Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3309-3322.doi: 10.3864/j.issn.0578-1752.2019.19.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Phytase Q9 on Yield Formation of Summer Maize Shading in the Field

HUANG XinHui,GAO Jia,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang()   

  1. College of Agriculture, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong
  • Received:2019-04-08 Accepted:2019-07-19 Online:2019-10-01 Published:2019-10-11
  • Contact: JiWang ZHANG E-mail:jwzhang@sdau.edu.cn

Abstract:

【Objective】 Summer maize in Huang-Huai-Hai region has frequent rainy season and few sunshine. The increase of planting density affects the population light. It is important to study the regulation of phytase Q9 on the growth and yield of summer maize under shade in the field.【Method】 From 2013 to 2018, a maize variety of Denghai 605 was selected as the experimental material under field conditions, with a planting density of 67 500 plants/hm 2. Three shading treatments were set, including shading from tassel stage to maturity stage (S1), shading from six-leaf stage to tassel stage (S2), and shading from emergence stage to maturity stage (S3), with natural lighting in the field as control (CK). The field shading rate was 60%. In addition, chemical control reagent phytase Q9 was selected to regulate the shading treatment and the CK exogenously, namely shading from tassel stage to maturity stage-phytase Q9 (Z-S1), shading from six-leaf stage to tassel stage-phytase Q9 (Z-S2), shading from emergence stage to maturity stage-phytase Q9 (Z-S3), and natural lighting-phytase Q9 (Z-CK). Spraying clear water at the same time was the control. The effect of phytase Q9 on yield formation of summer maize under field shade was studied.【Result】 Compared with the control, shading treatment delayed the growth and development of summer maize, prolonged the interval between males and females, and delayed the period of male drawing and silking for about 6 days. Under shading treatment, leaf area index, SPAD value of functional leaves, and dry matter accumulation decreased significantly, ear length and ear diameter decreased, bald top lengthened, plant height and ear height decreased, lodging rate and empty stem rate increased, and then yield decreased significantly. After spraying plant enzyme Q9, the whole growth period of shading and earing period of shading were 1-2 days earlier than that of the control; The interval between male and female was shortened by 1 day; The leaf area index, SPAD value, ear height and plant height increased significantly; Dry matter accumulation and its distribution to grains increased, while lodging rate and empty stem rate decreased under different shading treatments; The traits of shaded panicle were improved during the whole growth period. The positive regulation of phytase Q9 on these indexes indirectly increased 1000-grain weight, grain number per ear and ear number per hectare of summer maize, and the yield increased significantly. Compared with the control, shading at full growth stage, ear stage and flower and grain stage increased yield by 21%, 9% and 14%, respectively. 【Conclusion】 Spraying phytase Q9 could effectively alleviate the damage caused by low light stress in summer maize.

Key words: summer maize, shading in the field, phytase Q9, yield, chemical regulation

Table 1

Effects of different light intensities after anthesis on microclimate in experimental field"

处理
Treatment
风速
Air speed
(m·s-1)
气温
Air temperature
(℃)
地温
Soil temperature
(℃)
相对湿度
Relative humidity
(%)
光照强度
Light intensity (μmol·m-2·s-1)
CO2浓度
CO2 concentration (μmol·mol-1)
CK 0.91a 29.8a 24.4a 50.6a 1676a 324a
S 0.9a 29.4a 24.1a 50.1a 681b 326a

Table 2

Effects of Phytase Q9 on yield and yield components of summer maize shaded in field"

年份
Year
处理
Treatment
产量
Yield
(kg·hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Kernels per ear
穗数
Harvest ear number
(ears/hm2
空秆率
Empty stem rate
(%)
2013 S3 4874c 329c 276c 53706b 13.51
Z-S3 5698b 351b 300b 54237a 10.91
CK 9333a 358a 509a 51285b 8.08
Z-CK 10165a 368a 517a 53421b 4.83
2014 S3 1666c 246c 162c 41854b 20.47
Z-S3 2136b 265b 189b 42595b 17.05
CK 10441a 320b 520a 62670a 4.41
Z-CK 10856a 339a 524a 61003a 4.85
2015 S3 3056g 311c 260g 37860g 11.65
Z-S3 4137f 314b 308f 42778f 10.95
S2 7888c 314b 450c 55864e 8.08
Z-S2 9523b 313b 488b 62346c 4.61
S1 6087e 313b 327e 59506d 2.95
Z-S1 7207d 314b 361d 63580b 2.33
CK 11850a 316a 568a 65965a 1.30
Z-CK 11566a 313b 563a 65635a 0.85
年份
Year
处理
Treatment
产量
Yield
(kg·hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Kernels per ear
穗数
Harvest ear number
(ears/hm2
空秆率
Empty stem rate
(%)
2016 S3 5854g 328g 320e 55864g 8.59
Z-S3 6862f 333f 350d 58951e 5.91
S2 9186d 346d 455c 58333f 5.97
Z-S2 9790c 351c 464c 60185d 4.41
S1 6798f 342e 322e 61728c 7.54
Z-S1 7505e 343e 357d 61420c 5.24
CK 12852b 364a 550b 64198b 2.35
Z-CK 13494a 358b 574a 65741a 1.39
2017 S3 5219e 336e 330e 47084c 30.25
Z-S3 6137d 340d 377d 47921c 29.01
S2 8765b 342d 432b 59252b 12.22
Z-S2 9048b 346c 433b 60324b 10.63
S1 6360d 335e 310d 61365b 9.09
Z-S1 7511c 341d 360c 61210b 9.32
CK 12371a 366a 527a 64208a 4.88
Z-CK 11954a 355b 516a 65350a 3.19
2018 S3 6882f 334e 312f 66069h 2.12
Z-S3 7462e 337d 334d 66328g 1.74
S2 10074c 340c 445b 66529f 1.44
Z-S2 10525b 347b 452b 67083b 0.62
S1 7294e 334e 326e 67045d 0.67
Z-S1 7881d 345b 342c 66840e 0.98
CK 12712a 356a 532a 67079c 0.62
Z-CK 12775a 358a 529a 67500a 0.00
ANOVA
年份Year (Y) ** ** ** ** **
遮阴Shading (S) ** ** ** ** **
化控Regulation (R) ** ** ** ** **
Y×R ** ** ** ** **
Y×S ** ** ** ** **
R×S * NS ** ** **
Y×R×S ** ** ** ** **

Table 3

Effects of Phytase Q9 on ear characters of summer maize shaded in field"

年份 Year 处理 Treatment 穗长 Ear length (cm) 秃顶长 Barren ear length (cm) 穗粗 Ear diameter (cm)
2015 CK 20.2a 1.35e 4.63a
Z-CK 19.9a 1.36e 4.43b
S3 14.8d 2.47a 3.97ef
Z-S3 15.8c 1.92c 4.13e
S2 17.7b 1.53d 4.4bc
Z-S2 17.8b 1.48d 4.3cd
S1 14.6d 2.39b 4.26d
Z-S1 15.0d 2.33b 4.39bc
2016 CK 19.8a 1.61d 4.68ab
Z-CK 19.9a 1.69d 4.72a
S3 15.1e 2.34bc 4.13d
Z-S3 16.1d 1.87cd 4.17d
S2 18.2c 2.40b 4.52bc
Z-S2 19.1b 2.30bc 4.47c
S1 15.0e 2.96a 4.28d
Z-S1 15.1e 2.34bc 4.24d
2018 CK 18.8a 1.07c 4.35a
Z-CK 18.9a 0.97c 4.30a
S3 15.3c 1.87a 4.04b
Z-S3 15.9b 1.02c 4.05b
S2 18.6a 1.16c 4.19ab
Z-S2 18.7a 1.00c 4.19ab
S1 15.3c 1.65ab 4.14ab
Z-S1 15.3c 1.58b 4.17ab

Fig. 1

Effects of Phytase Q9 on dry matter accumulation of summer maize shaded in field V12: Male tetrad stage; VT: Tassel stage; R3: Milk stage; R6: Maturity stage. The same as below"

Table 4

Effects of Phytase Q9 on dry matter distribution of summer maize shaded in field"

年份
Year
处理
Treatment
茎Stalk 叶Leaf 穗Kernel 总干重
Total dry matter
(g/plant)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
2015 S3 51.8c 34 27.9b 19 56.8d 38 150.6d
Z-S3 51.2c 27 32.4a 17 88.4c 47 188.7c
S2 51.6d 23 25.6b 12 120.5b 54 222.3bc
Z-S2 55.8c 23 28.0b 12 126.5b 53 240.3b
S1 73.9b 38 37.7a 19 72.0d 37 196.5c
Z-S1 82.2a 39 35.9a 17 97.8c 42 230.5b
CK 87.5a 28 36.3a 12 166.1a 53 313.8a
Z-CK 89.5a 27 38.1a 12 177.2a 54 329.8a
2016 S3 51.5d 41 21.0c 17 44.7e 35 126.8f
Z-S3 48.6d 30 22.7c 14 80.8d 50 162.5e
S2 50.1d 20 22.3c 9 152.1c 61 247.4c
Z-S2 59.8c 22 23.4c 9 166.1b 61 273.7b
S1 67.0bc 36 30.5b 16 76.7d 41 185.7d
Z-S1 70.8b 37 31.6b 16 84.2d 42 199.7d
CK 93.7a 28 38.4a 11 185.1a 54 340.5a
Z-CK 92.3a 27 37.2a 11 188.9a 56 340.2a
2018 S3 64.1cd 36 29.5c 17 67.0h 38 176.8g
Z-S3 66.2c 30 31.7bc 14 105.0e 48 220.5d
S2 73.0b 28 29.6c 11 140.0d 53 265.7c
Z-S2 75.9a 26 31.9bc 11 151.0c 53 286.8b
S1 61.2e 34 31.5bc 17 75.6g 42 180.5f
Z-S1 62.8de 32 30.4c 16 90.5f 46 195.8e
CK 75.8a 26 33.6ab 11 164.4a 56 296.1a
Z-CK 77.8a 26 35.5a 12 160.7b 54 297.7a

Table 5

Effects of Phytase Q9 on the growth and development of summer maize shaded in field (2018) (M-D)"

处理
Treatment
播种
Seeding
出苗
VE
拔节期
V6
大喇叭口
V12
抽雄期
VT
吐丝期
R1
乳熟期
R3
成熟期
R6
S3 6-6 6-11 7-6 7-29 8-3 8-7 9-3 10-7
Z-S3 6-6 6-11 7-6 7-27 8-2 8-5 9-1 10-5
S2 6-6 6-11 7-1 7-25 8-2 8-6 8-25 9-28
Z-S2 6-6 6-11 7-1 7-23 8-1 8-4 8-24 9-27
S1 6-6 6-11 7-1 7-21 7-28 7-31 8-26 9-30
Z-S1 6-6 6-11 7-1 7-21 7-28 7-31 8-25 9-29
CK 6-6 6-11 7-1 7-21 7-28 7-31 8-23 9-26
Z-CK 6-6 6-11 7-1 7-21 7-28 7-31 8-23 9-26

Table 6

Effects of Phytase Q9 on plant characters of summer maize shaded in field"

年份
Year
处理
Treatment
株高
Plant height (cm)
穗位高
Ear height (cm)
穗位系数
Ear position coefficient
第3节间茎粗
Stem diameter of the third node (cm)
倒伏率
Lodging rate (%)
2015 CK 268ab 116a 43 2.2a 3.48
Z-CK 266b 117a 44 2.2a 3.23
S3 220f 90d 41 1.6c 5.34
Z-S3 249c 105c 42 1.7bc 22.98
S2 224e 105c 47 1.9b 2.30
Z-S2 246d 112b 45 1.9b 4.20
S1 270a 117a 43 2.3a 1.40
Z-S1 271a 117a 43 2.3a 2.36
2016 CK 268b 118a 44 1.9a 2.19
Z-CK 257c 117a 46 1.9a 2.07
S3 219f 90d 41 1.6bc 8.32
Z-S3 244d 106c 43 1.7b 5.31
S2 225e 105c 47 1.7b 6.55
Z-S2 245d 112b 46 1.7b 5.01
S1 269ab 119a 44 1.8ab 2.38
Z-S1 272a 119a 44 1.9a 2.15
CK 247a 94a 38 2.1a 0.62
Z-CK 246a 94a 38 2.1a 0.68
S3 215f 82d 38 1.5b 3.89
Z-S3 221e 87bc 39 1.7b 0.69
2018 S2 228d 86c 38 1.6b 1.80
Z-S2 231c 88b 38 1.7b 0.93
S1 243b 95a 39 2.0a 1.35
Z-S1 244b 94a 38 2.0a 0.33

Fig. 2

Effects of Phytase Q9 on leaf area index (LAI) of summer maize shaded in field"

Fig. 3

Effects of Phytase Q9 on SPAD values of functional leaves of summer maize shaded in field"

[1] 吴亚男, 朱海燕, 张春玲, 李冬梅, 齐华 . 遮阴对春玉米物质生产及产量形成的影响. 玉米科学, 2015,23(1):97-102.
WU Y N, ZHU H Y, ZHANG C L, LI D M, QI H . Effect of shading on dry matter accumulation and yield of maize. Journal of Maize Sciences, 2015,23(1):97-102. (in Chinese)
[2] 刘仲发, 勾玲, 赵明, 张保军 . 遮荫对玉米茎秆形态特征、穿刺强度及抗倒伏能力的影响. 华北农学报, 2011,26(4):91-96.
doi: 10.7668/hbnxb.2011.04.016
LIU Z F, GOU L, ZHAO M, ZHANG B J . Effects of shading on stalk morphological characteristics, rind penetration strength and lodging- resistance of maize. Acta Agriculturae Boreali-Sinica, 2011,26(4):91-96. (in Chinese)
doi: 10.7668/hbnxb.2011.04.016
[3] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 . 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33(2):216-222.
ZHANG J W, DONG S T, WANG K J, HU C H, LIU P . Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agronomica Sinica, 2007,33(2):216-222. (in Chinese)
[4] 高佳, 崔海岩, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺 . 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018,29(3):883-890.
GAO J, CUI H Y, SHI J G, DONG S T, LIU P, ZHAO B, ZHANG J W . Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize ( Zea mays L.). Chinese Journal of Applied Ecology, 2018,29(3):883-890. (in Chinese)
[5] 崔海岩 . 遮阴对夏玉米产量及其生理特性的影响[D]. 泰安: 山东农业大学, 2013.
CUI H Y . Effects of shading on grain yield and physiological characteristics of summer maize in the field[D]. Taian: Shandong Agricultural University, 2013. ( in Chinese)
[6] 李潮海, 栾丽敏, 尹飞, 王群, 赵亚丽 . 弱光胁迫对不同基因型玉米生长发育和产量的影响. 生态学报, 2005,25(4):824-830.
LI C H, LUAN L M, YIN F, WANG Q, ZHAO Y L . Effects of light stress at different stages on the growth and yield of different maize genotypes ( Zea mays L.). Acta Ecologica Sinica, 2005,25(4):824-830. (in Chinese)
[7] 李潮海, 赵亚丽, 王群, 栾丽敏, 李宁 . 遮光对不同基因型玉米叶片衰老和产量的影响. 玉米科学, 2005,13(4):70-73.
LI C H, ZHAO Y L, WANG Q, LUAN L M, LI N . Effects of shading on the senescence of leaves and yield of different genotype maize. Journal of Maize Sciences, 2005,13(4):70-73. (in Chinese)
[8] 杨彦武, 于强, 王靖 . 近40年华北及华东局部主要气候资源要素的时空变异性. 资源科学, 2004,26(4):45-50.
YANG Y W, YU Q, WANG J . Spatio-temporal variations of principal climatic factors in north China and part of east China within past 40 years. Resources Science, 2004,26(4):45-50. (in Chinese)
[9] 任国玉, 郭军, 徐铭志, 初子莹, 张莉, 邹旭凯, 李庆祥, 刘小宁 . 近50年中国地面气候变化基本特征. 气象学报, 2005,63(6):942-956.
doi: 10.11676/qxxb2005.090
REN G Y, GUO J, XU M Z, CHU Z Y, ZHANG L, ZOU X K, LI Q X, LIU X N . Climate changes of China’s mainland over the past half century. Acta Meteorologica Sinica, 2005,63(6):942-956. (in Chinese)
doi: 10.11676/qxxb2005.090
[10] 史建国 . 不同光照对夏玉米产量及其根系生理特性的影响[D]. 泰安: 山东农业大学, 2015.
SHI J G . Effects of different light treatments on grain yield and the root physiological characteristics of summer maize in the field[D]. Taian: Shandong Agricultural University, 2015. ( in Chinese)
[11] 马少康, 赵广才, 常旭虹, 杨玉双, 杨桂霞, 徐凤娇 . 氮肥和化学调控对小麦品质的调节效应. 华北农学报, 2010,25(S1):190-193.
doi: 10.7668/hbnxb.2010.S1.043
MA S K, ZHAO G C, CHANG X H, YANG Y S, YANG G X, XU F J . The effects of nitrogen and chemical control on wheat quality. Acta Agriculturae Boreali-Sinica, 2010,25(S1):190-193. (in Chinese)
doi: 10.7668/hbnxb.2010.S1.043
[12] 王畅, 赵海东, 冯乃杰, 郑殿峰, 梁晓艳, 齐德强, 黄文婷 . 两个生态区大豆光热资源利用率和产量的差异及对化控剂的响应. 应用生态学报, 2018,29(11):3615-3624.
WANG C, ZHAO H D, FENG N J, ZHENG D F, LIANG X Y, QI D Q, HUANG W T . Differences in light and heat utilization efficiency and yield of soybean in two ecological zones and their response to chemical control regulators. Chinese Journal of Applied Ecology, 2018,29(11):3615-3624. (in Chinese)
[13] 柯贞进, 尹美强, 温银元, 黄明镜, 黄学芳, 郭平毅, 王玉国, 原向阳 . 干旱胁迫下聚丙烯酰胺浸种对谷子种子萌发及幼苗期抗旱性的影响. 核农学报, 2015,29(3):563-570.
doi: 10.11869/j.issn.100-8551.2015.03.0563
KE Z J, YIN M Q, WEN Y Y, HUANG M J, HUANG X F, GUO P Y, WANG Y G, YUAN X Y . Effects of polyacrylamide seed soaking on seed germination and drought resistance of millet ( Setaria italic) seedlings under drought stress. Journal of Nuclear Agricultural Sciences, 2015,29(3):563-570. (in Chinese)
doi: 10.11869/j.issn.100-8551.2015.03.0563
[14] LIU L, XIAO W, LI L, LI D M, GAO D S, ZHU C Y, FU X L . Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiology and Biochemistry, 2017,115:200-211.
[15] 刘丽媛 . AFD对棉花生长发育的影响及其调控机理研究[D]. 北京: 中国农业科学院, 2018.
LUI L Y . The effects of AFD on the growth and development of cotton and the research of its regulation mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. ( in Chinese)
[16] 王曾桢, 朱建强, 戴思薇 . 叶面化学调控和营养调控减轻油菜花果期渍涝危害的效果. 江苏农业科学, 2016,44(2):136-138.
WANG C Z, ZHU J Q, DAI S W . Effects of chemical and nutritional regulation on leaf surface on reducing waterlogging damage during flowering and fruit stage of rapeseed. Jiangsu Agricultural Sciences, 2016,44(2):136-138. (in Chinese)
[17] 张海那 . 富氢水调控黄瓜幼苗生长发育和耐盐性的初步研究[D]. 沈阳: 沈阳农业大学, 2018.
ZHANG H N . A preliminary study on the effects of hydrogen-rich water on the growth and salt tolerance of cucumber seedlings[D]. Shenyang: Shenyang Agricultural University, 2018. ( in Chinese)
[18] 朱玉玲 . 6-苄氨基腺嘌呤对淹水后夏玉米生理特性和产量的调控研究[D]. 泰安: 山东农业大学, 2015.
ZHU Y L . Effect of 6-Benzylaminopurine on the physiological characteristics and yield of summer maize after waterlogging[D]. Taian: Shandong Agricultural University, 2015. ( in Chinese)
[19] 徐田军, 董志强, 兰宏亮, 裴志超, 高娇, 解振兴 . 低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响. 作物学报, 2012,38(2):352-359.
doi: 10.3724/SP.J.1006.2012.00352
XU T J, DONG Z Q, LAN H L, PEI Z C, GAO J, XIE Z X . Effects of PASP-KT-NAA on photosynthesis and antioxidant enzyme activities of maize seedlings under low temperature stress. Acta Agronomica Sinica, 2012,38(2):352-359. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00352
[20] 杨可攀, 顾万荣, 李丽杰, 谢腾龙, 李晶, 魏湜 . DCPTA和ETH复配剂对玉米茎秆力学特性及籽粒产量的影响. 核农学报, 2017,31(4):809-820.
YANG K P, GU W R, LI L J, XIE T L, LI J, WEI S . Effects of mixed compound of DCPTA and ETH on stalk mechanical characteristics and grain yield in maize. Journal of Nuclear Agricultural Sciences, 2017,31(4):809-820. (in Chinese)
[21] 邵瑞鑫, 郑会芳, 李蕾蕾, 李林峰, 王重锋, 杨青华 . 不同玉米品种叶片衰老动态变化及其化学调控. 玉米科学, 2014,22(6):80-83.
SHAO R X, ZHENG H F, LI L L, LI L F, WANG C F, YANG Q H . Change of leaf area and grain filling rate with different types of maize varieties during senescence and effect of chemical regulator. Journal of Maize Sciences, 2014,22(6):80-83. (in Chinese)
[22] 甘崇琨, 周慧文, 陈荣发, 范业赓, 丘立杭, 黄杏, 李杨瑞, 卢星高, 吴建明 . 化学调控在甘蔗生产上的研究应用. 生物技术通报, 2019,35(2):163-170.
GAN C K, ZHOU H W, CHEN R F, FAN Y G, QIU L H, HUANG X, LI Y R, LU X G, WU J M . Application of chemical regulating technology in sugarcane production. Biotechnology Bulletin, 2019,35(2):163-170. (in Chinese)
[23] 刘帅, 董合林, 李亚兵 . 艾氟迪和缩节胺不同处理对黄河流域棉花产量的影响. 中国棉花, 2018,45(02):19-23, 27.
LIU S, DONG H L, LI Y B . Effects of different applying methods of AFD and DPC on cotton yield in the Yellow River cotton planting region. China Cotton, 2018,45(02):19-23, 27. (in Chinese)
[24] 白巍 . 7.5%分裂素·烯效苗床施用对水稻化控作用研究[D]. 大庆: 黑龙江八一农垦大学, 2018.
BAI W . Study on chemical control of rice by application of 7.5% cytokininuniconazole on seedbed[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018. ( in Chinese)
[25] 陶群, 黄官民, 郭庆, 周于毅, 谭伟明, 张明才, 段留生 . 冠菌素对玉米抗倒伏能力及产量的影响. 农药学学报, 2019,21(1):43-51.
TAO Q, HUANG G M, GUO Q, ZHOU Y Y, TAN W M, ZHANG M C, DUAN L S . Effects of coronatine on lodging resistance and yield of maize. Chinese Journal of Pesticide Science, 2019,21(1):43-51. (in Chinese)
[26] 闫慧萍, 彭云玲, 赵小强, 吕玉燕 . 外源24-表油菜素内酯对逆境胁迫下玉米种子萌发和幼苗生长的影响. 核农学报, 2016,30(5):988-996.
YAN H P, PENG Y L, ZHAO X Q, LÜ Y Y . Effect of exogenous 24-epibrassinolide on seed germination and seedling growth of maize under different stress. Journal of Nuclear Agricultural Sciences, 2016,30(5):988-996. (in Chinese)
[27] 彭玲, 刘晓霞, 何流, 田蒙, 葛顺峰, 姜远茂 . 不同黄腐酸用量对‘红将军’苹果产量、品质和 15N-尿素去向的影响 . 应用生态学报, 2018,29(5):1412-1420.
PENG L, LIU X X, HE L, TIAN M, GE S F, JIANG Y M . Effects of different fulvic acid application rates on fruit yield, quality and fate of 15N-urea in ‘Red General’apple . Chinese Journal of Applied Ecology, 2018,29(5):1412-1420. (in Chinese)
[28] 何流, 刘晓霞, 于天武, 侯昕, 孙萌萌, 葛顺峰, 姜远茂 . 果实膨大期施用黄腐酸水溶肥对苹果叶片生长、果实品质及产量的影响. 山东农业科学, 2018,50(4):79-83.
HE L, LIU X X, YU T W, HOU X, SUN M M, GE S F, JIANG Y M . Effects of applying water-soluble fulvic acid fertilizer during fruit-swelling period on apple leaf growth, fruit quality and yield. Shandong Agricultural Sciences, 2018,50(4):79-83. (in Chinese)
[29] 王官茂, 杨茂峰, 李志燕, 屈海东, 张遵义 . 黄腐酸对马铃薯产量和商品薯率的影响. 中国马铃薯, 2016,30(1):25-30.
WANG G M, YANG M F, LI Z Y, QU H D, ZHANG Z Y . Effects of fulvic acid on yield and marketable tuber percentage of potato. Chinese Potato Journal, 2016,30(1):25-30. (in Chinese)
[30] ZHANG Y J, ZHOU Q L, LI Y M, XU C Y, HE S L, HUANG Y D, YANG H K, WANG M, LIU L S, TANG M S . Effects of fulvic acid on agronomic traits and yield of autumn potato. Agricultural Science & Technology, 2017,18(8):1448-1451.
[31] 邱小倩, 许原原, 王若楠, 李宝珍, 杨金水, 袁红莉 . 黄腐酸对苜蓿固氮效率及产量的影响研究. 腐植酸, 2018(4):33-36, 51.
QIU X Q, XU Y Y, WANG R N, LI B Z, YANG J S, YUAN H L . Effects of fulvic acid on nitrogen-fixation efficiency and yield ofMedicago Sativa. Humic Acid, 2018(4):33-36, 51. (in Chinese)
[32] GUO S W, LI P F, LU L, YANG J, SONG R Q, ZHANG J S, YU J . Maize (Zea Mays) growth, water consumption and water use efficiency by application of a super absorbent polymer and fulvic acid under two soil moisture conditions. Journal of China Agricultural University, 2017,22(1):1-11.
[33] 亓艳艳, 骆洪义, 公华锐, 王旭鹏, 庞晓燕, 李国辉, 朱福军 . 黄腐酸对基质栽培番茄生长、产量及品质的影响. 山东农业科学, 2018,50(5):87-91.
QI Y Y, LUO H Y, GONG H R, WANG X P, PANG X Y, LI G H, ZHU F J . Effects of fulvic acid treatments on development, yield and quality of tomato in substrate culture. Shandong Agricultural Sciences, 2018,50(5):87-91. (in Chinese)
[34] 张丽丽, 刘德兴, 史庆华, 巩彪 . 黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用. 中国农业科学, 2018,51(8):1547-1555.
doi: 10.3864/j.issn.0578-1752.2018.08.012
ZHANG L L, LIU D X, SHI Q H, GONG B . Physiological regulatory effects of fulvic acid on stress tolerance of tomato seedlings against phosphate deficiency. Scientia Agricultura Sinica, 2018,51(8):1547-1555. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.08.012
[35] 庞强强, 孙光闻, 蔡兴来, 周曼, 赵枢纽, 李德明 . 硝酸盐胁迫下黄腐酸对小白菜活性氧代谢及相关基因表达的影响. 分子植物育种, 2018,16(17):5812-5820.
PANG Q Q, SUN G W, CAI X L, ZHOU M, ZHAO S N, LI D M . Effects of fulvic acid on reactive oxygen metabolism and related gene expression in Pakchoi under NO 3- stress . Molecular Plant Breeding, 2018,16(17):5812-5820. (in Chinese)
[36] 张彩凤, 吴云彬, 宋珍 . 黄腐酸促进超氧化物歧化酶形成的作用机制探究. 腐植酸, 2017,( 3):56-62.
ZHANG C F, WU Y B, SONG Z . A preliminary study on the mechanism of formation of superoxide dismutase affected by fulvic acid. Humic Acid, 2017(3):56-62. (in Chinese)
[37] 尤东玲, 张星, 于康珂, 李潮海, 王群 . 亚精胺对淹水胁迫下玉米幼苗生长和生理特性的影响. 玉米科学, 2016,24(1):74-80, 87.
YOU D L, ZHANG X, YU K K, LI C H, WANG Q . Effect of exogenous spermidine on growth and physiological properties of maize seedling under waterlogging stress. Journal of Maize Sciences, 2016,24(1):74-80, 87. (in Chinese)
[38] 田晓东, 边大红, 蔡丽君, 刘梦星, 曹立燕, 崔彦宏, 张凤路 . 高密条件下化学调控对夏玉米抗茎倒伏能力的影响. 华北农学报, 2014,29(S1):249-254.
doi: 10.7668/hbnxb.2014.S1.048
TIAN X D, BIAN D H, CAI L J, LIU M X, CAO L Y, CUI Y H, ZHANG F L . Effect of chemical regulation on stalk lodging resistance of high-density summer maize. Acta Agriculturae Boreali-Sinica, 2014,29(S1):249-254. (in Chinese)
doi: 10.7668/hbnxb.2014.S1.048
[39] 杜成凤, 李潮海, 刘天学, 赵亚丽 . 遮荫对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011,31(21):6633-6640.
DU C F, LI C H, LIU T X, ZHAO Y L . Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecologica Sinica, 2011,31(21):6633-6640. (in Chinese)
[40] 李永庚, 于振文, 梁晓芳, 赵俊晔, 邱希宾 . 小麦产量和品质对灌浆期不同阶段低光照强度的响应. 植物生态学报, 2005,29(5):807-813.
LI Y G, YU Z W, LIANG X F, ZHAO J Y, QIU X B . Response of wheat yields and quality to low light intensity at different grain filling stages. Acta Phytoecologica Sinica, 2005,29(5):807-813. (in Chinese)
[41] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华 . 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003,29(5):785-790.
REN W J, YANG W Y, XU J W, FAN G Q, MA Z H . Effect of low light on grains growth and quality in rice. Acta Agronomica Sinica, 2003,29(5):785-790. (in Chinese)
[42] 王一, 张霞, 杨文钰, 孙歆, 苏本营, 崔亮 . 不同生育时期遮阴对大豆叶片光合和叶绿素荧光特性的影响. 中国农业科学, 2016,49(11):2072-2081.
doi: 10.3864/j.issn.0578-1752.2016.11.004
WANG Y, ZHANG X, YANG W Y, SUN X, SU B Y, CUI L . Effect of shading on soybean leaf photosynthesis and chlorophyll fluorescence characteristics at different growth stages. Scientia Agricultura Sinica, 2016,49(11):2072-2081. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.004
[43] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 . 遮荫对夏玉米产量及生长发育的影响. 应用生态学报, 2006,17(4):657-662.
ZHANG J W, DONG S T, WANG K J, HU C H, LIU P . Effects of shading on the growth, development and grain yield of summer maize. Chinese Journal of Applied Ecology, 2006,17(4):657-662. (in Chinese)
[44] JIA S F, LI C F, DONG S T, ZHANG J W . Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. Agricultural Sciences in China, 2011,10(1):58-69.
[45] 王立娜, 杨克军 . 玉米化控防倒伏技术研究. 现代化农业, 2014,10:22-24.
WANG L N, YANG K J . Chemical control technology study on lodging of maize. Modernizing Agriculture, 2014,10:22-24. (in Chinese)
[46] 任红, 周培禄, 赵明, 董志强, 李从锋, 齐华 . 不同类型化控剂对春玉米产量及生长发育的调控效应. 玉米科学, 2017,25(2):81-85.
REN H, ZHOU P L, ZHAO M, DONG Z Q, LI C F, QI H . Effect of spraying different type chemical control agents on plant growth and grain yield of spring maize. Journal of Maize Sciences, 2017,25(2):81-85. (in Chinese)
[47] 李宁, 李建民, 翟志席, 李召虎, 段留生 . 化控技术对玉米植株抗倒伏性状、农艺性状及产量的影响. 玉米科学, 2010,18(6):38-42.
LI N, LI J M, ZHAI Z X, LI Z H, DUAN L S . Effects of chemical regulator on the lodging resistance traits, agricultural characters and yield of maize. Journal of Maize Sciences, 2010,18(6):38-42. (in Chinese)
[48] 张倩, 张明才, 刘明, 谭伟明, 肖佳雷, 来永才, 李召虎, 段留生 . 氮肥-生长调节剂对寒地春玉米植株形态及产量的互作效应研究. 中国农业大学学报, 2014,19(5):29-37.
ZHANG Q, ZHANG M C, LIU M, TAN W M, XIAO J L, LAI Y C, LI Z H, DUAN L S . Interaction of nitrogen fertilizer and plant growth regular on plant morphology and yield in spring maize of cold region. Journal of China Agricultural University, 2014,19(5):29-37. (in Chinese)
[49] 史磊, 尤丹, 肖万欣, 赵海岩, 徐亮 . 化控剂对玉米光合作用、农艺性状和产量的影响. 玉米科学, 2014,22(5):59-63, 70.
SHI L, YOU D, XIAO W X, ZHAO H Y, XU L . Effects of chemical regulators on photosynthetic characters, agronomic characters and yield characters of maize. Journal of Maize Sciences, 2014,22(5):59-63, 70. (in Chinese)
[50] 樊海潮 . KP化控剂对玉米叶片、茎秆理化及根系伤流的调控机制[D]. 哈尔滨: 东北农业大学, 2018.
FAN H C . Mechanisms of KP on the physical and chemical characteristics and root bleeding sap of maize leaves and stalks[D]. Harbin: Northeast Agricultural University, 2018. ( in Chinese)
[51] 杨虎, 戈长水, 应武, 杨京平, 李金文, 何俊俊 . 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响. 植物营养与肥料学报, 2014,20(3):580-587.
doi: 10.11674/zwyf.2014.0308
YANG H, GE C S, YING W, YANG J P, LI J W, HE J J . Effect of shading on leaf SPAD values and the characteristics of photosynthesis and morphology of rice canopy. Journal of Plant Nutrition and Fertilizer, 2014,20(3):580-587. (in Chinese)
doi: 10.11674/zwyf.2014.0308
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!