Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3652-3663.doi: 10.3864/j.issn.0578-1752.2022.18.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells

MingJie XING(),XianHong GU,XiaoHong WANG,Yue HAO()   

  1. State Key Laboratory of Animal Nutrition/Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2021-08-02 Accepted:2022-04-02 Online:2022-09-16 Published:2022-09-22
  • Contact: HAO Yue E-mail:13592548970@163.com;haoyueemail@163.com

Abstract:

【Objective】The aim of this was to investigate the effects of interleukin 15 (IL-15) as a myokine on the proliferation and apoptosis of porcine skeletal muscle myoblast, so as to provide a basis for further studying on the regulation of IL-15 in animal muscle quality and the treatment of skeletal muscle diseases. 【Method】In this study, the IL-15 overexpressed lentiviral vector GV-492-IL-15 was constructed, and the porcine skeletal muscle satellite cells were aseptically isolated and cultured in vitro, then skeletal muscle cells morphology were subjected to myogenic differentiation, and the differentiated myoblast were verified by immunofluorescence staining. After myoblast differentiation, the IL-15 overexpressed recombinant lentiviral vector was transfected. A blank control group (Control), a negative control virus transfection group (IL-15-) and a GV-492-IL-15 lentivirus transfection group (IL-15+) were set for the experiment (n=3). The cells were cultured for 72 h; after growing to a certain number, the cells and the culture supernatant were harvested. Real-time quantitative PCR (qRT-PCR) and Western Blot were used to analyze the expression of target genes and proteins. ELISA kit was used to analyze the content of IL-15 in the culture medium, CCK-8 kit was used to analyze cell viability, and the flow cytometry was used to analyze the results of cell cycle and apoptosis. Moreover, Western Blot was used again to detect changes of the level of caspase-3 protein in the cells, which was closely related to apoptosis.【Result】(1) The identified plasmid was transfected with 293T cells, and as a result, a distinct green fluorescence could be observed in the cells, and a characteristic band near 20 KD could be observed by Western Blot. (2) Fusiform or fusiform porcine skeletal muscle satellite cells were obtained by microscopic observation and differentiated into tubular myoblasts after induction. The differentiated myoblasts were subjected to immunofluorescence staining with α-SMA monoclonal antibody. About 90% of the cells in the visual field were positive, and the cytoplasm stained red, indicating that the cultured cells were skeletal muscle myoblast cells. (3) After transfected with GV-492-IL-15 lentivirus, the relative mRNA and protein expression of IL-15 in myoblasts were significantly increased compared with the control group (P<0.001), however, the protein level of IL-15 in culture medium was not significantly changed (P>0.05). Compared with the control group, the early apoptosis rate of cells transfected with GV-492-IL-15 lentivirus was not significantly different (P>0.05), but the late apoptosis rate of cells was significantly decreased (P<0.05); there was a tendency for caspase-3 protein to decrease compared to the control group, but the overall difference was not significant (P>0.05). The CCK-8 assays showed that overexpression of IL-15 increased the ability of cell proliferation (P<0.05). In addition, the proportion of cells in G1 phase was significantly decreased by transfected with IL-15 overexpression lentivirus, while the proportion of cells in S phase and G2/M phase was significantly increased (P<0.05). 【Conclusion】Under the normal physiological conditions, IL-15 was localized in cells and played a role. The overexpression of IL-15 had no significant effects on the early apoptosis of porcine skeletal muscle myoblasts, but it could inhibit the late apoptosis and promote cell proliferation. This study provided a technical and theoretical basis for the positive regulation of IL-15 on pig skeletal muscle quality and the treatment of related muscle diseases.

Key words: pig, interleukin 15, skeletal muscle myoblast, cell apoptosis, cell cycle

Fig. 1

GV492 vector profiles"

Table 1

The primer information of PCR"

引物名称
Primer name
引物序列(5′-3′)
Primer sequence
IL-15-F AGGTCGCTCTAGAGGATCCCGCCACCATGAGAATTTTGAAACCATGTTTG
IL-15-R TCCTTGTAGTCCATACCAGAAGGGTTGATGAACATTTGC

Table 2

The primer information of qRT-PCR"

引物名称
Primer name
引物序列(5'-3')
Primer sequence
片段长度
Fragment
length (bp)
IL-15-F GCATCCAGTGCTACTTGTGTR 118
IL-15-R TGCCAGGTTGCTTCTGTTTT
ACTIN-F TGCGGGACATCAAGGAGAAG 216
ACTIN-R AGTTGAAGGTGGTCTCGTGG

Fig. 2

Skeletal muscle satellite cells and differentiated myoblasts A-B: Porcine skeletal muscle satellite cells; C-E: Differentiated myoblast"

Fig. 3

Results of 293T cells transfected with target plasmid A: Fluorescence image of cells after transfection. B: Western Blot results of transfection. M: Marker; 1: Positive control, Western Blot standard; 2: Negative control, 293T cells. 3-Sample transfected IL-15 gene plasmid"

Fig. 4

Identification of porcine skeletal muscle myoblast cells by α-SMA staining A: Blank cells; B: Cells transfected with control virus; C: Cells transfected with IL-15 overexpressing lentivirus"

Fig. 5

Overexpression effects of GV-492-IL-15 A: Gel image by Western Blot; B: IL-15 protein expression level; C: IL-15 mRNA expression level; D: IL-15 secretion in culture medium; Values with different letters (a-c) are significantly different (P<0.05)"

Fig. 6

Cell proliferation and cell cycle distribution diagram A: Result of CCK-8; B: Comparison of cell number in G0/G1, S and G2/M phase between the Control, IL-15- and the IL-15+. Values with different letters (a-c) are significantly different (P<0.05)"

Fig. 7

Apoptosis analysis A: Cell apoptosis detected by flow cytometry; B: Early apoptosis rate; C: Late apoptosis rate; D: Caspase-3 relative expression; Values with different letters (a, b) are significantly different (P<0.05)"

[1] BALTIC M Z, BOSKOVIC M. When man met meat: meat in human nutrition from ancient times till today. Procedia Food Science, 2015, 5: 6-9. doi: 10.1016/j.profoo.2015.09.002.
doi: 10.1016/j.profoo.2015.09.002
[2] LUO H M, LV W, TONG Q, JIN J J, XU Z Y, ZUO B. Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease. Frontiers in Cell and Developmental Biology, 2021, 9: 628339. doi: 10.3389/fcell.2021.628339.
doi: 10.3389/fcell.2021.628339
[3] PARK J, LEE J, SONG K D, KIM S J, KIM D C, LEE S C, SON Y J, CHOI H W, SHIM K. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Animal Bioscience, 2021, 34(8): 1392-1402. doi: 10.5713/ab.20.0585.
doi: 10.5713/ab.20.0585
[4] 许月园, 齐晓龙, 候晔, 赵云霞, 栾宇, 周焕焕, 赵书红, 李新云. 蓝塘猪和长白猪骨骼肌差异表达cis-NATs基因鉴定. 中国农业科学, 2018, 51(9): 1795-1805.
XU Y Y, QI X L, HOU Y, ZHAO Y X, LUAN Y, ZHOU H H, ZHAO S H, LI X Y. Comparison study of differential expression genes and cis-NATs of skeletal muscle between lantang and Landrace pig. Scientia Agricultura Sinica, 2018, 51(9): 1795-1805. (in Chinese)
[5] MASON-D’CROZ D, BOGARD J R, HERRERO M, ROBINSON S, SULSER T B, WIEBE K, WILLENBOCKEL D, GODFRAY H C J. Modelling the global economic consequences of a major African swine fever outbreak in China. Nature Food, 2020, 1(4): 221-228. doi: 10.1038/s43016-020-0057-2.
doi: 10.1038/s43016-020-0057-2
[6] ZHANG H F, WANG J, MARTIN W. Factors affecting households' meat purchase and future meat consumption changes in China: a demand system approach. Journal of Ethnic Foods, 2018, 5(1): 24-32. doi: 10.1016/j.jef.2017.12.004.
doi: 10.1016/j.jef.2017.12.004
[7] PRATESI A. Skeletal muscle: an endocrine organ. Clinical Cases in Mineral and Bone Metabolism, 2013: 10(1): 11-14. doi: 10.11138/ccmbm/2013.10.1.011.
doi: 10.11138/ccmbm/2013.10.1.011
[8] DOMIN R, DADEJ D, PYTKA M, ZYBEK-KOCIK A, RUCHAŁA M, GUZIK P. Effect of various exercise regimens on selected exercise-induced cytokines in healthy people. International Journal of Environmental Research and Public Health, 2021, 18(3): 1261. doi: 10.3390/ijerph18031261.
doi: 10.3390/ijerph18031261
[9] LI G B, ZHANG L, WANG D E, AIQUDSY L, JIANG J X, XU H Y, SHANG P. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. Journal of Cellular Biochemistry, 2019, 120(9): 14262-14273. doi: 10.1002/jcb.28946.
doi: 10.1002/jcb.28946
[10] FEHNIGER T A, CALIGIURI M A. Interleukin 15: biology and relevance to human disease. Blood, 2001, 97(1): 14-32. doi: 10.1182/blood.v97.1.14.
doi: 10.1182/blood.v97.1.14
[11] WALDMANN T A. The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. Journal of Investigative Dermatology Symposium Proceedings, 2013, 16(1): S28-S30. doi: 10.1038/jidsymp.2013.8.
doi: 10.1038/jidsymp.2013.8
[12] 孟庆玲, 乔军, 才学鹏, 田广孚, 闫鸿斌, 骆学农. 斯氏艾美耳球虫MIC-5与兔IL-15基因在真核细胞中的共表达. 中国农业科学, 2011, 44(19): 4096-4101.
MENG Q L, QIAO J, CAI X P, TIAN G F, YAN H B, LUO X N. Co-expression of MIC-5 gene of Eimeria stiedai and rabbit IL-15 in eucaryotic cell line. Scientia Agricultura Sinica, 2011, 44(19): 4096-4101. (in Chinese)
[13] 李利霞, 王皓, 张守彦. 白细胞介素15在糖尿病性心血管疾病中的研究现状与展望. 中国动脉硬化杂志, 2020, 28(12): 1100-1104. doi: 10.3969/j.issn.1007-3949.2020.12.016.
doi: 10.3969/j.issn.1007-3949.2020.12.016
LI L X, WANG H, ZHANG S Y. Research status and prospect of interleukin-15 in diabetic cardiovascular disease. Chinese Journal of Arteriosclerosis, 2020, 28(12): 1100-1104. doi: 10.3969/j.issn.1007-3949.2020.12.016. (in Chinese)
doi: 10.3969/j.issn.1007-3949.2020.12.016
[14] BUSQUETS S, FIGUERAS M T, MEIJSING S, CARBÓ N, QUINN L S, ALMENDRO V, ARGILÉS J M, LÓPEZ-SORIANO F J. Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. International Journal of Molecular Medicine, 2005, 16(3): 471-476.
[15] QUINN L S, ANDERSON B G, DRIVDAHL R H, ALVAREZ B, ARGILÉS J M. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Experimental Cell Research, 2002, 280(1): 55-63. doi: 10.1006/excr.2002.5624.
doi: 10.1006/excr.2002.5624
[16] KROLOPP J E, THORNTON S M, ABBOTT M J. IL-15 activates the Jak3/STAT3 signaling pathway to mediate glucose uptake in skeletal muscle cells. Frontiers in Physiology, 2016, 7: 626. doi: 10.3389/fphys.2016.00626.
doi: 10.3389/fphys.2016.00626
[17] NADEAU L, AGUER C. Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism. Applied Physiology, Nutrition, and Metabolism, 2019, 44(3): 229-238. doi: 10.1139/apnm-2018-0022.
doi: 10.1139/apnm-2018-0022
[18] QUINN L S, ANDERSON B G, CONNER J D, WOLDEN-HANSON T. IL-15 overexpression promotes endurance, oxidative energy metabolism, and muscle PPARδ, SIRT1, PGC-1α, and PGC-1β expression in male mice. Endocrinology, 2013, 154(1): 232-245. doi: 10.1210/en.2012-1773.
doi: 10.1210/en.2012-1773
[19] QUINN L S, ANDERSON B G, CONNER J D, WOLDEN-HANSON T, MARCELL T J. IL-15 is required for postexercise induction of the pro-oxidative mediators PPARδ and SIRT1 in male mice. Endocrinology, 2014, 155(1): 143-155. doi: 10.1210/en.2013-1645.
doi: 10.1210/en.2013-1645
[20] FURMANCZYK P S, QUINN L S. Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biology International, 2003, 27(10): 845-851. doi: 10.1016/s1065-6995(03)00172-0.
doi: 10.1016/s1065-6995(03)00172-0
[21] QUINN L S, HAUGK K L, GRABSTEIN K H. Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology, 1995, 136(8): 3669-3672. doi: 10.1210/endo.136.8.7628408.
doi: 10.1210/endo.136.8.7628408
[22] O’LEARY M F, WALLACE G R, BENNETT A J, TSINTZAS K, JONES S W. IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFα on myotube development. Scientific Reports, 2017, 7: 12997. doi: 10.1038/s41598-017-13479-w.
doi: 10.1038/s41598-017-13479-w
[23] KANG X, YANG M Y, SHI Y X, XIE M M, ZHU M, ZHENG X L, ZHANG C K, GE Z L, BIAN X T, LV J T, WANG Y J, ZHOU B H, TANG K L. Interleukin-15 facilitates muscle regeneration through modulation of fibro/adipogenic progenitors. Cell Communication and Signaling: CCS, 2018, 16(1): 42. doi: 10.1186/s12964-018-0251-0.
doi: 10.1186/s12964-018-0251-0
[24] QUINN L S. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition1, 2. Journal of Animal Science, 2008, 86(suppl_14): E75-E83. doi: 10.2527/jas.2007-0458.
doi: 10.2527/jas.2007-0458
[25] LI Y H, LI F N, LIN B B, KONG X F, TANG Y L, YIN Y L. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Molecular Biology Reports, 2014, 41(11): 7543-7553. doi: 10.1007/s11033-014-3646-z.
doi: 10.1007/s11033-014-3646-z
[26] HE D, JIANG Z, TIAN Y, HAN H, XIA M, WEI W, ZHANG L, CHEN J. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Animal Genetics, 2018, 49(1): 19-28. doi: 10.1111/age.12611.
doi: 10.1111/age.12611
[27] HAO Y, FENG Y J, LI J L, GU X H. Role of MAPKs in HSP70's protection against heat stress-induced injury in rat small intestine. BioMed Research International, 2018: 1571406. doi: 10.1155/2018/1571406.
doi: 10.1155/2018/1571406
[28] 梁亚冰, 张琪, 常嵘, 童德文, 许信刚. 猪传染性胃肠炎病毒非结构蛋白3a 和3b 融合表达及对细胞周期的影响. 中国农业科学, 2015, 48(2): 352-361. doi: 10.3864/j.issn.0578-1752.2015.02.15.
doi: 10.3864/j.issn.0578-1752.2015.02.15
LIANG Y B, ZHANG Q, CHANG R, TONG D W, XU X G. Fusion expression of non-structural proteins 3a and 3b of porcine transmissible gastroenteritis virus and influence on cell cycle. Scientia Agricultura Sinica, 2015, 48(2): 352-361. doi: 10.3864/j.issn.0578-1752.2015.02.15. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.02.15
[29] WLODKOWIC D, SKOMMER J, DARZYNKIEWICZ Z. Flow cytometry-based apoptosis detection. Methods in Molecular Biology (Clifton, N J), 2009, 559: 19-32. doi: 10.1007/978-1-60327-017-5_2.
doi: 10.1007/978-1-60327-017-5_2
[30] PEDERSEN B K. Muscles and their myokines. The Journal of Experimental Biology, 2011, 214(Pt 2): 337-346. doi: 10.1242/jeb.048074.
doi: 10.1242/jeb.048074
[31] PEDERSEN B K, STEENSBERG A, FISCHER C, KELLER C, KELLER P, PLOMGAARD P, FEBBRAIO M, SALTIN B. Searching for the exercise factor: is IL-6 a candidate?. Journal of Muscle Research and Cell Motility, 2003, 24(2/3): 113-119. doi: 10.1023/a:1026070911202.
doi: 10.1023/a:1026070911202
[32] SCISCIOLA L, FONTANELLA R A, SURINA, CATALDO V, PAOLISSO G, BARBIERI M. Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life (Basel, Switzerland), 2021, 11(2): 173. doi: 10.3390/life11020173.
doi: 10.3390/life11020173
[33] KWON J H, MOON K M, MIN K W. Exercise-induced myokines can explain the importance of physical activity in the elderly: an overview. Healthcare (Basel, Switzerland), 2020, 8(4): 378. doi: 10.3390/healthcare8040378.
doi: 10.3390/healthcare8040378
[34] SOUSA R, IMPROTA-CARIA A C, SOUZA B. Exercise-linked irisin: consequences on mental and cardiovascular health in type 2 diabetes. International Journal of Molecular Sciences, 2021, 22(4): 2199. doi: 10.3390/ijms22042199.
doi: 10.3390/ijms22042199
[35] HAN K P, ZHU X Y, LIU B, JENG E, KONG L, YOVANDICH J L, VYAS V V, MARCUS W D, CHAVAILLAZ P A, ROMERO C A, RHODE P R, WONG H C. IL-15: IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine, 2011, 56(3): 804-810. doi: 10.1016/j.cyto.2011.09.028.
doi: 10.1016/j.cyto.2011.09.028
[36] PERRY C, RAYAT A C M E. Lentiviral vector bioprocessing. Viruses, 2021, 13(2): 268. doi: 10.3390/v13020268.
doi: 10.3390/v13020268
[37] MEAZZA R, VERDIANI S, BIASSONI R, COPPOLECCHIA M, GAGGERO A, ORENGO A M, COLOMBO M P, AZZARONE B, FERRINI S. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines. Oncogene, 1996, 12(10): 2187-2192.
[38] OUYANG S D, HSUCHOU H, KASTIN A J, PAN W H. TNF stimulates nuclear export and secretion of IL-15 by acting on CRM1 and ARF6. PLoS ONE, 2013, 8(8): e69356. doi: 10.1371/journal.pone.0069356.
doi: 10.1371/journal.pone.0069356
[39] ARGILÉS J M, LÓPEZ-SORIANO F J, BUSQUETS S. Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity. Drug Discovery Today, 2009, 14(3/4): 208-213. doi: 10.1016/j.drudis.2008.10.010.
doi: 10.1016/j.drudis.2008.10.010
[40] FIGUERAS M, BUSQUETS S, CARBÓ N, BARREIRO E, ALMENDRO V, ARGILÉS J M, LÓPEZ-SORIANO F J. Interleukin- 15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Letters, 2004, 569(1/2/3): 201-206. doi: 10.1016/j.febslet.2004.05.066.
doi: 10.1016/j.febslet.2004.05.066
[41] PISTILLI E E, ALWAY S E. Systemic elevation of interleukin-15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats. Biochemical and Biophysical Research Communications, 2008, 373(1): 20-24. doi: 10.1016/j.bbrc.2008.05.188.
doi: 10.1016/j.bbrc.2008.05.188
[42] TIE H M, SUN R X, YU D W, YANG F, JIANG Q X, XU Y S, XIA W S. The apoptosis of grass carp (Ctenopharyngodon idella) muscle during postmortem condition regulated by the cytokines via TOR and NF-κB signaling pathways. Food Chemistry, 2021, 369: 130911. doi: 10.1016/j.foodchem.2021.130911.
doi: 10.1016/j.foodchem.2021.130911
[43] GRABSTEIN K H, EISENMAN J, SHANEBECK K, RAUCH C, SRINIVASAN S, FUNG V, BEERS C, RICHARDSON J, SCHOENBORN M A, AHDIEH M. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science, 1994, 264(5161): 965-968. doi: 10.1126/science.8178155.
doi: 10.1126/science.8178155
[44] YE J P. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes. Frontiers of Medicine, 2015, 9(2): 139-145. doi: 10.1007/s11684-015-0377-z.
doi: 10.1007/s11684-015-0377-z
[45] 康夏. 肌肉因子调控成纤维/成脂前体细胞影响肌肉慢性损伤修复的机制研究[D]. 重庆: 中国人民解放军陆军军医大学, 2019.
KANG X. Myokines regulate the muscle regeneration after chronic injury by modulating fibro/adipogenic progenitors[D]. Chongqing: Army Medical University, 2019. (in Chinese)
[46] PISTILLI E E, QUINN L S. From anabolic to oxidative: reconsidering the roles of IL-15 and IL-15Rα in skeletal muscle. Exercise and Sport Sciences Reviews, 2013, 41(2): 100-106. doi: 10.1097/JES.0b013e318275d230.
doi: 10.1097/JES.0b013e318275d230
[47] TAGAYA Y, BAMFORD R N, DEFILIPPIS A P, WALDMANN T A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity, 1996, 4(4): 329-336. doi: 10.1016/s1074-7613(00)80246-0.
doi: 10.1016/s1074-7613(00)80246-0
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[4] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[5] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[6] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[7] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[8] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[9] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[10] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[11] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[12] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[13] QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676.
[14] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[15] ZHANG TieYing,ZHANG LiYang,LIU JunLi,LIAO ChaoYong,LÜ Lin,LIAO XiuDong,LUO XuGang. A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4507-4515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!