Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 2002-2010.doi: 10.3864/j.issn.0578-1752.2019.11.015

Special Issue: MINERAL IN FEEDSTUFFS FOR LIVESTOCK AND POULTRY

• SPECIAL FOCUS: MINERAL IN FEEDSTUFFS FOR LIVESTOCK AND POULTRY • Previous Articles     Next Articles

A Survey on Distribution of Zinc Contents in Feedstuffs for Livestock and Poultry in China

SHAO YuXin1,ZHANG LiYang1,MA XueLian1,WANG LiangZhi1,2,LIU DongYuan3,LÜ Lin1,LIAO XiuDong1(),LUO XuGang1()   

  1. 1 Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 College of Life Science and Technology, Southwest Minzu University, Chengdu 610041
    3 Beijing Yuanchuang Zhihui Biotechnology Co., Ltd, Beijing 100020
  • Received:2019-02-18 Accepted:2019-04-23 Online:2019-06-01 Published:2019-06-11
  • Contact: XiuDong LIAO,XuGang LUO E-mail:liaoxd56@163.com;wlysz@263.net

Abstract:

【Objective】 The purpose of this survey was to study the zinc (Zn) contents in various feed ingredients from different provinces and the basal diets of pigs and chickens in China, so as to provide a scientific basis for the reasonable addition of Zn in the livestock and poultry’s diets. 【Method】 A total of 37 kinds of 3 919 feed samples from 31 provinces, municipalities and regions were digested by microwave, and then the Zn contents were measured by IRIS IntrepidⅡplasma emission spectrometer. The feed samples fall into seven types: cereals (corn, wheat, rice and barley), cereal by-products (broken rice, wheat middling, wheat bran, rice bran, corn DDGS, wheat DDGS, corn germ meal and corn gluten meal), plant protein ingredients (extruded soybean, soybean meal, rapeseed meal, cottonseed meal, peanut meal, linseed meal and sunflower seed meal), animal protein ingredients (fish meal, meat meal, hydrolyzed feather meal, dried porcine solubles, plasma protein powder and dried blood cells), straw ingredients (corn straw, sweet potato vine, rice straw and wheat straw), pasture ingredients (Leymus chinensis, ryegrass, alfalfa and corn silage) and mineral ingredients (limestone, dicalcium phosphate, oyster shell meal and bone meal).【Result】 The results showed that the average Zn contents of these 37 kinds of feed ingredients ranged from 5.5 to 268.2 mg·kg -1, and the distribution of Zn contents in different species of feed ingredients was as follows: mineral ingredients (107.8 mg·kg -1)>animal protein ingredients (69.8 mg·kg -1)>plant protein ingredients (54.9 mg·kg -1)>cereal by-products (43.0 mg·kg -1)>pasture ingredients (26.4 mg·kg -1)>cereals (22.7 mg·kg -1)>straw ingredients (18.8 mg·kg -1). Among the same kind of feed samples, there were significant differences (P<0.05) in the Zn contents from other six types of feed ingredients except pasture ingredients. In the mineral ingredients, the highest and lowest Zn contents were observed in the dicalcium phosphate (268.2 mg·kg -1) and limestone (7.3 mg·kg -1), respectively; in the animal protein ingredients, the highest and lowest Zn contents were observed in the hydrolyzed feather meal (120.8 mg·kg -1) and dried blood cells (19.6 mg·kg -1), respectively; in the plant protein ingredients, the highest and lowest Zn contents were observed in the linseed meal (85.2 mg·kg -1) and extruded soybean (38.9 mg·kg -1), respectively; in the cereal by-products, the highest and lowest Zn contents were observed in the wheat bran (86.2 mg·kg -1) and broken rice (12.5 mg·kg -1), respectively; in the cereals, the highest and lowest Zn contents were observed in the wheat (30.4 mg·kg -1) and corn (16.9 mg·kg -1), respectively; in the straw ingredients, the highest and lowest Zn contents were observed in the rice straw (27.6 mg·kg -1) and wheat straw (5.5 mg·kg -1), respectively. Regional comparison of Zn contents on a basis of provinces (regions) were made for Zn contents of corn, wheat and soybean meal, showing a significant effect (P<0.05) of regional environments on Zn contents of the same ingredient. The highest and lowest Zn contents of corn were observed in Guangdong (20.6 mg·kg -1) and Jilin (13.7 mg·kg -1) provinces, respectively; the highest and lowest Zn contents of wheat were observed in Sichuan (41.4 mg·kg -1) and Gansu (22.4 mg·kg -1) provinces, respectively; the highest and lowest Zn contents of soybean meal were observed in Shanxi (51.5 mg·kg -1) and Jiangsu (46.6 mg·kg -1) provinces, respectively. Calculated Zn contents in basal diets from 142 common formulations of pigs and chickens in our country ranged from 21.3 to 31.0 mg·kg -1. According to Zn requirements of pigs and chicks from feeding standards of China and NRC of United States, the Zn contents in the basal diets could provide about one-fourth and one-second of the recommended Zn requirements for pigs and chickens in growing and finishing phase, respectively. 【Conclusion】 Results showed that the Zn contents in feed ingredients varied greatly among different kinds and regions, and the Zn contents in basal diets from common formulations of pigs and chickens could partly meet the nutrient requirements of pigs and chickens. Therefore, the Zn contents in basal diets from different regions should be considered in the preparation of diets, so as to meet the need of efficient production of livestock and poultry and to reduce supplemental Zn level and environmental pollution caused by Zn emission.

Key words: feedstuff, zinc contents, pig, chicken

"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
锌含量
Zn contents (mg·kg-1)
玉米 Corn 29 1152 16.9±2.6D
小麦 Wheat 27 244 30.4±6.7A
稻谷 Rice 29 202 20.2±3.2C
大麦 Barley 14 29 24.8±5.3B
PP value <0.0001
总体平均值Total average 22.7
碎米 Broken rice 19 52 12.5±1.8de
次粉 Wheat middling 18 45 49.8±15.6bc
小麦麸 Wheat bran 24 110 86.2±14.0a
米糠 Rice bran 22 117 38.7±10.5c
玉米DDGS Corn DDGS 13 92 44.9±6.0bc
小麦 DDGS Wheat DDGS 4 16 35.1±8.6cd
玉米胚芽粕 Corn germ meal 7 49 45.2±8.5bc
玉米蛋白粉 Corn gluten meal 17 88 14.3±4.7de
PP value <0.0001
总体平均值Total average 43.0

"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
锌含量
Zn contents (mg·kg-1)
膨化大豆 Extruded soybean 13 98 38.9±3.9d
豆粕 Soybean meal 23 336 49.1±1.6cd
菜籽粕 Rapeseed meal 20 55 61.2±7.9b
棉粕 Cottonseed meal 14 106 56.5±8.2bc
花生粕 Peanut meal 11 49 61.6±9.0b
亚麻粕 Linseed meal 3 19 85.2±46.2a
葵花粕 Sunflower seed meal 3 15 68.0±28.6b
PP value <0.0001
总体平均值Total average 54.9

Table 3

Distribution of Zn contents in animal protein feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
锌含量
Zn contents (mg·kg-1)
鱼粉 Fish meal 14 57 76.9±27.5b
肉粉 Meat meal 12 24 97.4±29.6ab
水解羽毛粉 Hydrolyzed feather meal 16 34 120.8±28.4a
肠系膜蛋白粉 Dried porcine solubles 3 9 100.7±16.8ab
血浆蛋白粉 Plasma protein powder 11 23 21.1±23.0c
血球蛋白粉 Dried blood cells 16 28 19.6±3.0c
PP value <0.0001
总体平均值Total average 69.8

Table 4

Distribution of Zn contents in straw feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
锌含量
Zn contents (mg·kg-1)
玉米秸 Corn straw 29 83 19.0±9.7b
甘薯藤 Sweet potato vine 12 21 22.1±9.1ab
稻秸 Rice straw 28 82 27.6±13.0a
小麦秸 Wheat straw 22 53 5.5±4.4c
PP value <0.0001
总体平均值Total average 18.8

Table 5

Distribution of Zn contents in pasture feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
锌含量
Zn contents (mg·kg-1)
羊草 Leymus chinensis 7 34 24.7±14.7
黑麦草 Ryegrass 16 72 32.3±27.7
苜蓿 Alfalfa 25 93 25.9±15.0
青贮玉米 Corn silage 23 87 23.4±13.2
PP value 0.493
总体平均值Total average 26.4

Table 6

Distribution of Zn contents in mineral feeds (air-dry basis)"

样品名
Name of samples
省(市、区)数
No. of provinces (municipalities, regions)
样品数
No. of samples
锌含量
Zn contents (mg·kg-1)
石粉 Limestone 18 65 7.3±5.6c
磷酸氢钙 Dicalcium phosphate 13 45 268.2±170.0a
贝壳粉 Oyster shell meal 5 9 14.2±18.6c
骨粉 Bone meal 15 28 120.4±22.1b
PP value <0.0001
总体平均值Total average 107.8

Table 7

Distribution of Zn contents of corn, wheat and soybean meal in some provinces (regions) of China (mg·kg-1, air-dry basis)"

省(区)名
Name of provinces
(Regions)
玉米锌含量
Zn contents of corn
省(区)名
Name of provinces
(Regions)
小麦锌含量
Zn contents of wheat
省(区)名
Name of provinces
(Regions)
豆粕锌含量
Zn contents of soybean meal
广西 Guangxi 20.6±4.9(36)a 四川 Sichuan 41.4±6.3(8)a 山西 Shanxi 51.5±1.4(4)a
山东 Shandong 20.5±3.4(54)a 湖北 Hubei 30.5±4.6(8)b 吉林 Jilin 51.1±3.5(11)ab
河北 Hebei 20.2±4.9(55)a 江苏 Jiangsu 28.6±3.8(16)bc 河南 Henan 51.0±1.6(15)ab
贵州 Guizhou 19.8±1.2(39)a 安徽 Anhui 27.8±5.2(14)bcd 安徽 Anhui 50.1±2.3(18)abc
湖北 Hubei 18.5±2.5(38)b 河南 Henan 27.8±6.7(26)bcd 河北 Hebei 49.6±3.3(27)abcd
四川 Sichuan 18.2±2.3(44)b 陕西 Shaanxi 26.9±6.0(9)bcd 辽宁 Liaoning 49.5±1.1(22)abcd
云南 Yunan 17.7±4.1(27)bc 山西 Shanxi 26.8±8.3(14)bcd 湖北 Hubei 49.1±3.0(10)bcde
安徽 Anhui 17.6±3.6(44)bc 山东 Shandong 26.5±5.3(14)bcd 四川 Sichuan 49.0±1.8(8)bcde
河南 Henan 17.2±2.6(54)bcd 新疆 Xinjiang 24.9±7.4(10)bcd 山东 Shandong 48.4±2.5(20)cdef
山西 Shanxi 17.1±3.1(83)bcd 河北 Hebei 24.3±4.7(19)cd 黑龙江 Heilongjiang 47.6±2.2(50)def
陕西Shaanxi 16.6±4.3(41)cde 甘肃 Gansu 22.4±5.7(9)d 内蒙古Inner Mongolia 46.9±3.8(30)ef
江苏 Jiangsu 16.1±2.4(46)de 江苏 Jiangsu 46.6±0.6(15)f
辽宁 Liaoning 15.3±2.6(53)ef
甘肃 Gansu 14.4±3.6(42)fg
黑龙江 Heilongjiang 14.4±2.1(78)fg
新疆 Xinjiang 14.3±3.3(48)fg
内蒙古Inner Mongolia 13.8±1.1(52)g
吉林 Jilin 13.7±2.1(60)g
PP value <0.0001 PP value <0.0001 PP value <0.0001
总体平均值Total average 16.8 总体平均值 Total average 27.9 总体平均值Total average 48.7

Table 8

Zn contents in basal diets for pigs and chickens in China (air-dry basis)"

饲料类型
Type of diet
猪Pigs 鸡Chickens
配方数
No. of formulas
含锌量
Zn contents (mg·kg-1)
配方数
No. of formulas
含锌量
Zn contents (mg·kg-1)
玉米-豆粕 Corn-soybean meal 25 24.9±3.9 22 21.3±1.1
玉米-油籽粕 Corn-oilseed meal 15 24.2±1.9 20 21.7±1.2
多谷-豆粕 Cereals-soybean meal 23 27.0±3.2 16 26.7±2.2
多谷-油籽粕 Cereals-oilseed meal 16 31.0±2.5 15 25.7±1.7
[1] VALLEE B L, FALCHUK K H . The biochemical basis of zinc physiology. Physiological Reviews, 1993,73(1):79-118.
doi: 10.1152/physrev.1993.73.1.79
[2] GAITHER L A, EIDE D J . Eukaryotic zinc transporters and their regulation. Biometals, 2001,14:251-270.
doi: 10.1023/A:1012988914300
[3] HUANG Y L, LU L, LUO X G, LIU B . An optimal dietary zinc level of broilers chicks fed a corn-soybean meal diet. Poultry Science, 2007,86(12):2582-2589.
doi: 10.3382/ps.2007-00088 pmid: 18029804
[4] YU Y, LU L, LI S F, ZHANG L Y, LUO X G . Organic zinc absorption by the intestine of broilers in vivo. British Journal of Nutrition, 2017,117(8):1086-1094.
doi: 10.1017/S0007114517001040
[5] 邵玉新 . 锌营养对肉鸡肠黏膜及Caco-2细胞肠上皮屏障功能的作用及机制[D]. 北京:中国农业大学, 2017.
SHAO Y X . The mechanism of supplementation of zinc on intestinal mucosa barrier function[D]. Beijing: China Agricultural University, 2017. ( in Chinese)
[6] 苏琪, 段玉琴, 刘金旭, 陆肇海 . 我国畜禽饲料中微量元素锌含量的调查研究. 中国农业科学, 1994,27(2):82-88.
SU Q, DUAN Y Q, LIU J X, LU Z H . A study on zinc contents in feedstuffs for livestock and poultry in China. Scientia Agricultura Sinica, 1994,27(2):82-88. (in Chinese)
[7] HUANG Y L, LU L, LI S F, LUO X G, LIU B . Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. Journal of Animal Sciencce, 2009,87(6):2038-2046.
doi: 10.2527/jas.2008-1212 pmid: 19213702
[8] SUO H Q, LU L, ZHANG L Y, ZHANG X Y, LI H, LU Y F, LUO X G . Relative bioavailability of zinc-methionine chelate for broilers fed a conventional corn-soybean meal diet. Biological Trace Element Research, 2015,165(2):206-213.
doi: 10.1007/s12011-015-0252-4
[9] YU Y, LU L, LUO X G, LIU B . Kinetics of zinc absorption by in situ ligated intestinal loops of broilers involved in zinc transporters. Poultry Science, 2008,87(6):1146-1155.
[10] SAS user’s guide: statistics. Version 9.4. SAS Institute Inc. 2003, Cary, NC.
[11] 章世元 . 动物饲料配方设计. 江苏: 江苏科学技术出版社, 2008.
ZHANG S Y , . Animal Feed Formulation. Jiangsu: Phoenix Science Press, 2008. (in Chinese)
[12] 文杰, 蔡辉益, 呙于明, 齐广海, 陈继兰, 张桂芝, 刘国华, 熊本海, 苏基双, 计成, 刁其玉, 刘汉林 . NY/T 33-2004鸡饲养标准. 北京: 中华人民共和国农业部, 2004.
WEN J, CAI H Y, GUO Y M, QI G H, CHEN J L, ZHANG G Z, LIU G H, XIONG B H, SU J S, JI C, DIAO Q Y, LIU H L . NY/T 33-2004 Feeding standard of chicken. Beijing: Ministry of Agriculture of the People’s Republic of China, 2004. (in Chinese)
[13] 李德发, 王康宁, 谯仕彦, 贾刚, 蒋宗勇, 陈正玲, 林映才, 吴徳, 朱锡明, 熊本海, 杨立彬, 王凤来 . NY/T65-2004猪饲养标准. 北京: 中华人民共和国农业部, 2004.
LI D F, WANG K N, QIAO S Y, JIA G, JIANG Z Y, CHEN Z L, LIN Y C, WU D, ZHU X M, XIONG B H, YANG L B, WANG F L . NY/T65-2004Feeding standard of swine. Beijing: Ministry of Agriculture of the People’s Republic of China, 2004. (in Chinese)
[14] NRC. Nutrient requirements of poultry[S]. Washington, DC. National Academy Press, 1994.
[15] NRC. Nutrient requirements of swine[S]. Washington, DC. National Academy Press, 2012.
[16] 李绍钰, 赵国璋 . 红安县饲料中微量元素含量及其分布. 湖北农业科学, 1995(1):60-63.
LI S Y, ZHAO G Z . The contents and distribution of trace elements of feedstuffs in Hong'an county. Hubei Agricultural Sciences, 1995(1):60-63. (in Chinese)
[17] LAVADO R S, PORCELLI C A, ALVAREZ R . Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillagesystems in the Argentine Pampas. Soil Tillage Research, 2001,62(1-2):55-60.
doi: 10.1016/S0167-1987(01)00216-1
[18] 杨淑芬 . 湖南省主要饲料资源分析与评价[D]. 长沙:湖南农业大学, 2017.
YANG S F . Analysis and evaluation of main feed resources in Hunan province[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[19] 钟茂 . 肉仔鸡常用饲料原料中矿物元素生物学利用率研究[D]. 成都:西南大学, 2006.
ZHONG M . Research on bioavailability of minerals in feedstuff for broilers[D]. Chengdu: Southwest University, 2006. (in Chinese)
[20] 杨永生 . 湖南省饲料微量元素盈缺规律及猪日粮中不同添加模式的研究[D]. 长沙:湖南农业大学, 2009.
YANG Y S . Study on surplus-deficit regularity and optimum supplemental pattern of trace elements in pig feedstuffs in Hunan[D]. Changsha: Hunan Agricultural University, 2009. (in Chinese)
[21] 王秋菊, 张玉龙, 赵宏亮, 李明贤, 孟英, 王立志, 姜辉 . 黑龙江省不同类型土壤微量元素含量及对稻米品质的影响. 作物杂志, 2011(6):46-49.
WANG Q J, ZHANG Y L, ZHAO H L, LI M X, MENG Y, WANG L Z, JIANG H . Contents of mineral nutrient elements in different types of soil and effects on rice qualitiesin Heilongjiang province. Crops, 2011(6):46-49. (in Chinese)
[22] 郭春华, 张均, 王康宁, 意西多吉, 吴玉江, 索朗达 . 高寒草地生物量及牧草养分含量年度动态研究. 中国草地学报, 2007(1):1-5.
GUO C H, ZHANG J, WANG K N, YI-XI D J, WU Y J, SUO L D . Yearly dynamics of biomass and nutrient contents in alphine glassland. Chinese Journal of Glassland, 2007(1):1-5. (in Chinese)
[23] 殷敬峰, 李华兴, 卢维盛, 谢斯斯, 骆海雄, 黄杏媛 . 不同品种水稻糙米对Cd Cu Zn积累特性的研究. 农业环境科学学报, 2010,29(05):844-850.
YIN J F, LI H X, LU W S, XIE S S, LUO H X, HUANG X Y . Variations of Cd, Cu, Zn accumulation among rice cultivars. Journal of Agro-Environment Science, 2010,29(05):844-850. (in Chinese)
[24] SHI R, ZHANG Y, CHEN X, SUN Q, ZHANG F, ROMHELD V, ZOU C . Influence of long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L). Journal of Cereal Science, 2010,51(1):165-170.
doi: 10.1016/j.jcs.2009.11.008
[25] 惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静 . 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017,50(16):3175-3185.
doi: 10.3864/j.issn.0578-1752.2017.16.012
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J . Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017,50(16):3175-3185. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.012
[26] HUANG Y L, LU L, LUO X G, LIU B . An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poultry Science, 2007,86(12), 2582-2589.
doi: 10.3382/ps.2007-00088 pmid: 18029804
[27] LIAO X D, LI A, LU L, LIU S B, LI S F, ZHANG L Y, WANG G Y, LUO X G . Optimal dietary zinc levels of broiler chicks fed a corn-soybean meal diet from 22 to 42 days of age. Animal Production Science, 2013,53:388-394.
doi: 10.1071/AN12291
[28] 蒋宗勇, 刘小雁, 蒋守群, 周桂莲, 林映才, 陈芳, 马现永 . 43-63日龄黄羽肉鸡锌需要量的研究. 中国农业科学, 2010,43(20):4295-4302.
doi: 10.3864/j.issn.0578-1752.2010.20.022
JIANG Z Y, LIU X Y, JIANG S Q, ZHOU G L, LIN Y C, CHEN F, MA X Y . Zinc requirement of yellow broilers from forty-three to sixty-three days of age. Scientia Agricultura Sinica, 2010,43(20):4295-4302. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.20.022
[29] LIU G Q, LI S F, SU X, HE Y, ZHANG L Y, LU L, LIAO X D, LUO X G . Estimation of standardized mineral availabilities in feedstuffs for broilers. Journal of Animal Science, 2019,97(2):794-802.
doi: 10.1093/jas/sky434
[30] WANG W, YANG Q, SUN Z, CHEN X, YANG C, MA X . Advance of interactions between exogenous natural bioactive peptides and intestinal barrier and immune responses. Current Protein Peptide Science, 2015,16:574-575.
doi: 10.2174/138920371607150810124927
[31] HEO J M, OPAPEJU F O, PLUSKE J R, KIM J C, HAMPSON D J, NYACHOTI C M . Gastrointestinal health and function in weaning pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology Animal Nutrition (Berlin), 2013,97(2):207-237.
doi: 10.1111/jpn.2013.97.issue-2
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[7] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[8] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[9] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[10] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[11] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[12] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[13] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[14] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[15] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!