Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3430-3447.doi: 10.3864/j.issn.0578-1752.2019.19.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

State-of-the-Art on the Processing and Comprehensive Utilization of the Apricot Kernels

ZHANG QingAn,YAO JianLi   

  1. School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119
  • Received:2019-01-30 Accepted:2019-07-12 Online:2019-10-01 Published:2019-10-11

Abstract:

Apricot kernel is an excellent pharmaceutical and food resource, with high values of nutrition and commercial utilization. Recently, apricot kernel and its products are increasingly important in demand in the market, while about 80% of the total productions of apricot kernels are sold in the form of raw materials, and the highly value-added priority was not reflected by processing. The main reasons are that the industrial concentration of factories is lower, the amounts of large-scale companies are small, and the technology employed in the companies falls behind, which results in the lowly integrated utilization and lowly added value of the products from the apricot kernels, as well as great loss of some important constituents and pollution to the environment. Thus, it is significant and emergent to efficiently achieve the comprehensive utilization of the apricot kernels with the modern processing technology, to reduce the waste of apricot kernels resources and to improve its added value of products. Based on the literature available, the status and problems occurring were firstly reviewed about the skin-removing, debitterizing and drying of the apricot kernels in this paper. Afterwards, the summaries were concluded on the extraction and purification of the oils, essential oils, proteins and amygdalin of the apricot kernels, especially for the comparison of the advantages and disadvantages of the methods employed and the status of the products being developed from the components of apricot kernels, and then some suggestions were also put forward. All these contents would provide the theoretical basis and technical support for the comprehensive utilization of the apricot kernels and promote its added value, hence achieving a good development of the apricot kernels industry in China. Finally, the solutions and outlook were also made about the key technologies restricting the deeply processing of apricot kernels. To be specific, the first suggestion was that the modern green skin-removing technology should be adopted to replace the traditionally boiling-water blanching method, and to strengthen the efficient recycling and utilization of the active ingredients in water of blanching and the development of the removed skins for some highly value-added products. Secondly, some novel techniques including ultrasonically-accelerated debitterizing, etc should be employed in the debitterizing of apricot kernels, so as to reduce the nutrient loss and the discharge of wastewater during the debitterizing processing. Thirdly, the innovation should be strengthened about the technology of the simultaneous extraction and utilization of the main components of apricot kernels and its practice, by which the oils could be effectively extracted, and the activity of beta-glucosidase, the denaturation of the proteins and the degradation of amygdalin could also be inhibited and not influenced, so as to maximize the comprehensive utilization of apricot kernels. In a word, the research about the processing of apricot kernels should be centered on the recycling of the by-products and the development of some novel highly value-added products from apricot kernels, and the integration degree should also be improved about the industries of apricot kernels, hence raising the market value and the economic benefits of the apricot kernels. All these contents would promote the well development of the apricot kernels industry, and which was also the meaning and purpose of this paper.

Key words: apricot kernels, oils, protein, amygdalin, processing, utilization

Table 1

Various nutritional components and properties of apricot kernels"

苦杏仁原料
Raw material of apricot kernels
特性
Feature
有效成分
Effective constituent
营养价值
Nutritive value
苦杏仁皮
The coat of apricot kernels
苦杏仁的深黄色或红棕色的种皮
Seed coat of dark yellow or reddish brown of apricot kernels
多酚类化合物
Polyphenol compound
具有高抗氧化能力,减少细胞增殖,抗炎和化学保护的功能[9]
High antioxidant capacity, reducing cell proliferation, anti-inflammatory and chemical protection
黑色素
Melanin
光保护作用、抗氧化、抗蛇毒、治疗帕金森症、抑制艾滋病毒复制等作用[10]
Photoprotective effect, antioxidant, anti-snake venom, treatment of Parkinson's disease, inhibition of HIV replication, etc
功能性膳食纤维
Functional dietary fiber
预防结肠癌、胆结石,治疗便秘、肥胖的作用[11]
Prevention of colon cancer, gallstones, treatment of constipation and obesity
苦杏仁油
The oil of apricot kernels
在-10℃仍保持澄清,-20℃凝固, 为不干性油
Non-drying oil, remains clear at -10℃, solidifies at -20℃
亚油酸、亚麻酸、棕榈酸、油酸、硬脂酸等不饱和脂肪酸[12]
Unsaturated fatty acids such as linoleic acid, linolenic acid, palmitic acid, oleic acid and stearic acid
对皮肤表皮脂质屏障的形成、表皮细胞的角化具有重要作用[13]
Contributes to the formation of skin lipid barrier and keratinization of epidermal cells
维生素E和植物甾醇等
Vitamin E and phytosterol
抗氧化、维持生育和调节免疫系统的作用[14]
Oxidation resistance, maintain fertility and regulate immune system
苦杏仁精油
Essential oil of apricot kernels
金黄色具有苦杏仁味的辛辣液体
A golden, spicy liquid with a apricot kernels flavor
苯甲醛及其衍生物组成的复合体[15]
A compound composed of benzaldehyde and its derivatives
具有抗炎、抗微生物、抗菌、杀虫、抗病毒的作用[16]
Anti-inflammatory, anti-microbial, anti-bacterial, insecticide, anti-virus effect
苦杏仁蛋白
The protein of apricot kernels
优质的植物蛋白
High quality vegetable protein
蛋白含量高、氨基酸种类较为齐全、分子量较小易于消化吸收[17]
High protein content, complete variety of amino acids easy to digest and absorb
满足人类对蛋白的需要,预防心脑血管疾病[18]
To meet the needs of human protein and prevent cardiovascular and cerebrovascular diseases
苦杏仁苷
Amygdalin of apricot kernels
极易在酶作用下水解
Easily hydrolyzed by enzymes
苯甲醛
Benzaldehyde
可镇痛、抗突变、增强人体免疫力 [19]
Analgesic, anti-mutation and enhancing human immunity
氢氰酸
Hydrocyanic acid
可抑制呼吸中枢,起镇咳、平喘作用[20]
Inhibiting the respiratory center to relieve cough and asthma

Fig. 1

Enzymatic degradation of amygdalin of apricot kernels"

Table 2

Comparison of debitterizing methods of apricot kernels"

方法
Method
操作要点
Operating point
优点
Advantage
缺点
Disadvantage
参考文献
Reference
传统脱苦方法
Traditional debitterizing method
带皮冷水拔苦法
Debitterizing with cold water
将带皮的苦杏仁用温水浸泡软化,再多次换冷水浸泡,用时7—8 d
Soak the apricot kernels with warm water to soften, and then change the cold water to soak for several times, using 7—8 days
脱苦同时可达到去皮的目的
Peel the skin at the same time
耗时长,用水量大
Time-consuming, waste of water resources
[33]
去皮冷水脱苦法
Debitterizing with cold water after peeling
将去皮苦杏仁浸泡在冷水中,每天换水3—4次,室温下浸泡4—5 d
Soak peeled apricot kernels in cold water. Change the water 3—4 times a day. Soak at room temperature for 4—5 days
操作较为简单
Simple operation
用时较长,用水量大,浪费副产物
Time-consuming, waste of water resources, waste by-product
[34]
去皮酸处理脱苦法
Acid treatment after peeling to debitterizing
将去皮苦杏仁于酸溶液中浸泡或煮沸后捞入清水中,次日再热酸处理
Soak or boil peeled apricot kernels in acid solution and remove them into clear water
所需时间较短
Save time
挥发出氢氰酸浓度大,易污染空气甚至造成中毒事故
Volatile hydrocyanic acid concentration, easy to pollute the air and even cause poisoning accidents
[35]
去皮热水脱苦法
Hot water to debitterizing after peeling
将去皮苦杏仁浸没于热水中保温脱苦,5—6 h即可脱苦完全
Soak peeled apricot kernels in hot water for 5—6 h to debitterizing completely
操作简便,用时较短
Save time and effort
用水量较大,易污染环境
Waste of water resources, easy to pollute the environment
[34]
去皮酸碱交替处理脱
苦法
Alternating treatment
of acid and alkali to debitterizing after peeling
将去皮苦杏仁用HCl溶液浸泡48 h,
再用Na2CO3处理,去苦率达95.9%
The peeled apricot kernels were soaked in HCl solution for 48 h, and then treated with Na2CO3. The rate of bitterness removal was 95.9%
用时较短,去苦率高
Save time, efficient debitterizing
操作较为繁琐,易对环境造成污染
Cumbersome operation, easy to pollute the environment
[24]
快速脱苦法
New method of relieving bitterness
真空脱苦法
Vacuum debitterizing method
柠檬酸溶液浸泡下真空脱苦20 min,
温度为82℃,真空度0.09 MPa
The apricot kernels was soaked in citric acid solution for 20 min in vacuum, with a temperature of 82 ℃ and a vacuum degree of 0.09 MPa
用时短,节省能耗
Save time and energy
需对馏出液及真空泵中水进行脱毒处理、苦杏仁需粉碎
Detoxification treatment should be carried out on distillate and water of vacuum pump, and apricot kernels should be crushed
[36]
超声波脱苦法
Ultrasonic debitterizing method
料液比1:10的室温条件下半小时左右
超声处理即可达到传统浸泡脱苦3—
4 d的效果
At room temperature with the ratio of material to liquid 1:10, ultrasonic treatment can achieve the traditional soaking effect of 3—4 d
用时短,用水少,便于回收利用副产物,易于操作
Save time and water, easy to recycle and use by-products, easy to operate
需要使用超声设备、能耗高
Need to use ultrasonic equipment, high energy consumption
[37]
微波脱苦法
Microwave debitterizing method
水温70℃,料液比1:30,微波输出功
率750 W脱苦13 min即可脱苦完全
70℃ warm water, the ratio of material to liquid was 1:30, and the microwave output power was 750 W for 13 min
用时短,效率高
Short time, high efficiency
耗水量大,操作复杂
Waste of water resources, cumbersome operation
[38]
生物技术脱苦法
Biotechnological method to debitterizing
采用酶或者微生物处理苦杏仁,使苦杏仁苷降解达到脱苦目的
Using enzyme or microorganism to treat apricot kernels and amygdalin degradation to achieve the purpose of reducing bitterness
脱苦效果较为彻底
Debitterizing thoroughly
脱苦前处理工作繁琐,苦杏仁需粉碎、成本较高,工艺复杂,不易推广
Cumbersome pretreatment operation, apricot kernelss need to be crushed, high cost, complex technology, not easy to promote
[39-40]

Table 3

Comparison of oil extraction from apricot kernels"

方法
Method
操作要点
Operating point
优点
Advantage
缺点
Disadvantage
参考文献
Reference
有机溶剂浸提法
Organic solvent extraction
苦杏仁粉+有机溶剂→回流提取→过滤→旋蒸→真空z干燥挥溶→苦杏仁油
Apricot kernels powder + Organic solvent→ Reflux extraction→filtration→Spin steaming→ Vacuum drying dissolves→ Apricot kernels oil
提取效率较高,所得油脂氧化稳定性好
High extraction efficiency, good oxidation stability of the oil
有机溶剂会使油脂呈黄色、有轻微异味,需经后续脱色、脱胶处理,还存在溶剂回收困难和产品有机溶剂残留问题
Inferior oil, need to be decolorized and degummed, solvent residue
[48]
[49]
冷榨法
Cold pressed method
苦杏仁→轻度粉碎+水分调质→螺旋压榨机压榨两次→静置过滤→苦杏仁油
Apricot kernels→Mild crushing + Moisture conditioning→Press twice with a screw press→Let stand and filter→Apricot kernels oil
所得油脂水分及挥发物含量可达食用油要求,不饱和脂肪酸、生育酚等含量较高,氧化稳定性较好
Meet edible oil standards, the content of unsaturated fatty acid and tocopherol is high, the oxidation stability is good
出油率低,所得油脂氰化物含量较高,需要进行脱氰化物处理
Low oil yield, high cyanide content in oil, need decyanation
[50-51]
热榨法
Hot pressing method
苦杏仁→烘箱烤制→轻度粉碎+水分调质→螺旋压榨机压榨两次→静置过滤→苦杏仁油
Apricot kernels→Bake in oven→Mild crushing + Moisture conditioning→ Press twice with a screw press→ Let stand and filter→ Apricot kernels oil
不存在溶剂残留问题,提取效率高,较为节约成本,所得油脂不饱和脂肪酸高,游离脂肪酸少
Solvent-free residue, high extraction efficiency, cost saving, high unsaturated fatty acid and less free fatty acid
高温烤制过程中,会使苦杏仁中营养物质氧化降解,不利于下游产品的加工利用,会使油脂颜色加深
Degradation of nutrients by oxidation, downstream products are difficult to process and utilize, deep grease color
[52-53]
超临界CO2萃取法
Supercritical CO2 extraction
将苦杏仁粉碎至30目,设置超临界萃取条件,得到超临界CO2萃取苦杏仁油
Crushed apricot kernels to 30 meshes and set supercritical extraction conditions to obtain supercritical CO2 extraction of apricot kernels oil
方法便捷,提取效率高,无溶剂残留,后续残渣可再加工利用,所制油脂无需再精炼处理
Convenient and efficient method, solvent-free residue, the follow-up residue can be reprocessed and used, the oil need not be refined again
所得苦杏仁油生育酚、磷脂含量显著低于其他方法,油的稳定性较差,设备昂贵、能耗较大
Tocopherol and phospholipid are low, oil is less stable, equipment expensive, high energy consumption
[54-56]
超声波提取法
Ultrasonic extraction
提取时间43.95 min,提取温度72℃,得苦杏仁油,料液比19.8:1,超声频率40 kHz
Extraction time was 43.95 min, extraction temperature was 72℃, and apricot kernels oil was obtained. The ratio of solid to liquid was 19.8:1, and ultrasonic frequency was 40 kHz
提高浸出率,简化工艺, 常温、常压既可进行实验,溶剂挥发少,易回收
Improve the leaching rate, simplify the process, room temperature and pressure can be tested, less volatile solvent, easy to recover
提取时间较长,易引起油脂的氧化,产生不良风味
Time-consuming, easy to cause oxidation of oil and produce bad flavor
[57]

Table 4

Comparison of protein extraction from apricot kernels"

方法
Method
操作要点
Operating point
优点
Advantage
缺点
Disadvantage
参考文献
Reference
醇提法
Alcohol extraction
苦杏仁粉+去离子水→搅拌离心→沉淀→洗涤→冻干→苦杏仁蛋白
Apricot kernels powder + Deionized water→Stir and centrifuge→Precipitation→Washing→ Freeze- dried→Apricot kernels protein
安全无毒,操作简便,成本低
Safe and non-toxic, easy to operate and low cost
操作时间长
Time-consuming
[60]
碱溶酸沉法
Alkali-solution and acid-isolation extraction
用强碱溶液对苦杏仁中蛋白质进行浸提,再调节上清液的pH至等电点,使蛋白质沉淀析出
The protein in apricot kernels was extracted with strong alkali solution, and then the pH of supernatant was adjusted to isoelectric point,
so that the protein precipitated
提取率高,所得蛋白泡沫稳定性较好
High extraction efficiency, the protein foam was stable
用时长,所需温度高,耗能多,易导致蛋白质变性和有害物质生成
Time-consuming, energy consumption, easily leads to protein denaturation and the formation of harmful substances
[61-62]
酶法提取
Enzymatic extraction method
苦杏仁→蛋白酶水解→离心→沉淀→浓缩干燥→蛋白质提取物
Apricot kernels→Hydrolysis with protease→ Centrifugation→Precipitation→Concentrate and dry→Apricot kernels protein
提取效率高,可提高蛋白质的抗氧化活性,可改良蛋白质加工功能特性
High extraction efficiency, improved antioxidant activity and processing function of protein
所需时间较长,操作过程较为复杂
Time-consuming, cumbersome operation
[63-64]
反胶束法
Reverse micelle method
苦杏仁粉+ 反胶束溶液 离心→前萃取液+缓冲液→离心透析→冷冻干燥→蛋白粉
Apricot kernels powder + Reverse micelle solution → Contrifuge→ Preextraction solution + Buffer solution→ Centrifugal dialysis→ Freeze drying→ Apricot kernels protein powder
缩短工艺流程,降低能耗,所得蛋白具有抑制人结肠癌细胞生长的独特活性
Short process, reduce energy consumption, The protein obtained has the unique activity of inhibiting the growth of human colon cancer cells
操作方法复杂,对工艺要求高,不易推广
Cumbersome operation, not easy to popularize
[65]
超声波辅助盐溶法
Ultrasonic assisted salt dissolution method
脱脂苦杏仁粉+磷酸盐缓冲溶液→超声波辅助提取→离心→超滤→浓缩干燥→苦杏仁分离 蛋白
Degreased apricot kernels powder + Phosphate buffer→ Ultrasonic assisted extraction→ Contrifuge→ Ultrafiltration→ Concentrate and dry→ Apricot kernels protein
提取率高,条件温和,对蛋白质破坏小,所得蛋白功能特性较好
High extraction efficiency, mild conditions, little damage to protein, better functional properties of protein
需要使用超声设备,生产成本较高
Ultrasonic equipment required, high production
[66]
微波辅助盐溶法
Microwave assisted salt dissolution method
脱脂苦杏仁粉+磷酸盐缓冲溶液→微波辅助提取→离心→超滤→浓缩干燥→苦杏仁分离蛋白
Degreased apricot kernels powder + Phosphate buffer→Microwave assisted extraction→ Contrifuge→ Ultrafiltration→ Concentrate
and dry→ Apricot kernels protein
提取时间短,提取效率较高
High extraction efficiency
所得蛋白功能特性一般
The obtained proteins have general functional properties
[66]

Table 5

Comparison of amygdalin extraction from apricot kernels"

方法
Method
操作要点
Operating point
优点
Advantage
缺点
Disadvantage
参考文献
Reference
水提法
Water extraction
以水为溶剂,在沸腾状态下,使苦杏仁苷从苦杏仁内部向水中转移
Using water as solvent, amygdalin was transferred from inside apricot kernels to water under boiling condition
水对苦杏仁组织穿透能力强,提取效率高,在生产上使用安全,可同时提取到其他水溶性成分
Water has strong penetrating ability to apricot kernels tissue, high extraction efficiency, safe use in production, and can extract other water-soluble components at the same time
提取液中蛋白质含量高,易于变质发霉,提取时料液比较大,难于浓缩,热水使D-型苦杏仁苷易发生差向异构化
The extracted liquid has high protein content and is prone to deterioration and mildew, hot water makes D-type amygdalin prone to differential isomerization
[68-69]
醇提法
Alcohol Extraction method
采用回流提取和水浴震荡提取,而后将提取液浓缩结晶即可得到苦杏仁苷粗品
The crude amygdalin was extracted by reflux extraction and water bath shock extraction, then concentrated and crystallized the extract
操作简便,效果较好,易于推广
Easy to operate, good extraction effect and easy to spread
耗时较长,提取效率较低
Time-consuming, cumbersome operation, low extraction efficiency
[70-71]
超声波提取
Ultrasonication extraction
采用超声波处理苦杏仁提取苦杏仁苷
Amygdalin was extracted from apricot kernels by ultrasonic treatment
提取率高,杂质含量低,有效成分含量高,免去了高温对提取成分的影响,节省能源,产生废弃物少
High extraction efficiency, low impurity content, high active component content of amygdalin, saves energy and produces less waste
需要使用超声波设备,成本较高
Need to use ultrasonic equipment, high cost
[72-73]
微波辅助提取
Microwave assisted extraction
采用微波处理苦杏仁提取苦杏仁苷
Amygdalin was extracted from apricot kernels by microwave treatment
可以快速杀酶且无须烘干
The enzyme can be destroyed quickly without drying
市场上尚无工业化生产设备,受热均匀性暂时难以解决,缺乏标准化方法
Lack of industrial production equipment and standardized methods, heat uniformity is difficult to solve
[74]
[1] HACISEFEROGULLARI H, GEZER I, OZCAN M M, MURAT A B . Post-harvest and physical-mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering, 2007,79(1):364-373.
[2] 张加延 . 我国李杏种质资源利用和产业开发. 园艺与种苗, 2011(3):1-6.
ZHANG J Y . Application and industry development of plum and apricot germplasm resources in China. Horticulture & Seed, 2011(3):1-6. (in Chinese)
[3] 国家林业局. 中国林业年鉴. 北京: 中国林业出版社, 2016: 239-244.
State Forestry Bureau. China Forestry Yearbook. Beijing: China Forestry Publishing, 2016: 239-244. (in Chinese)
[4] FEMENIA A, ROSSELLO C, MULET A, CANELLAS J . Chemical composition of bitter and sweet apricot kernels. Journal of Agricultural & Food Chemistry, 1995,43(2):356-361.
[5] HAASE I, BRÜNING P, MATISSEK R, FISHER M . Real-Time PCR assays for the quantification of rDNA from apricot and other plant species in marzipan. Journal of agricultural and food chemistry, 2013,61(14):3414-3418.
[6] MENNANI A, ARBOUCHE R, ARBOUCHE Y, MONTAIGNE E, ARBOUCHE F . Effects of incorporating agro-industrial by-products into diet of New Zealand rabbits: Case of rebus of date and apricot kernel meal. Veterinary World, 2017,10(12):1456-1463.
[7] 张金艳, 何萍, 李贻奎 . 苦杏仁、桔梗及二者配伍止咳、祛痰作用的研究. 中国实验方剂学杂志, 2010,16(18):173-175.
ZHANG J Y, HE P, LI Y K . Experimental study on effect of bitter apricot seed, piatycodon root, and their compatibility for relieving cough and expelling phlegm. Chinese Journal of Experimental Traditional Medical Formulae, 2010,16(18):173-175. (in Chinese)
[8] SANAKA M, YAMAMOTO T, ANJIKI H, NAGASAWA K, KUYAMA Y . Effects of agar and pectin on gastric emptying and post-prandial glycaemic profiles in healthy human volunteers. Clinical & Experimental Pharmacology & Physiology, 2010,34(11):1151-1155.
[9] CHEN C Y, LAPSLEY K, BLUMBERG J . A nutrition and health perspective on almonds. Journal of the Science of Food & Agriculture. 2006,86(14):2245-2250.
[10] FERNANDEZ C W, KOIDE R T . The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecology, 2013,6(6):479-486.
[11] CHAWLA R, PATIL G R . Soluble dietary fiber. Comprehensive Reviews in Food Science & Food Safety, 2010,9(2):178-196.
[12] BUTZENLECHNER M, ROSSMANN A, SCHMIDT H L . Assignment of bitter almond oil to natural and synthetic sources by stable isotope ratio analysis. Journal of Agricultural & Food Chemistry, 1989,37(2):410-412.
[13] ALPASLAN M, HAYTA M . Apricot kernel: Physical and chemical properties. Journal of the American Oil Chemists Society, 2006,83(5):469-471.
[14] RIOS R, RAYA A I, PINEDA C, MARIANO R . Vitamin E protects against extraskeletal calcification in uremic rats fed high fat diets. BMC Nephrology, 2017,18(1):374-381.
[15] GENG H L, YU XC, LU A L, CAO H Q, ZHOU B H, ZHOU L, ZHAO Z . Extraction, chemical composition, and antifungal activity of essential oil of bitter almond. International Journal of Molecular Sciences, 2016,17(9):1421-1435.
[16] TANAKA R, NITTA A, NAGATSU A . Application of a quantitative 1 H-NMR method for the determination of amygdalin in Persicae semen, Armeniacae semen, and Mume fructus. Journal of Natural Medicines, 2014,68(1):225-230.
[17] SMIT E, NIETO F J, CRESPO C J . Blood cholesterol and apolipoprotein B levels in relation to intakes of animal and plant proteins in US adults. British Journal of Nutrition, 1999,82(3):193-201.
[18] YIN M, WUYUN T, JIANG Z, ZENG J . Amino acid profiles and protein quality of siberian apricot (Prunus Sibirica L.) kernels from Inner Mongolia. Journal of Forestry Research, 2019. DOI: 10.1007/ s11676-019-00882-4.
[19] VEMULA P K, LI J, JOHN G . Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs. Journal of the American Chemical Society, 2006,128(27):8932-8938.
[20] LI X B, LIU C H, ZHANG R, HUANG X T, LI Y Y, HAN L, XU M L, MI S Q, WANG N S . Determination and pharmacokinetics of amygdalin in rats by LC-MS-MS. Journal of Chromatographic Science, 2013,52(6):476-481.
[21] ESFAHLAN A J, JAMEI R, ESFAHLAN R J . The importance of almond (Prunus amygdalus L.) and its by-products. Food Chemistry, 2010,120(2):349-360.
[22] ZHANG Q A, WEI C X, FAN X H, SHI F F . Chemical compositions and antioxidant capacity of by-products generated during the apricot kernels processing. CyTA-Journal of Food, 2018,16(1):422-428.
[23] 朱海兰, 史清华, 唐德瑞 . 苦杏仁脱皮去毒方法的研究. 陕西林业科技, 2002(4):4-6.
ZHU H L, SHI Q H, TANG D R . Study on method of decortication and detoxification of bitter almond. Shaanxi Forest Science and Technology, 2002(4):4-6. (in Chinese)
[24] 屠呦呦, 陈妙华 . 苦杏仁的炮制研究. 中国中药杂志, 1987,12(7):23-28.
TU Y Y, CHEN M H . Study on processing of bitter almond. China Journal of Chinese Materia Medica, 1987,12(7):23-28. (in Chinese)
[25] 柴广建, 张清安, 卫晨曦 . 一种苦杏仁绿色去皮方法, ZL201610910792. 5[P]. 2016.
CHAI G J, ZHANG Q A, WEI C X . A green peeling method for apricot kernel, ZL201610910792.5[P]. 2016. ( in Chinese)
[26] 张清安, 吴东栋, 黄小丽 . 一种苦杏仁高效脱皮方法, ZL201810189766. 7 [P]. 2018.
ZHANG Q A, WU D D, HUANG X L . An efficient peeling method for apricot kernel, ZL201810189766.7[P]. 2018. ( in Chinese)
[27] 申辉 . 苦杏仁去皮过程中品质变化及其原因探究[D]. 西安: 陕西师范大学, 2015.
SHEN H . Quality changes of bitter apricot seed in peeling process and its cause exploration[D]. Xi’an: Shaanxi Normal University, 2015. ( in Chinese)
[28] 张馨允 . 超声波诱导苦杏仁脱苦过程中苦杏仁苷及β-葡萄糖苷酶变化的研究[D]. 西安: 陕西师范大学, 2018.
ZHANG X Y . Changes of amygdalin and beta-glucosidase in almond debittering induced by ultrasound[D]. Xi’an: Shaanxi Normal University, 2018. ( in Chinese)
[29] BOLARINWA I F, ORFILA C, MORGAN M R . Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 2014,152(2):133-139.
[30] WAGNER B, GALEY W R . Kinetic analysis of hexose transport to determine the mechanism of amygdalin and prunasin absorption in the intestine. Journal of Applied Toxicology, 2003,23(5):371-375.
[31] TANWAR B, MODGIL R, GOYAL A . Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification. Food & Function, 2018,9(4):2121-2135.
[32] 范学辉, 张清安, 刘梅, 田呈瑞 . 苦杏仁脱苦方法研究进展. 食品工业科技, 2014,35(7):396-399.
FAN X H, ZHANG Q A, LIU M, TIAN C R . Progress in detoxification techniques of apricot kernel. Science and Technology of Food Industry, 2014,35(7):396-399. (in Chinese)
[33] 臧瑾康, 吴纯红, 沈中, 郑强 . 苦杏仁脱苦去毒的最佳工艺条件探讨. 食品与发酵科技, 1997,4(1):20-24.
ZANG J K, WU C H, SHEN Z, ZHENG Q . A research on the optimal technologic conditions for removing bitterness and toxicant of bitter almond. Sicence Food and Fermentation, 1997,4(1):20-24. (in Chinese)
[34] 史清华 . 苦杏仁的快速脱苦法. 陕西农业科学, 1997,2(2):46-46.
SHI Q H . Rapid debittering of bitter almond. Shaanxi Journal of Agricultural Sciences, 1997,2(2):46-46. (in Chinese)
[35] 于淼, 张华, 鲁明 . 杏仁脱皮去苦及杏仁油脱色研究. 食品科技, 2007,32(2):90-92.
YU M, ZHANG H, LU M . Study on decortication and detoxification of bitter almond and decolorization of almond oil. Food Science and technology, 2007,32(2):90-92. (in Chinese)
[36] 李军 . 苦杏仁脱苦工艺的研究[D]. 北京: 北京林业大学, 2012.
LI J . Studies on the process of removal of bitterness from bitter apricot seed[D]. Beijing: Beijing Forestry University, 2012. ( in Chinese)
[37] 张清安, 范学辉, 张扬俊娜, 张志琪 . 一种超声诱导苦杏仁快速脱苦的方法, ZL201310376132.X [P]. 2013.
ZHANG Q A, FAN X H, ZHANG Y J N, ZHANG Z Q . A novel method for rapid debitterizing of apricot kernels, ZL201310376132.X[P]. 2013. ( in Chinese)
[38] 张兵, 田兴旺, 王永平 . 苦杏仁的微波脱苦法. 陇东学院学报(自然科学版), 2003,13(2):39-40.
ZHANG B, TIAN X W, WANG Y P . Microwave debittering of bitter almond. Journal of Longdong University (Natural Science Edition), 2003,13(2):39-40. (in Chinese)
[39] TUNCEL G, MJR N, BRIMER L . Degradation of cyanogenic glycosides of bitter apricot seeds (Prunus armeniaca) by endogenous and added enzymes as affected by heat treatments and particle size. Food Chemistry, 1998,63(1):65-69.
[40] NOUT M J, TUNCEL G, BRIMER L . Microbial degradation of amygdalin of bitter apricot seeds (Prunus armeniaca). International Journal of Food Microbiology, 1995,24(3):407-412.
[41] KOO J Y, HWANG E Y, CHO S, LEE JH, LEE Y M, HONG S P . Quantitative determination of amygdalin epimers from armeniacae semen by liquid chromatography. Journal of Chromatography B-analytical Technologies in the Biomedical and Life Sciences, 2005,814(1):69-73.
[42] BOLARINWA I F, ORFILA C, MORGAN M R . Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chemistry, 2014,152(2):133-139.
[43] 刘易, 龚莹, 郭磊, 林妮妮, 陈佳, 谢剑炜 . 中成药中氰苷及其差向异构体的成分分析. 药物分析杂志, 2016(6):1011-1019.
LIU Y, GONG Y, GUO L, LIN N N, CHEN J, XIE J W . Determination of cyanogenic glycoside and its epimerization in Chinese patent medicine. Chinese Journal of Pharmaceutical Analysis, 2016(6):1011-1019. (in Chinese)
[44] SONG Y, ZHANG Q A, FAN X H, ZHANG X Y . Effect of debitterizing treatment on the quality of the apricot kernels in the industrial processing. Journal of Food Processing & Preservation, 2017,42(7):1-8.
[45] 宋云 . 苦杏仁脱苦及干制工艺对杏仁品质的影响[D]. 西安: 陕西师范大学, 2016.
SONG Y . Effect of debittering and drying technology on quality of almond[D]. Xi’an: Shaanxi Normal University, 2016. ( in Chinese)
[46] 焦中高, 吕真真, 刘杰超, 张春岭, 刘慧, 杨文博, 王思新 . 苦杏仁去皮热风干燥适宜温度提高油脂品质. 农业工程学报, 2016,32(4):262-268.
JIAO Z G, LV Z Z, LIU J C, ZHANG C L, LIU H, YANG W B, WANG S X . Suitable temperature for peeling and hot air drying of bitter almond to improve oil quality. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(4):262-268. (in Chinese)
[47] 王强 . 杏贮藏加工与质量安全控制概论. 北京: 中国农业科学技术出版社, 2011: 8-15
WANG Q. Introduction to Apricot Storage, Processing, Quality and Safety Control. Beijing: China Agricultural Science and Technology Press, 2011: 8-15. (in Chinese)
[48] 权美平 . 浸提法提取杏仁油工艺参数优化. 中国调味品, 2014,39(1):1-3.
QUAN M P . Optimizing the extraction parameters of bitter almond oil. China Condiment, 2014,39(1):1-3. (in Chinese)
[49] BISHT T S, SHARMA S K, SATI R C, RAO V K, YADAV V K, DIXIT A K, SHARMA A K, CHOPRA C S . Improvement of efficiency of oil extraction from wild apricot kernels by using enzymes. Journal of Food Science and Technology, 2015,52(3):1543-1551.
[50] 吕真真, 张春岭, 刘慧, 杨文博, 刘杰超, 王思新, 黄纪念, 焦中高 . 不同制油方法对苦杏仁油品质的影响. 果树学报, 2015,32(6):1275-1282.
LV Z Z, ZHANG C L, LIU H, YANG W B, LIU J C, WANG S X, HUANG J N, JIAO Z G . Effect of different oil processing methods on the quality of bitter almond oil. Journal of Fruit Science, 2015,32(6):1275-1282. (in Chinese)
[51] 王立奇, 麻海峰, 曹阳, 陈景富 . 杏仁油营养价值及其冷榨制备工艺. 农业科技与装备, 2011(3):26-27.
WANG L Q, MA H F, CAO Y, CHEN J F . Nutritional value of almond oil and its cold pressing technology. Agricultural Science & Technology and Equipment, 2011(3):26-27. (in Chinese)
[52] 郭婵娟, 赵忠, 李科友, 马希汉, 魏丽萍, 卢斌, 齐高强, 毛巧芝 . 不同提取方法对苦杏仁脂肪油和精油质量的影响. 中国粮油学报, 2009,24(3):72-74.
GUO C J, ZHAO Z, LI K Y, MA X H, WEI L P, LU B, QI G Q, MAO Q Z . Effects of different methods to bitter almond essential oil. Journal of the Chinese Cereals and Oils Association, 2009,24(3):72-74. (in Chinese)
[53] 王吉 . 山杏仁烘烤对山杏仁油风味和品质的影响[D]. 北京: 北京林业大学, 2016.
WANG J . Effect of roasting wild apricot on flavor and quality of wild apricot oil[D]. Beijing: Beijing Forestry University, 2016. ( in Chinese)
[54] 蔡达, 刘红芝, 刘丽, 胡晖, 王强 . 不同工艺制备杏仁油品质比较及相关性分析. 中国粮油学报, 2014,29(2):47-52.
CAI D, LIU H Z, LIU L, HU H, WANG Q . Quality comparison of almond oil extracted with different processes and correlation analysis of quality indexes. Journal of the Chinese Cereals and Oils Association, 2014,29(2):47-52. (in Chinese)
[55] JUHAIMI F A L, MUSA ÖZCAN M, GHAFOOR K, BABIKER E E . The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chemistry, 2018,243(9):414-419.
[56] 王波 . 苦杏仁综合利用关键技术研究[D]. 重庆: 西南大学, 2012.
WANG B . The research of key technologies of the comprehensive utilization of bitter almond[D]. Chongqing: Southwest University, 2012. ( in Chinese)
[57] GAYAS B, KAUR G, GUL K . Ultrasound-assisted extraction of apricot kernel oil: Effects on functional and rheological properties. Journal of Food Process Engineering, 2016,40(3):1-10.
[58] 马玉花 . 苦杏仁精油提取及其杀虫活性研究[D]. 杨凌: 西北农林科技大学, 2007.
MA Y H . Extraction and application of bitter almond oil in insecticide[D]. Yangling: Northwest A & F University, 2007. ( in Chinese)
[59] 冯郁蔺, 陈伟, 张清安 . 杏仁蛋白质的提取及功能特性研究进展. 农产品加工(学刊), 2011(9):61-63.
FENG Y L, CHEN W, ZHANG Q A . Research progress for almond proteins and its functional properties. Academic Periodical of Farm products Processing, 2011(9):61-63. (in Chinese)
[60] 温馨 . 抑制人结肠癌细胞生长的苦杏仁蛋白提取[D]. 北京: 北京林业大学, 2012.
WEN X . Extraction of apricot kernel protein inhibiting human colon adenocarcinoma cell growth[D]. Beijing: Beijing Forestry University, 2012. ( in Chinese)
[61] 李艳, 郑亚军 . 杏仁分离蛋白提取工艺的研究. 现代食品科技, 2007,23(1):57-59.
LI Y, ZHENG Y J . Extraction of separated almond protein. Modern Food Science and Technology, 2007,23(1):57-59. (in Chinese)
[62] 刘宁, 朱振宝, 仇农学, 陈绍晶 . 苦杏仁蛋白提取工艺优化及氨基酸分析. 中国油脂, 2008,33(1):26-29.
LIU N, ZHU Z B, QIU N X, CHEN S J . Extraction and amino acid composition of apricot (Prunus armeniaca L.) kernel protein. China Oils and Fats, 2008,33(1):26-29. (in Chinese)
[63] 王丽媛, 仇农学, 刘宁 . 杏仁蛋白Alcalase水解工艺及其体外抗氧化活性的研究. 中国油脂, 2009,34(7):22-25.
WANG L Y, QIU N X, LIU N . Enzymatic hydrolysis of apricot (Prunus armeniaca L.) kernel protein by Alcalase and its antioxidative activity. China Oils and Fats, 2009,34(7):22-25. (in Chinese)
[64] 方华, 孔令明, 马燕, 郭金喜, 杨海燕 . 杏仁蛋白酶解条件优化研究. 食品工业科技, 2010,5(31):293-295.
FANG H, KONG L M, MA Y, GUO J X, YANG H Y . Study on optimization of enzymatic hydrolysis conditions of almond protein. Science and Technology of Food Industry, 2010,5(31):293-295. (in Chinese)
[65] 杨潞芳 . 反胶束法分离杏仁蛋白和油脂的研究[D]. 太谷: 山西农业大学, 2004.
YANG L F . Studies on the separation of almond protein and almond oil by the technology of reversed micelles extraction[D]. Taigu: Shanxi Agricultural University, 2004. ( in Chinese)
[66] 李大文 . 苦杏仁蛋白提取工艺研究[D]. 杨凌: 西北农林科技大学, 2013.
LI D W . The study of bitter almond protein extraction technology[D]. Yangling: Northwest A & F University, 2013. ( in Chinese)
[67] MAKAREVIĆA J, TSAUR I, JUENGEL E, BORGMANNA H, NLESONB K, THOMASA C, BARTSCHA G, HAFERKAMPA A . Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sciences, 2016,147(15):137-142.
[68] 张守平, 刘瑛丽, 曹洪锦 . 苦杏仁3种提取工艺中苦杏仁苷提取率的比较. 药学研究, 2010,29(11):656-657.
ZHANG S P, LIU Y L, CAO H J . The comparison of the extracted rate of amygdalin in bitter almond used three extraction processes. Journal of Pharmaceutical Research, 2010,29(11):656-657. (in Chinese)
[69] 夏其乐, 王涛, 陆胜民, 潘思轶 . 苦杏仁苷的分析、提取纯化及药理作用研究进展. 食品科学, 2013,34(21):403-407.
doi: 10.7506/spkx1002-6630-201321079
XIA Q L, WANG T, LU S M, PAN S Y . Research progress in analysis, extraction, purification and pharmacological effects of amygdalin. Food Science, 2013,34(21):403-407. (in Chinese)
doi: 10.7506/spkx1002-6630-201321079
[70] 崔国庭, 田呈瑞 . 苦杏仁苷乙醇提取技术研究. 食品工业, 2005,26(3):24-26.
CUI G T, TIAN C R . Study on ethanol extraction technology of amygdalin. The Food Industry, 2005,26(3):24-26. (in Chinese)
[71] 邢国秀, 李楠, 崔丽均, 郭永学 . 苦杏仁苷提取工艺优化. 中国医药工业杂志, 2004,35(1):20-21.
XING G X, LI N, CUI L J, GUO Y X . Optimization for extraction of amygdalin. Chinese Journal of Pharmaceuticals, 2004,35(1):20-21. (in Chinese)
[72] 吴迪 . 山杏仁中苦杏仁苷的提取工艺研究[D]. 北京: 北京林业大学, 2006.
WU D . Study on extraction technology of amygdalin from almond[D]. Beijing: Beijing Forestry University, 2006. ( in Chinese)
[73] 李强 . 志丹杏杏仁中苦杏仁苷提取、纯化及水解研究[D]. 西安: 陕西师范大学, 2006.
LI Q . Studies on the extraction and purification and hydrolyzation of amygdalin from Zhidan apricot almond[D]. Xi’an: Shaanxi Normal University, 2006. ( in Chinese)
[74] 陈恺, 许建, 魏利清, 李焕荣 . 微波辅助提取苦杏仁甙的工艺研究. 中国食物与营养, 2010(7):51-54.
CHEN K, XU J, WEI L Q, LI H R . Study on the microwave-assisted extraction of amygdalin. Food and Nutrition in China, 2010(7):51-54. (in Chinese)
[75] 崔国庭 . 杏仁油浸提及苦杏仁苷提取纯化技术研究[D]. 西安: 陕西师范大学, 2005.
CUI G T . Studies on the extraction of apricot kernel oil and extraction and purification technology of amygdalin[D]. Xi’an: Shaanxi Normal University, 2005. ( in Chinese)
[76] 崔国庭, 田呈瑞 . 大孔吸附树脂分离纯化苦杏仁苷的研究. 食品工业科技, 2005,26(4):89-92.
CUI G T, TIAN C R . Separation and purification of amygdalin by macroporous adsorption resin. Science and Technology of Food Industry, 2005,26(4):89-92. (in Chinese)
[77] BERENGUER-NAVARRO V, GINER-GALVÁN R M, GRANÉ- TERUEL N, ARRAZOLA-PATERNINA G . Chromatographic determination of cyanoglycosides prunasin and amygdalin in plant extracts using a porous graphitic carbon column. Journal of Agricultural and Food Chemistry, 2002,50(24):6960-6963.
[78] 中华人民共和国卫生部药典委员会. 中华人民共和国药典(一部). 北京: 化学工业出版社, 1985: 173-174.
Pharmacopoeia Committee of the Ministry of PubIic HeaIth of PeopIe's RepubIic of China. Pharmacopoeia of People's Republic of China (Part Ⅰ). Beijing: Chemical Industry Press, 1985: 173-174. (in Chinese)
[79] 杨书斌, 刘青, 孙立立, 石典花 . HPLC测定苦杏仁饮片中苦杏仁苷的含量. 中成药, 2006,28(10):1452-1454.
YANG S B, LIU Q, SUN L L, SHI D H . Determination of amygdalin in bitter almond slices by HPLC. Chinese Traditional Patent Medicine, 2006,28(10):1452-1454. (in Chinese)
[80] 宋正华, 章竹君 . 苦杏仁甙化学发光生物传感器. 分析化学, 2000,28(8):964-967.
SONG Z H, ZHANG Z J . A chemiluminescence biosensor for amygdalin. Chinese Journal of Analytical Chemistry, 2000,28(8):964-967. (in Chinese)
[81] 高海生, 林树林 . 苦杏仁系列蛋白食品的加工. 食品科学, 1992,13(4):23-26.
GAO H S, LIN S L . Processing of almond series protein food. Food Science, 1992,13(4):23-26. (in Chinese)
[82] 李科友, 史清华, 朱海兰, 唐瑞德 . 苦杏仁的综合开发利用. 西北林学院学报, 2003,18(3):63-65.
LI K Y, SHI Q H, ZHU H L, TANG R D . Comprehensive exploitation and utilization of bitter almond. Journal of Northwest Forestry University, 2003,18(3):63-65. (in Chinese)
[83] 张丽华, 龙占林 . 苦杏仁保健营养酸奶的研制. 食品科技, 2003(3):63-65.
ZHANG L H, LONG Z L . Manufacture of nutritional and hygienical bitter almond acidophilus milk. Food Science and Technology, 2003(3):63-65. (in Chinese)
[84] 周英, 郜文 . 苦杏仁的生理功能和保健饮料研制. 食品工业科技, 2000,21(5):49-50.
ZHOU Y, GAO W . Physiological function of bitter almond and development of health beverage. Science and Technology of Food Industry, 2000,21(5):49-50. (in Chinese)
[85] 常学东, 高海生, 李汉臣 . 苦杏仁蛋白食品的加工工艺. 食品科技, 2002(3):15-16.
CHANG X D, GAO H S, LI H C . Processing technology of bitter almond protein food. Food Science and Technology, 2002(3):15-16. (in Chinese)
[86] 薛蕾 . 苦杏仁蛋白及抗氧化活性肽制备工艺研究[D]. 杨凌: 西北农林科技大学, 2012.
XUE L . Preparation of bitter almond protein and antioxidative oligopeptides[D]. Yangling: Northwest A & F University, 2012. ( in Chinese)
[87] ZHANG H S, XUE J, ZHAO H X . Isolation and structural characterization of antioxidant peptides from degreased apricot seed kernels. Journal of AOAC International, 2018,101(5):1661-1663.
[88] ZHU Z B, QIU N X, YI J H . Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate. European Food Research and Technology, 2010,231(1):13-19.
[89] GARCÍA M C, GONZÁLEZ-GARCÍA E, VÁSQUEZ-VILLANUEVA R, MARINA M L . Apricot and other seed stones: Amygdalin content and the potential to obtain antioxidant, angiotensin I converting enzyme inhibitor and hypocholesterolemic peptides. Food & Function, 2016,7(11):4693-4701.
[90] ZHOU B, WANG Y, KANG J J, ZHONG H Y . The quality and volatile‐profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil‐producing processes: EJLST. European Journal of Lipid Science & Technology, 2016,118(2):236-243.
[91] ZHANG J, GU H D, ZHANG L, TIAN Z J, ZHANG Z Q, SHI X C, MA W H . Protective effects of apricot kernel oil on myocardium against ischemia-reperfusion injury in rats. Food & Chemical Toxicology, 2011,49(12):3136-3141.
[92] 魏丽萍, 赵忠, 马玉花, 马希汉, 李科友 . 苦杏仁油转化生物柴油及其理化性质分析. 安徽农业科学, 2011,39(34):21259-21261.
WEI L P, ZHAO Z, MA Y H, MA X H, LI K Y . Study on physical and chemical properties of biodiesel from bitter almond oil. Journal of Anhui Agricultural Sciences, 2011,39(34):21259-21261. (in Chinese)
[93] LI K Y, YANG W H, LI Z, JIA W W, LI J Z, ZHANG P F, XIAO T C . Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. International Immunopharmacology, 2016,34:189-198.
[94] 吴咸中, 伍孝先, 赵连根 . 苦杏仁苷的制备方法和苦杏仁苷在制备促进心脑胰及伤口血循环的苦杏仁苷制剂中的应用 [P]. CN20061017029. 1.
WU X Z, WU X X, ZHAO L G . Extraction of amygdalin and its application in amygdalin preparations for promoting circulation of heart, brain, pancreas and wound blood [P]. Patent, State Intellectual Property Office of China, CN20061017029. 1. (in Chinese)
[95] 王彬辉, 章文红, 张晓芬, 夏修远, 洪伟勇, 胡利明 . 苦杏仁苷提取工艺及药理作用研究新进展. 中华中医药学刊, 2014,32(2):381-384.
WANG B H, ZHANG W H, ZHANG X F, XIA X Y, HONG W Y, HU L M . New research progress on extraction process and pharmacological effects of amygdalin. Chinese Archives of Traditional Chinese Medicine, 2014,32(2):381-384. (in Chinese)
[96] DENG J G, LI C Y, WANG H L, HAO E W, DU Z C, BAO C H, LV J Z, WANG Y . Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochemical and Biophysical Research Communications, 2011,411(3):523-529.
[97] 杨小平, 张春梅, 冯霞, 杨俊何 . 苦杏仁苷口服制剂临床疗效初探. 中药材, 2006,29(6):636-637.
YANG X P, ZHANG C M, FENG X, YANG J H . Preliminary study on clinical efficacy of amygdalin oral preparation. Journal of Chinese Medicinal Materials, 2006,29(6):636-637. (in Chinese)
[98] 屈燧林, 方勤, 陈高翔, 王志惠 . 汉防己甲素、川芎嗪和苦杏仁甙对人肾成纤维细胞的影响. 中华肾脏病杂志, 2000,16(3):186-189.
QU S L, FANG Q, CHEN G X, WANG Z H . Effects of tetrandrine, tetramethylpyrazine and amygdalin on human kidney fibroblast. Chinese Journal of Nephrology, 2000,16(3):186-189. (in Chinese)
[99] 郭君其, 盛明雄, 王灵杰, 谭建明, 吴卫真, 杨顺良 . 苦杏仁甙抑制成人肾脏成纤维细胞的增殖. 中国组织工程研究, 2008,12(18):3575-3578.
GUO J Q, SHENG M X, WANG L J, TAN J M, WU W Z, YANG S L . Inhibitory effect of amygdalin on human renal fibroblast proliferation. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008,12(18):3575-3578. (in Chinese)
[100] 洪长福, 娄金萍, 周华仕, 何令媛, 朱丽秋 . 桃仁提取物对大鼠实验性矽肺纤维化的影响. 环境与职业医学, 2000,17(4):218-219.
HONG C F, LOU J P, ZHOU H S, HE L Y, ZHU L Q . The study of effects of semen persicae extract on silicotic fibrosis in rats. Journal of Environmental & Occupational Medicine, 2000,17(4):218-219. (in Chinese)
[101] 李雪梅, 冯琴, 彭景华, 傅琪琳, 唐亚军, 赵瑜, 胡义扬 . 苦杏仁苷对二甲基亚硝胺诱导的大鼠肝纤维化的防治作用. 中西医结合肝病杂志, 2011,21(4):221-223.
LI X M, FENG Q, PENG J H, FU Q L, TANG Y J, ZHAO Y, HU Y Y . Prevention effects of amygdalin on rat fibrosis induced by dimethylnitrosamine. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2011,21(4):221-223. (in Chinese)
[102] 邓嘉元, 李运曼, 鲁林琳 . 苦杏仁甙对大鼠慢性胃炎的药效学研究. 中国药科大学学报, 2002,33(1):45-47.
DENG J Y, LI Y M, LU L L . Effect of Amygdalin on chronic gastritis and chronic atrophic gastritis. Journal of China Pharmaceutical University, 2002,33(1):45-47. (in Chinese)
[103] 蔡莹, 李运曼, 钟流 . 苦杏仁苷对实验性胃溃疡的作用. 中国药科大学学报, 2003,34(3):254-256.
CAI Y, LI Y M, ZHONG L . Effect of amygdalin on gastric ulcer in experimental models. Journal of China Pharmaceutical University, 2003,34(3):254-256. (in Chinese)
[104] 郑巧玲, 郭义曹, 孙杰, 谢国强, 李禧娜, 廖国兰 . 苦杏仁苷促进人血T淋巴细胞早熟凝集染色体增殖的实验研究. 环境与职业医学, 2009,26(6):572-574.
ZHENG Q L, GUO Y C, SUN J, XIE G Q, LI X N, LIAO G L . An experiment of amygdalin induced premature chromosome condensation in human blood T lymphocytes. Journal of Environmental & Occupational Medicine, 2009,26(6):572-574. (in Chinese)
[105] KWON H Y, HONG S P, HAHN D H, KIM J H . Apoptosis induction of persicae semen extract in human promyelocytic leukemia (HL-60) cells. Archives of Pharmacal Research, 2003,26(2):157-161.
[106] NANCY S A . A review of some herbal and related products commonly used in cancer patients. Journal of the American Dietetic Association, 1997,97(2):208-15.
[107] 聂振, 周洁, 王启辉, 王光文 . β-葡萄糖苷酶激活苦杏仁苷诱导膀胱癌EJ细胞凋亡的实验研究. 现代泌尿外科杂志, 2013,18(2):113-116.
NIE Z, ZHOU J, WANG Q H, WANG G W . Bladder cancer cells apoptosis induced by amygdalin following specific activation by β-glucosidase. Journal of Modern Urology, 2013,18(2):113-116. (in Chinese)
[108] PARK H J, YOON S H, JUNG K H, UHM Y K, LEE J H, JEONG J S, JOO W S, YIM S V, CHUNG J H, HONG S P . Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World Journal of Gastroenterology, 2005,11(33):5156-5161.
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[5] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[6] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[7] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[8] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[9] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[10] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[11] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[12] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[13] TONG ShiFeng,REN ZhiBin,LIN Fei,GE YuZhu,TAO JingLi,LIU Yang. Proteomic Analysis of Sperm with Different Freezing Tolerance in Erhualian Boar [J]. Scientia Agricultura Sinica, 2022, 55(23): 4743-4752.
[14] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[15] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!