Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2559-2566.doi: 10.3864/j.issn.0578-1752.2019.15.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Distribution of Soybean Cyst Nematode Resistance Allele Rhg1 and Rhg4 in Huang-Huai Soybean Varieties

LIAN Yun,LI HaiChao,LI JinYing,WANG JinShe,WEI He,LEI ChenFang,WU YongKang,LU WeiGuo()   

  1. Institute of Industrial Crops, Henan Academy of Agricultural Sciences/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou 450002
  • Received:2019-01-16 Accepted:2019-04-30 Online:2019-08-01 Published:2019-08-06
  • Contact: WeiGuo LU E-mail:123bean@163.com

Abstract:

【Objective】The disease caused by soybean cyst nematode (SCN, Heterodera glycines) is an important worldwide soybean disease. Planting SCN-resistant cultivars has formed the primary basis for controlling SCN. SCN spread widely and infect heavily in the Huang-Huai Valleys almost wherever soybean is grown. This study genotyped the SCN resistance alleles distributed in Huang-Huai soybean varieties and the results will provide scientific basis for guiding the rational and effective utilization of resistant varieties. 【Method】In this study, four KASP developed from Rhg1 and Rhg4 loci were selected. The validity of selected KASP marker were verified by genotyping 16 known resistant varieties such as ZDD2315, Zhonghuang 57 and ShanxiXiaoheidou together with 3 known susceptible varieties such as Willams and Lee. Then, 170 soybean varieties cultivated from Huang-Huai Valleys, such as Yudou series, Shangdou series and Zhoudou series were genotyped. The resistance level of the varieties harboring more than two resistance alleles were tested by inoculating race 2, race 4, race 5 and new race X12 in greenhouse, respectively. These races are distributed widely Huang Huai Valley. 【Result】 There were 5 and 6 varieties harboring Rhg1-2(CC) and Rhg1-5(CC) resistance alleles, respectively. There were 6 and 7 varieties harboring Rhg4-3(TT) and Rhg4-5(CC) resistance alleles, respectively. There were 6 varieties names Kaidou 4, Shangdou 1201, Lu 0305-2, Luo 4903, Weidou12 and Weidou 91861 which harboring 2 or more resistance alleles and accounted 3.53% in tested varieties. By inoculation, the 6 varieties showed different sensitive degree to race 2, race 4 or race X12. Lu 0305-2 and Weidou 91861 showed high resistance to race 5 with FI (10.00 ± 0.48) and (7.00 ± 0.63), respectively. Shangdou 1201 showed resistance to race 5 with FI (26.20 ± 0.91). Kaidou 4, Luo 4903 and Weidou12 showed sensitive or high sensitive to race 5 with FI (35.00 ± 2.48), (64.80 ± 3.91) and (58.20 ± 2.19), respectively. 【Conclusion】The results showed that SCN-resistant alleles in Rhg1 or Rhg4 were rare in the released Huang Huai Valleys varieties. More attention should be paid to introduce SCN-resistant alleles in cultivating varieties. Combined with the dominant race of SCN distributed in Huang Huai Valley, the varieties that resistant to multiple races should be given priority in breeding. The four KASP used in this study could be used to phenotype and screen the resistant sources.

Key words: soybean, soybean cyst nematode, resistance alleles, Huang-Huai Valleys, screen resistant sources

Table 1

The name of tested Huang-huai Valley soybean varieties"

Fig. 1

The distribution of SCN resistance loci in tested varieties (%)"

Table 1

Resistance identification of soybean varieties carrying SCN resistance alleles to different races (Inoculating 2 000 eggs/cup)"

品种
Varieties
2号小种 Race 2 4号小种 Race 4 5号小种 Race 5 X12号小种 Race X 12
胞囊数目
No. of Cysts
胞囊指数
FI
胞囊数目
No. of Cysts
胞囊指数
FI
胞囊数目
No. of Cysts
胞囊指数
FI
胞囊数目
No. of Cysts
胞囊指数
FI
Lee68 179.40±9.57 195.40±6.36 111.40±8.08 380.00±18.99
开豆4号
Kaidou 4
299.67±23.19 167.04 234.00±14.06 119.75 35.00±2.48 31.42 263.80±6.75 69.42
商豆1201
Shangdou 1201
264.25±48.70 147.30 210.40±16.65 107.68 26.20±0.91 23.52 231.50±21.00 60.92
鲁0305-2
Lu 0305-2
311.40±38.23 173.58 185.80±7.88 95.09 10.00±0.48 8.98 186.75±20.03 49.14
漯4903
Luo 4903
223.60±19.52 124.64 237.20±17.80 121.39 64.80±3.91 58.17 231.80±20.74 61.00
潍豆12
Weidou 12
134.80±14.95 75.14 228.40±12.90 116.89 58.20±2.19 52.24 321.80±13.89 84.68
潍豆91861
Weidou 91861
192.00±12.96 107.02 108.60±7.72 55.58 7.00±0.63 6.28 206.80±18.57 54.42

Table 2

Resistance identification under inoculated high density SCN eggs (Inoculating 6 000 eggs/cup)"

重复 品种Varieties 胞囊数目No. of Cysts 胞囊指数FI
Lee68 487.25±28.59
I 商豆1201 Shangdou 1201 288.13±11.18 59.13
鲁0305-2 Lu0305-2 180.50±11.88 37.04
潍豆91861 Weidou 91861 64.38±2.82 22.29
II Lee68 288.86±11.78
潍豆91861 Weidou 91861 52.25±1.89 18.09

Table 3

Resistance identification of Zhonghuang 57 under inoculated different density eggs and different races"

生理小种
Race
接种量(虫卵/杯)
Inoculation density (Eggs/cup)
Lee68 中黄57
Zhonghuang57
胞囊指数
FI
2号小种
Race 2
2000 108.00±59.87 20.20±0.80 9.44
6000 194.20±41.90 2.40±0.51 1.24
6000 281.60±69.90 20.60±2.40 7.32
4号小种
Race 4
2000 182.60±36.40 22.20±3.31 12.16
6000 242.14±44.82 331.80±45.45 137.03
6000 278.13±30.62 250.57±55.28 90.09
[1] WRATHER J A, KOENNING S R . Estimates of disease effects on soybean yields in the United States 2003 to 2005. Journal of Nematology, 2006,38:173-180.
[2] NIBLACK T L, TYLKA G L, RIGGS R D . Nematode pathogens of soybean.//Wilcox J R. Soybeans: Improvement, Production, and Uses. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2004: 821-851.
[3] MITCHUM M G . Soybean resistance to the soybean cyst nematode Heterodera glycines: An update. Phytopathology, 2016,106(12):1444-1450.
[4] 练云, 王金社, 李海朝, 魏荷, 李金英, 武永康, 雷晨芳, 张辉, 王树峰, 郭建秋, 李月霞, 李志辉, 靳巧玲, 徐淑霞, 张志民, 杨彩云, 于会勇, 耿臻, 舒文涛, 卢为国 . 黄淮大豆主产区大豆胞囊线虫生理小种分布调查. 作物学报, 2016,42(10):1479-1486.
doi: 10.3724/SP.J.1006.2016.01479
LIAN Y, WANG J S, LI H C, WEI H, LI J Y, WU Y K, LEI C F, ZHANG H, WANG S F, GUO J Q, LI Y X, LI Z H, JIN Q L, XU S X, ZHANG Z M, YANG C Y, YU H Y, GENG Z, SHU W T, LU W G . Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers Valley. Acta Agronomica Sinica, 2016,42(10):1479-1486. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01479
[5] LIAN Y, GUO J Q, LI H C, WU Y K, WEI H, WANG J S, LI J Y, LU W G . A new race (X12) of soybean cyst nematode in China. Journal of Nematology, 2017,49(3):321-326.
[6] 王金社, 卢为国, 李金英, 练云, 魏荷, 李海朝, 雷晨芳 . 植物病虫害表型数据采集系统: 中国,2014SR060158, 2014-5-14.
WANG J S, LU W G, LI J Y, LIAN Y, WEI H, LI H C, LEI C F . The data acquisition system on the phenotype of plant diseases and insect pests: China,2014SR060158, 2014-5-14 (in Chinese)
[7] 卢为国, 盖钧镒, 李卫东 . 黄淮地区大豆胞囊线虫(Heterodera glycines Ichinohe)生理小种的抽样调查与研究. 中国农业科学, 2006,39(2):306-312.
LU W G, GAI J Y, LI W D . Sampling survey and identification of races of soybean cyst nematode (Heterodera glycines Ichinohe) in Huang-Huai Valleys. Scientia Agricultura Sinica, 2006,39(2):306-312. (in Chinese)
[8] MITCHUM M G, WRATHER J A, HEINZ R D, SHANNON J G, DANEKAS G . Variability in distribution and virulence phenotypes of Heterodera glycinesin in Missouri during 2005. Plant Disease, 2007,91:1473-1476.
[9] HOWLAND A, MONNIG N, MATHESIUS J, NATHAN M, MITCHUM M G . Survey of Heterodera glycines population densities and virulence phenotypes during 2015-2016 in Missouri. Plant Disease, 2018,102(12):2407-2410.
[10] KIM K S, VOUNG T D, QIU D, ROBBINS R T, SHANNON J G, LI Z L, NGUYEN H T . Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theoretical Applied Genetics, 2016,129:2295-2311.
[11] RUBEN E, JAMAI A, AFZAL J, NJITI V N, TRIWITAYAKORN K, LGBAL M J, YAEQASHI S, BASHIR R, KAZI S, ARELLI P, TOWN C D, ISHIHARA H, MEKSEM K, LIGHTFOOT D A . Genomic analysis of the rhg1 locus: Candidate genes that underlie soybean resistance to the cyst nematode. Molecular Genetics and Genomics, 2006,276(6):503-516.
[12] LEE T G, KUMAR I, DIERS B W, HUDSON M E . Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus. Molecular Ecology, 2015,24:1774-1791.
[13] AFZAL A J, NATARAJAN A, SAINI N, IQBAL M J, GEISLER M, EI SHEMY H A, MUNGUR R, WILLMITZER L, LIGHTFOOT D A . The nematode resistance allele at the rhg1 locus alters the proteome and primary metabolism of soybean roots. Plant Physiology, 2009,151(3):1264-1280.
[14] LIU S M, KANDOTH P K, WARREN S D, YECKEL G, HEINZ R, ALDEN J, YANG C, JAMAI A, EI-MELLOUKI T, JUVALE P S, HILL J, BAUM T J, CIANZIO S, WHITHAM S A, KORKIN D, MITCHUM M G, MEKSEM K . A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012,492:256-260.
[15] CONCIBIDO V C, LANGE D A, DENNY R L , Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763 and PI 88788 using DNA markers. Crop Science, 1997,37:258-264.
[16] COOK D E, LEE T G, GUO X, MELITO S, WANG K, BAYLESS A M, WANG J, HUGHES T J, WILLIS D K, CLEMENTE T E, DIERS B W, JIANG J, HUDSON M E, BENT A F . Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science, 2012,338(6111):1206-1209.
[17] LIU S, KANDOTH P K, LAKHSSASSI N, KANG J, COLANTONIO V, HEINZ R, YECKEL G, ZHOU Z, BEKAL S, DAPPRICH J, ROTTER B, CIANZIO S, MITCHUM M G, MEKSEM K . The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nature Communications, 2017,8:14822.
[18] KANDOTH P K, LIU S, PRENGER E, LUDWIG A, LAKHSSASSI N, HEINZ R, ZHOU Z, HOWLAND A, GUNTHER J, EIDSON S, DHROSO A, LAFAYETTE P, TUCKER D, JOHNSON S, ANDERSON J, ALASWAD A, CIANZIO S R, PARROTT W A, KORKIN D, MEKSEM K, MITCHUM M G . Systematic mutagenesis of serine Hydroxy methyltransferase reveals an essential role in nematode resistance. Plant Physiology, 2017,175(3):1370-1380.
[19] 叶俊华, 杨启台, 刘章雄, 郭勇, 李英慧, 关荣霞, 邱丽娟 . 大豆引进种质抗胞囊线虫病、抗花叶病毒病和耐盐基因型鉴定及优异等位基因聚合种质筛选. 作物学报, 2018,44(9):1263-1273.
YE J H, YANG Q T, LIU Z X, GUO Y, LI Y H, GUAN R X, QIU L J . Genotyping of SCN, SMV resistance, salinity tolerance and screening of pyramiding favorable alleles in introduced soybean accessions. Acta Agronomica Sinica, 2018,44(9):1263-1273. (in Chinese)
[20] KADAMA S, VUONGA T D, QIUA D, MEINHARDTA C G, SONG L, DESHMUKHA R, PATILA G, WAN J R, VALLIYODANA B, SCABOOA A M, SHANNONB J G, NGUYEN H T . Genomic- assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Science, 2016,242:342-350.
[21] 田宇, 杨蕾, 李英慧, 邱丽娟 . 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用. 作物学报, 2018,44(11):1600-1611.
TIAN Y, YANG L, LI Y H, QIU L J . Development and utilization of KASP marker for SCN3-11 locus resistant to soybean cyst nematode. Acta Agronomica Sinica, 2018,44(11):1600-1611. (in Chinese)
[22] 史学晖, 李英慧, 于佰双, 郭勇, 王家军, 邱丽娟 . 大豆胞囊线虫主效抗病基因Rhg4 (GmSHMT)的CAPS/dCAPS标记开发和利用. 作物学报, 2015,41(10):1463-1471.
doi: 10.3724/SP.J.1006.2015.01463
SHI X H, LI Y H, YU B S, GUO Y, WANG J J, QIU L J . Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genes Rhg4. Acta Agronomica Sinica, 2015,41(10):1463-1471. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01463
[23] PATIL G, DO T, VUONG T D, VALLIYODAN B, LEE J D, CHAUDHARY J, SHANNON J G, NGUYEN H T . Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Scientific Reports, 2016,6:19199.
[24] STEELE K A, QUINTON-TULLOCH M J, AMGAI R B, DHAKAL R, KHATIWADA S P, VYAS D, HEINE M, WITCOMBE J R . Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Molecular Breeding, 2018,38(4):38.
[25] UR REHMAN S, WANG J, CHANG X, ZHANG X, MAO X, JING R . A wheat protein kinase gene TaSnRK2.9-5A associated with yield contributing traits. Theoretical and Applied Genetics, 2019,132(4):907-919.
[26] ERTIRO B T, OGUGO V, WORKU M, DAS B, OLSEN M, LABUSCHAGNE M, SEMAGN K . Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics, 2015,16:908.
[27] 刘勋, 郑克邪, 张娇, 徐茜, 张蜀敏, 赵勇, 沈昱辰, 谢德斌, 唐道彬, 吕长文, 张凯, 任茂智, 王季春 . 马铃薯晚疫病抗性基因分子标记检测及抗性评价. 植物遗传资源学报, 2019,20(3):538-549.
LIU X, ZHENG K Y, ZHANG J, XU Q, ZHANG S M, ZHAO Y, SHEN Y C, XIE D B, TANG D B, LÜ C W, ZHANG K, REN M Z, WANG J C . Molecular marker screening of resistant genes and evaluation of resistance to late blight from 218 potato genotypes. Journal of Plant Genetic Resources, 2019,20(3):538-549. (in Chinese)
[28] CREGAN P, MUDGE J, FICKUS E, DANESH D, DENNY R, YOUNG N . Two simple sequence repeat markers to select for soybean cyst nematode resistance coditioned by the rhg1 locus. Theoretical Applied Genetics, 1999,99:811-818.
[29] SILVA M F D, SCHUSTER I, SILVA J F V D, FERREIRA A, BARROS E G D, MOREIRA M A . Validation of microsatellite markers for assisted selection of soybean resistance to cyst nematode races 3 and 14. Pesquisa Agropecuária Brasileira, 2007,42:1143-1150.
[30] YUAN C P, LI Y H, LIU Z X, GUAN R X, CHANG R Z, QIU L J . DNA sequence polymorphism of the Rhg4 candidate gene conferring resistance to soybean cyst nematode in Chinese domesticated and wild soybeans. Molecular Breeding, 2012,30:1155-1162.
[31] BAO Y, VUONG T, MEINHARDT C, TIFFIN P, DENNY R, CHEN S, NGUYEN H T, ORF J H, YOUNG N D . Potential of association mapping and genomic selection to explore PI88788 derived soybean cyst nematode resistance, Plant Genome, 2014,7:1-13.
[32] SHI Z, LIU S, NOE J, ARELLI P, MEKSEM K, LI Z . SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics, 2015,16:314
[33] SONG Q, HYTEN D L, JIA G, QUIGLEY C V, FICKUKS E W, NELSON R L, CREGAN P B . Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE, 2013,8(1):e54985.
[34] 练云, 魏荷, 王金社, 雷晨芳, 李海朝, 武永康, 卢为国 . 影响大豆胞囊线虫生理小种鉴定因素探讨. 分子植物育种, 2015,13(6):1259-1264.
LIAN Y, WEI H, WANG J S, LEI C F, LI H C, WU Y K, LU W G . A Study on the factors that influence the race-identification of soybean cyst nematode. Molecular Plant Breeding, 2015,13(6):1259-1264. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!