leaves of each plant by 1/2 (T1), 1/3 (T2), 1/4 (T3) and control (without cutting leaves) at silking stage. Dry matter weight and the contents of nitrogen, phosphorus, and potassium were determined, and dry matter and nutrient accumulation and transport were calculated. 【Result】 Under conventional planting density, the number of kernels per ear, 100-kernel weight, and grain yield were all decreased compared to the control under different levels of source reduction. Among them, the average yield of T1, T2 and T3 were 32.1%, 20.3% and 11.9% lower than that of the control in two years, respectively; Under high planting density, T3 treatment significantly increased the number of kernels per ear, which resulted in a significant increase in yield. The average yield in two years in T3 treatment was 7.7% higher than that of control. Compare with the control, the dry matter and the nutrients of nitrogen, phosphorus and potassium transport rate of vegetative organs were increased at different source reduction, the greater the source reduction, the higher the dry matter and nutrient transport rate. Under conventional planting density, the vegetative organs nutrients of nitrogen, phosphorus and potassium transport rate of T1, T2 and T3 were 25.4%, 19.1%, 10.7%, 14.3%, 9.8%, 5.2% and 19.0%, 10.7%, 8.4% higher than the control, respectively. While, under high planting density, the vegetative organs nutrients of nitrogen, phosphorus and potassium transport rate of T1, T2 and T3 were 17.1%, 12.8%, 5.8%, 12.6%, 8.0%, 3.6% and 14.9%, 11.3%, 3.9% higher than the control, respectively. Under conventional planting density, the differences of source reduction reduced the accumulation of nitrogen, phosphorus and potassium nutrients in grains. While, under high planting density, the accumulation of nitrogen, phosphorus and potassium nutrients in grains were increased at an appropriate source reduction level. The accumulation of nitrogen, phosphorus, and potassium were 11.1%, 6.9%, and 6.1% higher, respectively, than the control on average of two years under T3 treatment. But the nutrients of nitrogen, phosphorus and potassium under T1 and T2 treatments were 20.4%, 23.4%, 20.0% and 10.3%, 15.6%, 16.0% lower than the control, respectively.【Conclusion】 Leaf redundancy existed in dense maize population, reduction the amount of leaf sources appropriately (cutting all the leaves by 1/4 of whole plant) promoted the dry matter, nitrogen, phosphorus and potassium nutrients transport rate from vegetative organs to the grain, and increased the accumulation of nitrogen, phosphorus, and potassium nutrients in grains at mature stage. Therefore, increasing the density reasonably should be adopted in maize production. Meanwhile, the appropriate reduction of leaf source volume under high density population should be an effective way to further increase high yield and efficient use of nutrients in spring maize.

Key words: spring maize, different densities, leaf area reduction, dry matter, N,P,K accumulation and transport

Fig. 1

Meteorological conditions at growth stage of maize"

Table 1

The leaf area index (LAI) of different treatment groups after the source reduction"

年份
Year
种植密度
Planting density
(×104 plants/hm2)
减源处理
Source reduction treatment
叶面积指数
LAI
2014 6.0 CK 5.52
T1 3.11
T2 3.56
T3 4.15
9.0 CK 7.36
T1 4.02
T2 5.04
T3 6.22
2015 6.0 CK 5.82
T1 3.30
T2 3.91
T3 4.31
9.0 CK 7.19
T1 3.84
T2 4.85
T3 6.16

"

年份
Year
种植密度
Planting density
(×104 plants/hm2)
处理
Treatment
穗粒数
Grain number per ear
百粒重
100-kernel weight
(g)
秃尖长
Bare tip length
(cm)
产量
Yield
(kg·hm-2)
2014 6.0 CK 586.7a 33.6a 0.5c 11231.2a
T1 478.7c 27.2c 3.7a 7676.1d
T2 506.7c 30.4b 2.1b 8961.9c
T3 548.0b 31.0b 1.9b 9840.6b
9.0 CK 512.5b 30.5a 1.7a 12741.7b
T1 490.5c 26.4b 2.4a 10283.9c
T2 500.4b 28.8ab 2.0b 11825.9b
T3 542.2a 31.7a 0.5b 13648.6a
2015 6.0 CK 560.7a 33.0a 0.4c 11047.8a
T1 495.2c 26.1b 3.9a 7447.9d
T2 502.3c 30.6b 2.0b 8798.4c
T3 532.3b 32.3ab 1.8b 9790.3b
9.0 CK 505.3b 31.4a 1.9a 12411.6b
T1 476.7b 27.0b 2.4a 10149.1d
T2 481.3b 29.0b 2.0a 11465.5c
T3 539.3a 32.0a 0.6b 13444.8a
ANOVA 年份 Year ns ns ns ns
密度 Density (D) * * ns **
处理 Treatment (T) * * * **
密度×处理 (D×T) ** * ns *

Table 3

Effects of different source reduction on dry matter accumulation and transport"

年份
Year
种植密度
Planting density
(×104 plants/hm2)
处理
Treatment
叶片干重
Leaf weight (g)
转运量
Remobilization (g/plant)
转运率
Remobilization efficiency
(%)
茎鞘干重
Stem-sheath weight (g/plant)
转运量
Remobilization
(g/plant)
转运率
Remobilization efficiency
(%)
吐丝期
Silking stage
成熟期
Mature stage
吐丝期
Silking stage
成熟期
Mature stage
2014
6.0 CK 46.0a 38.3a 7.7b 16.7d 136.2a 122.2a 14.0d 10.3c
T1 30.5d 21.6d 8.9a 29.1a 136.3a 108.0c 28.5a 20.8a
T2 38.0c 29.4c 8.6a 22.5b 136.1a 110.4c 25.6b 18.8a
T3 42.0b 33.5b 8.5ab 20.3c 135.9a 117.1b 18.8c 13.7b
9.0 CK 42.0a 35.5a 6.5a 15.9c 124.8a 108.1a 16.8c 13.4c
T1 30.7d 24.0d 6.7a 21.8a 124.3a 100.7 23.7a 19.0a
T2 33.5c 27.1c 6.4a 19.2b 125.0a 104.2 20.7b 16.6b
T3 36.1b 30.2b 6.0b 16.5c 124.2a 106.5 17.7c 14.3c
2015 6.0 CK 45.4a 38.4a 7.0b 15.5d 140.9a 123.7 17.2d 12.2c
T1 32.2d 23.0d 9.2a 28.4a 141.0a 109.7 31.3a 22.2a
T2 38.8c 30.1c 8.7a 22.4b 140.5a 114.9 25.6b 18.2b
T3 41.1b 32.7b 8.4ab 20.5c 141.1a 120.6 20.5c 14.5c
9.0 CK 42.3a 35.8a 6.5a 15.3c 127.1a 110.6 16.5c 13.0c
T1 30.3d 23.2d 6.9a 23.2a 127.1a 100.3 26.8a 21.1a
T2 32.7c 26.0c 6.7a 20.5b 127.4a 104.3 23.2b 18.2b
T3 36.7b 30.7b 6.1a 16.4c 127.5a 110.0 17.5c 13.7c

Table 4

N, P and K nutrient remobilization efficiency in leaves and stem-sheath under different treatments"

年份
Year
种植密度
Planting density
(×104 plants/hm2)
处理
Treatment
氮N (%) 磷P (%) 钾K (%)
叶片
Leaf
茎鞘
Stem-sheath
叶片
Leaf
茎鞘
Stem-sheath
叶片
Leaf
茎鞘
Stem-sheath
2014 6.0 CK 42.9 45.5 42.1 53.6 61.2 24.5
T1 53.8 54.9 47.3 63.2 70.4 29.9
T2 51.1 53.4 46.3 59.3 66.8 26.8
T3 46.5 49.5 44.5 54.8 64.6 27.3
9.0 CK 43.8 41.5 41.3 46.9 61.4 25.9
T1 52.2 50.1 44.8 55.6 66.8 32.3
T2 46.5 48.9 43.7 54.0 65.3 31.2
T3 45.6 45.1 44.3 49.2 63.4 26.9
2015 6.0 CK 43.9 46.9 57.3 54.2 59.6 24.7
T1 55.7 53.5 62.3 60.5 71.7 30.3
T2 48.5 53.9 59.6 58.6 67.1 27.5
T3 45.7 50.6 58.5 56.8 66.4 25.9
9.0 CK 45.2 43.9 46.7 46.1 61.6 19.4
T1 51.7 50.3 53.5 52.9 68.4 26.0
T2 50.8 50.6 51.0 50.0 64.8 26.0
T3 48.4 45.4 49.8 47.2 62.7 21.9
ANOVA 年份 Year ns ns ns ns ns *
密度 Density ns ** ** ** ns *
处理 Treatment ** ** ns ** ** **

Table 5

Effects of source reduction on N, P and K accumulation and the contribution of remobilized N, P and K to grain under different treatments"

年份
Year
种植密度
Planting density
(×104 plants/hm2)
处理
Treatment
成熟期籽粒
氮积累
Grain N at physiological
maturity (g/plant)
营养器官
氮转运贡献
Proportion of remobilize N in grain from vegetative organs
成熟期籽粒
磷积累
Grain P at physiological
maturity (g/plant)
营养器官
磷转运贡献
Proportion of remobilize P in grain from vegetative organs
成熟期籽粒
钾积累
Grain K at physiological
maturity (g/plant)
营养器官钾
转运贡献率
Proportion of remobilize K in grain from vegetative organs
2014
6.0 CK 2.13 41.12 0.38 43.45 0.69 55.40
T1 1.56 59.11 0.35 47.24 0.57 60.74
T2 1.79 54.89 0.36 43.61 0.60 58.63
T3 1.85 50.60 0.36 43.47 0.64 60.41
9.0 CK 1.72 39.72 0.32 33.02 0.51 60.30
T1 1.41 52.60 0.25 44.99 0.41 75.14
T2 1.61 48.92 0.28 38.74 0.43 73.20
T3 1.96 35.03 0.34 31.38 0.53 59.16
2015 6.0 CK 2.15 42.64 0.35 46.56 0.67 54.30
T1 1.58 61.20 0.29 54.72 0.49 73.12
T2 1.87 52.84 0.33 48.54 0.54 63.18
T3 1.92 48.77 0.34 49.24 0.57 59.92
9.0 CK 1.72 45.75 0.32 31.41 0.49 62.91
T1 1.35 57.39 0.24 41.51 0.39 70.20
T2 1.50 53.83 0.26 37.84 0.41 73.31
T3 1.92 40.32 0.34 29.58 0.52 58.88
ANOVA 年份
Year
ns ns ns ns ns ns
密度
Density
** ** * ** ** *
处理
Treatment
** ** * ** ** **
[1] 曹玉军, 吕艳杰, 王晓慧, 魏雯雯, 姚凡云, 刘春光, 王立春, 王永军 . 基于Hybrid-maize 模型的吉林省不同生态区玉米产量潜力研究. 中国生态农业学报, 2016,24(7):926-934.
CAO Y J, LÜ Y J, WANG X H, WEI W W, YAO F Y, LIU C G, WANG L C, WANG Y J . Analysis of yield potential of maize in different ecological regions in Jilin Province using Hybrid-maize model. Chinese Journal of Eco-Agriculture, 2016,24(7):926-934. (in Chinese)
[2] 王立春, 边少锋, 任军, 刘武仁 . 提高春玉米主产区玉米单产的技术途径研究. 玉米科学, 2010,18(6):83-85.
WANG L C, BIAN S F, REN J, LIU W R . Study on technique way to increase unit area yield in the main production zone of spring maize. Journal of Maize Sciences, 2010,18(6):83-85. (in Chinese)
[3] 赵松岭, 李凤民, 张大勇, 段舜山 . 作物生产是一个种群过程. 生态学报, 1997,17(1):100-104.
ZHAO S L, LI F M, ZHANG D Y, DUAN S S . Crop production is a population process. Acta Ecologica Sinica, 1997,17(1):100-104. (in Chinese)
[4] TOKATLIDIS I S , KOUTROUBAS S.D . A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004,12:103-114.
[5] 冯海娟, 张善平, 马存金, 刘鹏, 董树亭, 赵斌, 张吉旺, 杨今胜 . 种植密度对夏玉米茎秆维管束结构及茎流特性的影响. 作物学报, 2014,40(8):1435-1442.
doi: 10.3724/SP.J.1006.2014.01435
FENG H J, ZHANG S P, MA C J, LIU P, DONG S T, ZHAO B, ZHANG J W, YANG J S . Effect of plant density on microstructure of stalk vascular bundle of summer maize (Zea mays L.) and its characteristics of sap flow. Acta Agronomica Sinica, 2014,40(8):1435-1442. (in Chinese)
doi: 10.3724/SP.J.1006.2014.01435
[6] 卫丽, 熊友才, 马超, 张慧琴, 邵阳, 李朴芳 . 不同群体结构夏玉米灌浆期光合特征和产量变化. 生态学报, 2011,31(9):2524-2531.
WEI L, XIONG Y C, MA C, ZHANG H Q, SHAO Y, LI P F . Photosynthetic characterization and yield of summer corn (Zea mays L.) during grain filling stage under different planting pattern and population densities. Acta Ecologica Sinica, 2011,31(9):2524-2531. (in Chinese)
[7] FATEMEH F, MANI M, SHAHRAM L . The effect of source-sink restriction and plant density changes on the role of assimilate remobilization in corn grain yield. International Journal of Agriculture and Crop Sciences, 2013,5(20):2459-2465.
[8] ROSSINI M A, MADDONNI G A, OTEGUI M E . Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Research, 2011,121:373-380.
[9] 韩明春, 吴建军, 王芬 . 冗余理论及其在农业生态系统管理中的应用. 应用生态学报, 2005,16(2):375-378.
HAN M C, WU J J, WANG F . Redundancy theory and its application in agro-ecosystem management. Chinese Journal of Applied Ecology, 2005,16(2):375-378. (in Chinese)
[10] 刘志全, 徐晓敏, 沈海波, 孙俊华, 沈芳玉, 车树平, 王双越, 路立平 . 高密度栽培条件下玉米剪叶处理对产量构成的影响. 玉米科学, 2009,17(6):74-75.
LIU Z Q, XU X M, SHEN H B, SUN J H, SHEN F Y, CHE S P, WANG S Y, LU L P . Effects of leaf cutting treatment to maize yield under the high plant population cultivation condition. Journal of Maize Sciences, 2009,17(6):74-75. (in Chinese)
[11] LIU T N, GU L M, DONG S T, ZHANG J W, LIU P, ZHAO B . Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 2015,170(1):32-39.
[12] XUE J, GOU L, SHI Z G, ZHAO Y S, ZHANG W F . Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. Journal of Integrative Agriculture, 2017,16(1):85-96.
[13] 杨恒山, 张玉芹, 徐寿军, 李国红, 高聚林, 王志刚 . 超高产春玉米干物质及养分积累与转运特征. 植物营养与肥料学报, 2012,18(2):315-323.
doi: 10.11674/zwyf.2012.11296
YANG H S, ZHANG Y S, XU S J, LI G H, GAO J L, WANG Z G . Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield spring maize. Plant Nutrition and Fertilizer Science, 2012,18(2):315-323. (in Chinese)
doi: 10.11674/zwyf.2012.11296
[14] 戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平 . 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011,44(8):1585-1595.
DAI M H, ZHAO J R, YANG G H, WANG R H, CHEN G P . Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. Scientia Agricultura Sinica, 2011,44(8):1585-1595. (in Chinese)
[15] 牟会荣, 姜东, 戴廷波, 曹卫星 . 遮光对小麦植株氮素转运及品质的影响. 应用生态学报, 2010,21(7):1718-1724.
MOU H R, JIANG D, DAI T B, CAO W X . Effects of shading on the nitrogen redistribution in wheat plant and the wheat grain quality. Chinese Journal of Applied Ecology, 2010,21(7):1718-1724. (in Chinese)
[16] 于吉琳, 聂林雪, 郑洪兵, 张卫健, 宋振伟, 唐建华, 林志强, 齐华 . 播期与密度对玉米物质生产及产量形成的影响. 玉米科学, 2013,21(5):76-80.
YU J L, NIE L X, ZHENG H B, ZHANG W J, SONG Z W, TANG J H, LIN Z Q, QI H . Effect of matter production and yield formation on sowing date and density in maize. Journal of Maize Sciences, 2013,21(5):76-80. (in Chinese)
[17] 孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾现文, 马均 . 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. 作物学报, 2011,37(12):2221-2232.
doi: 10.3724/SP.J.1006.2011.02221
SUN Y J, SUN Y Y, LIU S J, YANG Z Y, CHENG H B, JIA X W, MA J . Effects of water management and nitrogen application strategies on nutrient absorption, transfer, and distribution in rice. Acta Agronomica Sinica, 2011,37(12):2221-2232. (in Chinese)
doi: 10.3724/SP.J.1006.2011.02221
[18] 戴明宏, 陶洪斌, 王利纳, 王璞 . 不同氮肥管理对春玉米干物质生产分配及转运的影响. 华北农学报, 2008,23(1) : 154-157.
doi: 10.7668/hbnxb.2008.01.034
DAI M H, TAO H B, WANG L N, WANG P . Effects of different nitrogen managements on dry matter accumulation, partition and transportation of spring maize (Zea mays L.). EActa Agriculturae Boreali-Sinica, 2008,23(1):154-157. (in Chinese)
doi: 10.7668/hbnxb.2008.01.034
[19] ROMÁN A S, IGNACIO A, ROXANA S, GUSTAVO A S . Understanding grain yield responses to source-sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Research, 2013,150(15):42-51.
[20] 许蓓蓓, 尤翠翠, 丁艳锋, 王绍华 . 源库调节对常规粳稻花后营养器官碳水化合物及氮磷钾转运的影响. 中国农业科学, 2016,49(4):643-656.
doi: 10.3864/j.issn.0578-1752.2016.04.004
XU B B, YOU C C, DING Y F, WANG S H . Effect of source-sink manipulation on translocation of carbohydrate and nitrogen, phosphors, potassium in vegetative organs of conventional Japonica rice after anthesis. Scientia Agricultura Sinica, 2016,49(4):643-656. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.004
[21] 曹国军, 刘宁, 李刚, 杜立平, 陈世纪, 李可 . 超高产春玉米氮磷钾的吸收与分配. 水土保持学报, 2008,22(2):198-201.
CAO G J, LIU N, LI G, DU L P, CHEN S J, LI K . Study on absorption and distribution of nitrogen phosphorus and potassium in super-high yield spring maize. Journal of Soil and Water Conservation, 2008,22(2):198-201. (in Chinese)
[22] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36(7):1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010,36(7):1226-1233. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01226
[23] 杨今胜, 王永军, 张吉旺, 刘鹏, 李从锋, 朱元刚, 郝梦波, 柳京国, 李登海, 董树亭 . 三个超高产夏玉米品种的干物质生产及光合特性. 作物学报, 2011,37(2):355-361.
doi: 10.3724/SP.J.1006.2011.00355
YANG J S, WANG Y J, ZHANG J W, LIU P, LI C F, ZHU Y G, HAO M B, LIU J G, LI D H, DONG S T . Dry matter production and photosynthesis characteristics of three hybrids of maize (Zea mays L.) with super-high-yielding potential. Acta Agronomica Sinica, 2011,37(2):355-361. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00355
[24] 郝梦波, 王空军, 董树亭, 张吉旺, 李登海, 刘鹏, 杨今胜, 柳京国 . 高产玉米叶片冗余及其对产量和光合特性的影响. 应用生态学报, 2010,21(2):344-350.
HAO M B, WANG K J, DONG S T, ZHANG J W, LI D H, LIU P, YANG J S, LIU J G . Leaf redundancy of high-yielding maize (Zea may L.) and its effects on maize yield and photosynthesis. Chinese Journal of Applied Ecology, 2010,21(2):344-350. (in Chinese)
[25] 黄智鸿, 王思远, 包岩, 梁煊赫, 孙刚, 申林, 吴春胜 . 超高产玉米品种干物质积累与分配特点的研究. 玉米科学, 2007,15(3):95-98.
HUANG Z H, WANG S Y, BAO Y, LIANG X H, SUN G, SHEN L, WU C S . Studies on dry matter accumulation and distributive characteristic in super high-yield maize. Journal of Maize Sciences, 2007,15(3):95-98. (in Chinese)
[26] ZHANG Y H, SUN N N, HONG J P, ZHANG Q, WANG C, XUE Q W, ZHOU S L, HUANG Q, WANG Z M . Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. Journal of Integrative Agriculture, 2014,13(8):1680-1690.
[27] 刘克礼, 刘景辉 . 春玉米干物质积累分配与转移规律的研究. 内蒙古农牧学院学报, 1994,15(1) : 1-9.
LIU K L, LIU J H . A study on the regularity of accumulation, distribution and translation of dry matter in spring maize. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1994,15(1):1-9. (in Chinese)
[28] 王宜伦, 李潮海, 何萍, 金继云, 韩燕来, 张许, 谭金芳 . 超高产夏玉米养分限制因子及养分吸收积累规律研究. 植物营养与肥料学报, 2010,16(3):559-566.
doi: 10.11674/zwyf.2010.0307
WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X,s TAN J F . Nutrient restrictive factors and accumulation of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2010,16(3):559-566. (in Chinese)
doi: 10.11674/zwyf.2010.0307
[29] LIU T N, HUANG R D, CAI T, HAN Q F, DONG S T . Optimum leaf removal increases nitrogen accumulation in kernels of maize grown at high density. Scientific Reports, 2017,7:39601.
[30] 严云, 廖成松, 张福锁, 李春俭 . 密植条件下玉米冠根生长抑制的因果关系. 植物营养与肥料学报, 2010,16(2):257-265.
doi: 10.11674/zwyf.2010.0201
YAN Y, LIAO C S, ZHANG F S, LI C J . The causal relationship of the decreased shoot and root growth of maize plants under higher plant density. Plant Nutrition and Fertilizer Science, 2010,16(2):257-265. (in Chinese)
doi: 10.11674/zwyf.2010.0201
[1] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[4] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[5] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[6] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[7] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[10] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[11] XUE HuaLong,LOU MengYu,LI Xue,WANG Fei,GUO BinBin,GUO DaYong,LI HaiGang,JIAO NianYuan. Effects of Phosphorus Application Levels on Growth and Yield of Winter Wheat Under Different Crops for Rotation [J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725.
[12] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
[13] WANG XuMin,LUO WenHe,LIU PengZhao,ZHANG Qi,WANG Rui,LI Jun. Regulation Effects of Water Saving and Nitrogen Reduction on Dry Matter and Nitrogen Accumulation, Transportation and Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(15): 3183-3197.
[14] HUANG QiuWan,LIU ZhiJuan,YANG XiaoGuang,BAI Fan,LIU Tao,ZHANG ZhenTao,SUN Shuang,ZHAO Jin. Analysis of Suitable Irrigation Schemes with High-Production and High-Efficiency for Spring Maize to Adapt to Climate Change in the West of Northeast China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4470-4484.
[15] TONG Jin,SUN Min,REN AiXia,LIN Wen,YU ShaoBo,WANG Qiang,FENG Yu,REN Jie,GAO ZhiQiang. Relationship Between Plant Dry Matter Accumulation, Translocation, Soil Water Consumption and Yield of High-Yielding Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(17): 3467-3478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!