Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (17): 2939-2950.doi: 10.3864/j.issn.0578-1752.2019.17.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning

LIU HuiFang,HE Zheng,JIA Biao(),LIU Zhi,LI ZhenZhou,FU JiangPeng,MU RuiRui,KANG JianHong   

  1. School of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2019-04-02 Accepted:2019-07-03 Online:2019-09-01 Published:2019-09-10
  • Contact: Biao JIA E-mail:jiabiao2008@163.com

Abstract:

【Objective】 This study proposed an optimized grid search method based on machine learning to solve the problem of model parameters of the photosynthetic light-response curve for drip-irrigated maize, which was often hard to determine and possesses low precision, so as to provide new ideas for photosynthetic characteristics and mechanisms of drip-irrigated maize in Ningxia. 【Method】 The experiment was conducted in 2017 and 2018 with the maize cultivar TC19, which was widely cultivated in Ningxia. Six levels of potassium application (0 (K0), 90 kg·hm -2 (K1), 180 kg·hm -2 (K2), 270 kg·hm -2 (K3), 360 kg·hm -2 (K4), 450 kg·hm -2 (K5)) were set, and the portable gas exchange system (Li-6400XT) was used to measure the light-response curves of maize under different potassium levels at silking stage. The grid search method based on machine learning and nonlinear regression analysis was used to revise the light response curve based on the right angle and hyperbolic correction model. The correlation coefficient (R 2), root-mean-square error (RMSE) and mean absolute error (MAE) were used to evaluate the accuracy of the model. 【Result】 The results showed that the photosynthetic parameters (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of maize leaves increased first and then decreased with the increase of potassium application rate. The results of fitting evaluation indicated that the calculation results of machine learning method under K0 and K1 were better than the traditional method, in which R 2 was greater than 0.991, RMSE and MAE were less than 1.487 and 1.350, respectively. The two methods have similar fitting effect under K2-K5, while R 2was greater than 0.993, RMSE and MAE was less than 0.952 and 0.860, respectively. The result of optical response characteristic parameter calculation by using the optimum fitting method (grid search method) showed that the trends of α, Pnmax, Rd, LSP and LCP were similar to their photosynthetic parameters. When the potassium application rate was 360 kg·hm -2 (K4), the light response characteristic parameters reached the maximum value, however, the light suppression phenomenon occurred at 450 kg·hm -2 (K5). 【Conclusion】 The grid search method based on machine learning could accurately fit the photo-response characteristics of drip-irrigated maize in Ningxia, and the photosynthetic performance of maize was the best when the potassium application rate was 360 kg·hm -2.

Key words: maize, photosynthetic parameters, light response curve, machine learning, model optimization

Table 1

Basic fertility of soil at experimental fields"

试验地
Test location
年份
Year
pH 有机质
OM
(g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
碱解氮
Available N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
平吉堡农场
Pingjipu farm
2017 7.92 11.51 0.82 0.59 37.42 19.11 102.48
2018 7.57 12.78 0.70 0.45 36.64 17.42 95.34

Fig. 1

Meteorological conditions of different growth stages of maize"

Fig. 2

Machine learning grid search method flow chart"

Fig. 3

Net photosynthetic rate-light response curves of maize under different potassium application rates"

Fig. 4

Comparison of photosynthetic parameters of maize under different potassium application rates"

Fig. 5

Calculation of photosynthetic parameters of maize under different potassium application rates"

Table 2

Simulation accuracy of two kinds of calculation methods on maize light response curve"

年份 Year 方法 Method 处理 Treatment RMSE MAE R2
2017 非线性回归分析法
Nonlinear regression analysis
K0 2.030 1.869 0.990
K1 1.319 1.079 0.992
K2 1.147 0.899 0.993
K3 0.828 0.656 0.995
K4 0.610 0.498 0.994
K5 0.446 0.379 0.995
网格搜索法
Grid search method
K0 1.335 1.096 0.993
K1 1.312 1.092 0.993
K2 0.952 0.622 0.994
K3 0.708 0.617 0.995
K4 0.546 0.504 0.996
K5 0.662 0.557 0.995
2018 非线性回归分析法
Nonlinear regression analysis
K0 1.827 1.445 0.987
K1 1.731 1.323 0.991
K2 0.872 0.733 0.993
K3 0.858 0.717 0.994
K4 0.644 0.566 0.996
K5 0.312 0.226 0.997
网格搜索法
Grid search method
K0 1.487 1.350 0.991
K1 0.975 0.860 0.993
K2 0.839 0.716 0.993
K3 0.774 0.620 0.995
K4 0.750 0.637 0.996
K5 0.330 0.315 0.996

Table 3

Photosynthetic parameters of light response curves of different potassium application rates"

年份
Year
处理
Treatment
表观量子效率
Q
(μmol·μmol-1)
最大光合速率
Pnmax
(μmol·m-2·s-1)
光补偿点
Ic
(μmol·m-2·s-1)
光饱和点
Is
(μmol·m-2·s-1)
暗呼吸速率
Rd
(μmol·m-2·s-1)
决定系数
R2
2017 K0 0.041 23.959 55.922 1453.189 2.161 0.987
K1 0.046 27.239 59.061 1627.178 2.510 0.991
K2 0.050 30.672 68.087 1965.095 3.260 0.993
K3 0.053 32.953 73.295 2126.701 3.456 0.994
K4 0.061 34.653 76.505 2694.469 4.635 0.996
K5 0.056 33.997 63.495 2034.091 4.066 0.997
2018 K0 0.042 25.368 56.110 1504.405 2.364 0.99
K1 0.043 31.341 61.278 1568.254 2.622 0.992
K2 0.047 32.807 63.761 1984.520 3.758 0.993
K3 0.056 34.407 67.300 2282.035 3.982 0.995
K4 0.063 35.678 78.092 2893.226 5.00 0.994
K5 0.058 35.256 71.462 2462.256 4.228 0.995
[1] LI D F, ZHANG S Y, ZHANG G C, LIU X, XIA X X, ZHANG S S, WEI X, FANG X C . Application of five light-response models in the photosynthesis of Populus× Puramericana cv. ‘Zhonglin46’ leaves. Applied Biochemistry & Biotechnology, 2015,176(1):86-100.
[2] CHEN Z Y, PENG Z S, YANG J, CHEN W Y, OUYANG Z M . A mathematical model for describing light-response curves in Nicotiana Tabacum L. Photosynthetica, 2011,49(3):467-471.
[3] FAN Z L, QUAN Q M, LI Y X, JUN Y, WANG S . Exploring the best model for describing light-response curves in two Epimedium species. Technology and Health Care, 2015,23(s1):9-13.
[4] LAROCQUE G R . Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple (Acer saccharum Marsh.) stands. Ecological Modelling, 2002,148(3):213-232.
[5] STEWART D W, COSTA C, DWYER L M, SMITH D L, HAMILTON R I, MA B L . Canopy structure, light interception, and photosynthesis in maize. Agronomy Journal, 2003,95(6):1465-1474.
[6] 任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏 . 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017,50(11):2093-2103.
doi: 10.3864/j.issn.0578-1752.2017.11.015
REN B C, ZHANG J W, DONG S T, ZHAO B, LIU P . Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2017,50(11):2093-2103. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.015
[7] 马莉, 王全九 . 不同灌溉定额下春小麦光合光响应特征研究. 农业机械学报. 2018,49(6):271-277.
MA L, WANG Q J . Photosynthetic and light response characteristics of spring wheat under different irrigation schedule. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(6):271-277. (in Chinese)
[8] GARDINER E S, KRAUSS K W . Photosynthetic light response of flooded cherry bark oak (Quercus pagoda) seedlings grown in two light regimes. Tree Physiology, 2001,21(15):1103-1111.
[9] YE Z P . A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 2007,45(4):637-640.
[10] YE Z P, SUGGETT D J, ROBAKOWSKI P, KANG H J . A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytologist, 2013,199(1):110-120.
[11] YE Z P, ROBAKOWSKI P, SUGGETT D J . A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 2013,237(3):837-847.
[12] 李义博, 宋贺, 周莉, 许振柱, 周广胜 . C4植物玉米的光合-光响应曲线模拟研究. 植物生态学报. 2017,41(12):1289-1300.
L I Y B, SONG H, ZHOU L, XU Z Z, ZHOU G S . Modeling study on photosynthetic-light response curves of a C4 plant, maize. Chinese Journal of Plant Ecology, 2017,41(12):1289-1300. (in Chinese)
[13] ZHAI Y F, CUI L J, ZHOU X, GAO Y, FEI T, GAO W X . Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: Comparison of partial least-square regression and support vector machine regression methods. International Journal of Remote Sensing, 2013,34(7):2502-2518.
[14] 王丽爱, 马昌, 周旭东, 訾妍, 朱新开, 郭文善 . 基于随机森林回归算法的小麦叶片SPAD值遥感估算. 农业机械学报, 2015,46(1):259-265.
WANG L A, MA C, ZHOU X D, ZI Y, ZHU X K, GUO W S . Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(1):259-265. (in Chinese)
[15] 依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 安申群, 马春玥 . 基于随机森林法的棉花叶片叶绿素含量估算. 作物学报, 2019,45(1):81-90.
YIERXIATI A B L T, MAIMAITI S W T, BAIDENGSHA M M T A L, AN S Q, MA C Y . Estimation of leaf chlorophyll content in cotton based on the Random Forest approach. Acta Agronomica Sinica, 2019,45(1):81-90. (in Chinese)
[16] 曾继业, 谭正洪, 三枝信子 . 近似贝叶斯法在光合模型参数估计中的应用. 植物生态学报, 2017,41(3):378-385.
doi: 10.17521/cjpe.2016.0067
ZENG J Y, TAN Z H, SANZHI X Z . Using approximate Bayesian computation to infer photosynthesis model parameters. Chinese Journal of Plant Ecology, 2017,41(3):378-385. (in Chinese)
doi: 10.17521/cjpe.2016.0067
[17] SINGH S K, REDDY V R . Co-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: Mechanisms of limitations and adaptations. Photosynthesis Research, 2018,137(2):183-200.
[18] KANAI S, OHKURA K, ADU GYAMFI J J, MOHAPATRA P K, NGUYEN N T, SANEOKA H, FUJITA K . Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany, 2007,58(11):2917-2928.
[19] QU C X, LIU C, ZE Y G, GONG X L, HONG M M . Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biological Trace Element Research, 2011,144(1/3):1159-1174.
[20] WANG X G, ZHAO X H, JIANG C J, LI C H, CONG S, WU D, CHEN Y Q, YU H Q, WANG C Y . Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max(L.)Merr.). Journal of Integrative Agriculture, 2015,14(5):856-863.
[21] 杜琪, 王宁, 赵新华, 沙德剑, 张艳正, 赵凯能, 党现什, 于海秋 . 低钾胁迫对玉米苗期光合特性和光系统Ⅱ性能的影响. 核农学报, 2019,33(3):592-599.
DU Q, WANG N, ZHAO X H, SHA D J, ZHANG Y Z, ZHAO K N, DANG X S, YU H Q . Effects of potassium deficiency on photosynthesis and performance of photosystem Ⅱ in maize seedling stage. Journal of Nuclear Agricultural Sciences, 2019,33(3):592-599. (in Chinese)
[22] ZHAO D L, OOSTERHUIS D M, BEDNARZ C W . Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001,39(1):103-109.
[23] ZHAO X H, DU Q, ZHAO Y, WANG H J, LI Y J, WANG X G, YU H Q . Effects of different potassium stress on leaf photosynthesis and chlorophyll fluorescence in maize at seedling stage. Agricultural Sciences, 2016,7(1):44-53.
[24] 夏乐, 于海秋, 郭焕茹, 赵尚文, 姚晓旭, 曹敏建 . 低钾胁迫对玉米光合特性及叶绿素荧光特性的影响. 玉米科学, 2008,16(6):71-74.
XIA L, YU H Q, GUO H R, ZHAO S W, YAO X X, CAO M J . Effects of potassium deficiency on photosynthetic characters and chlorophyll fluorescence characters in maize plants. Journal of Maize Sciences, 2008,16(6):71-74. (in Chinese)
[25] 张兴风, 刘泽人, 黄兴法, 杨建国, 李光永 . 宁夏膜下滴灌玉米不同施肥模式的试验研究. 节水灌溉, 2016,8:57-60.
ZHANG X F, LIU Z R, HUANG X F, YANG J G, LI G Y . Experimental study on different fertilization patterns at different growth stages of maize under mulched drip irrigation in Ningxia. Water Saving Irrigation. 2016,8:57-60. (in Chinese)
[26] 刘学军, 翟汝伟, 李真朴, 刘平, 王文 . 宁夏扬黄灌区玉米滴灌水肥一体化灌溉施肥制度试验研究. 中国农村水利水电, 2018,431(9):74-78.
LIU X J, ZHAI R W, LI Z P, LIU P, WANG W . Experimental research on the application of integrated fertilizer and fertilizer system for maize drip irrigation in Ningxia Yellow River irrigation area. China Rural Water and Hydropower, 2018,431(9):74-78. (in Chinese)
[27] 李哲, 屈忠义, 任中生, 杨少东, 续喆, 贾咏林, 胡敏 . 河套灌区膜下滴灌高频施肥促进玉米生长及产量研究. 节水灌溉, 2018,278(10):1-4.
LI Z, QU Z Y, REN Z S, YANG S D, XU Z, JIA Y L, HU M . A study on the promotion of drip irrigation under plastic film with high frequency fertigation for maize growth and yield in Hetao irrigation district. Water Saving Irrigation, 2018,278(10):1-4. (in Chinese)
[28] SHANKAR A, SINGH A, KANWAR P, SRIVASATAVA A K, PANDEY A, SUPRASANNA P, KAPOOR S, PANDEY G K . Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS ONE, 2013,8(7):e70321.
[29] ALI S, HAFEEZ A, MA X L, TUNG S A, LIU A, SHAH A N, CHATTHA M S, ZHANG Z, YANG G Z . Potassium relative ratio to nitrogen considerably favors carbon metabolism in late-planted cotton at high planting density. Field Crops Research, 2018,223:48-56.
[30] TRANKNER M, TAVAKOL E, JÁKLI B . Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 2018,163(3):414-431.
[31] HAEDER H E, MENGEL K, FORSTER H . The effect of potassium on translocation of photosynthates and yield pattern of potato plants. Journal of the Science of Food & Agriculture, 2010,24(12):1479-1487.
[32] 叶子飘, 张海利, 黄宗安, 杨小龙, 康华靖 . 叶片光能利用效率和水分利用效率对光响应的模型构建. 植物生理学报, 2017,53(6):226-232.
YE Z P, ZHANG H L, HUANG Z A, YANG X L, KANG H J . Model construction of light use efficiency and water use efficiency based on a photosynthetic mechanistic model of light response. Plant Physiology Journal, 2017,53(6):226-232. (in Chinese)
[33] MIAO Z W, XU M, RICHARD G J R L, WNAG Y F . Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant Cell & Environment, 2009,32(2):109-122.
[34] SHARP R E, MATTHEWS M A, BOYER J S . Kok effect and the quantum yield of photosynthesis light partially inhibits dark respiration. Plant Physiology, 1984,75(1):95-101.
[35] 叶子飘 . 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010,34(6):727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012
YE Z P . A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010,34(6):727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012
[36] 赵丽, 贺玉晓, 魏雅丽, 刘刚才 . 干热河谷紫色土区不同复合肥施肥量对玉米苗期光响应特性的影响. 干旱地区农业研究, 2018,36(1):10-18.
ZHAO L, HE Y X, WEI Y L, LIU G C . Light response characteristics of maize seedling under different amount of compound fertilizer in the purple soil at dry-hot valley. Agricultural Research in the Arid Areas, 2018,36(1):10-18. (in Chinese)
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[11] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!