Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1324-1333.doi: 10.3864/j.issn.0578-1752.2019.08.003

Special Issue: MALE STERILITY OF CROP

• MALE STERILITY OF CROP • Previous Articles     Next Articles

Effects of Female Fertility of RN Type Male-Sterile Lines on Outcrossing Rate

ZHANG JingYong,YAN Hao,PENG Bao,ZHANG ChunBao,LI Hui,WANG PengNian,DING XiaoYang,LIN ChunJing,SUN Huan,ZHAO LiMei(),ZHANG Wei()   

  1. Soybean Research Center of Jilin Academy of Agriculture Sciences/National Engineering Research Center for Soybean, Changchun 130033
  • Received:2018-11-23 Accepted:2019-01-23 Online:2019-04-16 Published:2019-04-26
  • Contact: LiMei ZHAO,Wei ZHANG E-mail:lmzhao@cjaas.com;zw.0431@163.com

Abstract:

【Objective】To study the differences in female fertility of RN-type soybean cytoplasmic male sterile lines (A-lines) and maintainer lines (B-lines), determine whether there is a decline in female fertility in RN-type soybean cytoplasmic male sterility lines, and explore the correlation between female fertility and outcrossing rate in male sterile lines. 【Method】 Firstly, 6 pairs of sterile lines and maintainer lines were selected from more than 200 RN-type cytoplasmic male sterile lines; outcrossing rates among these lines were different. Second, the outcrossing rate of male sterile lines was evaluated using honeybee pollination in net cages. Third, six male sterile lines were pollinated by non-removing stamen test, with male parents of the same restorer line, to determine whether there were differences in fertilization and podding. Finally, the differences in survival rate between sterile lines and maintainer lines were studied by removing stamens and non-removing stamens parallel cross test with the same restorer line used as the male parent. 【Result】 The outcrossing rates in cages were significantly different among the six sterile lines tested: the highest outcrossing rate was 49.46% and the lowest outcrossing rate was 15.94%. there were significant differences among survival rates of artificial crosses of six sterile lines tested: the survival rate of sterile lines with a high outcrossing rate were significantly higher than that of medium and low outcrossing rate sterile lines and the survival rate of sterile lines with medium outcrossing rate were significantly higher than that of low outcrossing rate sterile lines. For crossing survival rate after artificially removing stamens, A-lines with high and medium outcrossing rates were significantly higher than that with low outcrossing rates; there were no significant differences among B-lines with high, medium, or low outcrossing rates; there were no significant differences among high A-lines, middle A-lines, and their corresponding B-lines, while A-lines with a low outcrossing rate were significantly lower than their corresponding B-lines. For crossing survival rate by artificially not removing stamen, A-lines with a high outcrossing rate were significantly higher than that with medium or low outcrossing rates; there were no significant differences among B-lines with high, medium and low outcrossing rates; there were no significant differences among high A-lines, middle A-lines, and their corresponding B-lines, while A-lines with low outcrossing rate were significantly lower than their corresponding B-lines. 【Conclusion】 For RN-type cytoplasmic male-sterile lines of soybean, female fertility of A-lines with high outcrossing rates were normal and female fertility of a few A-lines with low outcrossing rates were poor, affecting their seed setting. Female fertility of B-lines with different outcrossing rates were all normal, the outcrossing rate of A-lines in cages were significantly positively correlated with their crossing survival rate following artificial stamen removal and in plants where the stamen was not removed, the outcrossing rates of A-lines in cages were not correlated with their B-lines’ crossing survival rate. All parallel crosses by removing and non-removing stamens can thus be used to evaluate female fertility of A-lines.

Key words: soybean, Male-Sterile Lines, outcrossing rate, female fertility

Table 1

Test material"

亲本
Parents
“三系”类别
Type of three lines
高异交率
High outcrossing rate
中异交率
Middle outcrossing rate
低异交率
Low outcrossing rate
母本
Female parent
不育系 Male-Sterile Lines JLCMS82A JLCMS101A JLCMS9A JLCMS47A JLCMS89A JLCMS31A
保持系 Maintainers JLCMS82B JLCMS101B JLCMS9B JLCMS47B JLCMS89B JLCMS31B
父本
Male parent
恢复系 Restorers JLCMSR2

Table 2

The outcrossing rate identification on different outcrossing rate male sterile lines in cages (2012-2014, %)"

材料名
Material
年份 Year 平均
Average
2012 2013 2014
JLCMS101A 48.39±3.68 41.67±4.53 58.33±8.66 49.46±8.94a
JLCMS82A 47.65±5.83 37.33±7.26 52.33±5.93 45.44±8.49a
JLCMS9A 37.50±6.96 31.67±5.20 39.83±6.68 36.33±6.58b
JLCMS47A 28.67±5.83 27.84±7.32 34.17±6.5 30.22±6.43c
JLCMS31A 17.33±3.65 15.16±4.65 19.50±4.07 17.33±4.05d
JLCMS89A 13.83±5.70 13.33±3.42 20.67±5.73 15.94±5.64d
平均Average 32.23±14.62b 27.83±11.82c 37.47±15.95a

Table 3

The survival rate of artificial cross by non-removing stamen on different male sterile lines (2012-2014, %)"

材料名
Material
年份 Years 平均
Average
2012 2013 2014
JLCMS101A 37.29±6.28 29.22±4.56 32.73±5.17 33.08±5.83a
JLCMS82A 35.41±4.15 28.40±2.37 30.30±5.66 31.37±4.85ab
JLCMS47A 31.68±3.41 26.47±4.81 24.66±4.70 27.60±4.92bc
JLCMS9A 30.43±3.27 23.77±4.35 24.65±3.62 26.28±4.53c
JLCMS89A 23.59±4.08 16.37±3.28 21.36±6.34 20.44±5.21d
JLCMS31A 18.63±3.29 20.20±3.46 20.84±3.44 19.89±3.10d
平均Average 29.51±7.58a 24.07±5.73b 25.76±6.12b

Table 4

The parallel cross experiment by removing stamen of different male sterile lines (2015)"

材料名
Material
工人1 Person 1 工人2 Person 2 工人3 Person 3 平均Average
授粉花数The flowers pollinated 收获荚数The pods obtained 成活率 Survival rate
(%)
授粉花数The flowers pollinated 收获荚数The pods obtained 成活率
Survival rate
(%)
授粉花数The flowers pollinated 收获荚数The pods obtained 成活率
Survival rate (%)
授粉花数
The flowers pollinated
收获荚数
The pods obtained
成活率
Survival rate
(%)
JLCMS101A 198 104 52.53 208 121 58.17 186 110 59.14 197.33 111.67 56.61a
JLCMS82A 198 114 57.58 208 118 56.73 186 97 52.15 197.33 109.67 55.49a
JLCMS9A 198 107 54.04 208 96 46.15 186 88 47.31 197.33 97.00 49.17b
JLCMS47A 198 91 45.96 208 93 44.71 186 95 51.08 197.33 93.00 47.25ab
JLCMS47B 198 87 43.94 208 100 48.08 186 98 52.69 197.33 95.00 48.23ab
JLCMS89B 198 94 47.47 208 95 45.67 186 89 47.85 197.33 92.67 47.00ab
JLCMS9B 198 95 47.98 208 93 44.71 186 83 44.62 197.33 90.33 45.77ab
JLCMS101B 198 90 45.45 208 95 45.67 186 80 43.01 197.33 88.33 44.71abc
JLCMS31B 198 84 42.42 208 92 44.23 186 86 46.24 197.33 87.33 44.30abc
JLCMS82B 198 90 45.45 208 86 41.35 186 80 43.01 197.33 85.33 43.27bcd
JLCMS89A 198 79 39.90 208 80 38.46 186 80 43.01 197.33 79.67 40.46cd
JLCMS31A 198 72 36.36 208 83 39.90 186 74 39.78 197.33 76.33 38.68d

Table 5

The parallel cross experiment by nonremoving stamen of different male sterile lines (2016)"

材料名
Material
工人1 Person1 工人2 Person2 工人3 Person3 平均 Average
授粉花数The flowers pollinated 异交荚数The pods obtained 成活率 Survival rate (%) 授粉花数The flowers pollinated 异交荚数The pods obtained 成活率 Survival rate (%) 授粉花数The flowers pollinated 异交荚数The pods obtained 成活率 Survival rate (%) 授粉花数
The flowers pollinated
异交荚数The pods obtained 成活率 Survival rate (%)
JLCMS82A 203 125(1) 61.58 177 106(2) 59.89 186 123 66.13 188.67 118.00 62.53a
JLCMS101A 203 131(3) 64.53 177 108(2) 61.02 186 108(1) 58.06 188.67 115.67 61.20a
JLCMS101B 203 119 (13) 58.62 177 97(11) 54.80 186 115(9) 61.83 188.67 110.33 58.42ab
JLCMS47B 203 112(12) 55.17 177 90(9) 50.85 186 121(13) 65.05 188.67 107.67 57.02ab
JLCMS9B 203 99(8) 48.77 177 99(10) 55.93 186 115(11) 61.83 188.67 104.33 55.51ab
JLCMS82B 203 114(11) 56.16 177 93(7) 52.5 186 112(10) 60.22 188.67 106.33 56.31ab
JLCMS31B 203 119(9) 58.62 177 73(10) 41.24 186 121(12) 65.05 188.67 104.33 54.97ab
JLCMS89B 203 106(10) 52.22 177 84(11) 47.46 186 117(13) 62.90 188.67 102.33 54.19ab
JLCMS9A 203 102 50.25 177 81 45.76 186 101 54.30 188.67 94.67 50.10bc
JLCMS47A 203 105 51.72 177 88 49.72 186 88 47.31 188.67 93.67 49.58bc
JLCMS31A 203 87 42.86 177 65 36.72 186 78 41.94 188.67 76.67 40.51cd
JLCMS89A 203 80(1) 39.41 177 72 40.68 186 65 34.95 188.67 81.67 38.35d

Table 6

Correlation coefficients among out-crossing rate of A-lines in cages and parallel cross survival rate of A-lines and B-lines"

2015年去雄平行杂交
Parallel cross with removing stamen in 2015
2016年不去雄平行杂交
Parallel cross with nonremoving stamen in 2016
A系杂交成活率
Outcrossing rate of CMS A-lines in cages
B系杂交成活率
Outcrossing rate of CMS B-lines in cages
A系杂交成活率
Outcrossing rate of CMS A-lines in cages
B系杂交成活率
Outcrossing rate of CMS B-lines in cages
A系网室异交率
Outcrossing rate of CMS A-lines in cages
0.916** -0.216 0.916** 0.148
B系杂交成活率
Outcrossing rate of CMS B-lines in cages
-0.085 0.209
[1] 孙寰, 赵丽梅, 黄梅 . 大豆质核互作不育系研究. 科学通报, 1993,38(16):1535-1536.
SUN H, ZHAO L M, HUANG M . Studies on cytoplasmic-nuclear male sterile soybean. Chinese Science Bulletin, 1993,38(16):1535-1536. (in Chinese)
[2] 孙寰, 赵丽梅, 黄梅 . 质核互作雄性不育大豆及生产大豆杂交种的方法: 中国,ZL97 112173.7. 1998-2-18.
SUN H, ZHAO L M, HUANG M . Cytoplasmic-genetic male sterile soybean and method for producing hybrid soybean: China,ZL97 112173.7. 1998-2-18. (in Chinese)
[3] SUN H, ZHAO L M, HUANG M . Cytoplasmic-genetic male sterile soybean and method for producing hybrid soybean: United State, No. US 6,320,098B1. 2001.
[4] 孙寰, 赵丽梅, 王曙明, 王跃强, 李建平 . 大豆杂种优势利用研究进展. 中国油料作物学报, 2003,25(1):92-96.
SUN H, ZHAO L M, WANG S M, WANG Y Q, LI J P . Research progress on the use of heterosis in soybean. Chinese Journal of Oil Crop Sciences, 2003,25(1):92-96. (in Chinese)
[5] 赵丽梅, 孙寰, 王曙明, 王跃强, 黄梅, 李建平 . 大豆杂交种杂交豆1号选育报告. 中国油料作物学报, 2004,26(3):15-17.
ZHAO L M, SUN H, WANG S M, WANG Y Q, HUANG M, LI J P . Breeding of hybrid soybean HybSoy 1. Chinese Journal of Oil Crop Sciences, 2004,26(3):15-17. (in Chinese)
[6] 张磊, 戴瓯和 . 大豆质核互作不育系W931A的选育研究. 中国农业科学, 1997,30(6):90-91.
ZHANG L, DAI O H . Selection and breeding of nucleo-cytoplasmic male sterile line W931A in soybean. Scientia Agricultura Sinica, 1997,30(6):90-91. (in Chinese)
[7] 赵丽梅, 孙寰, 黄梅 . 大豆细胞质雄性不育系ZA的选育和初步研究. 大豆科学, 1998(3):268-270.
ZHAO L M, SUN H, HUANG M . The development and preliminary studies on cytoplasmic male sterile soybean line ZA. Soybean Science, 1998(3):268-270. (in Chinese)
[8] 盖钧镒, 丁德荣, 崔章林, 邱家驯 . 大豆质核互作雄性不育系NJCMS1A的选育及其特性. 中国农业科学, 1999,32(5):23-27.
GAI J Y, DING D R, CUI Z L, QIU J X . Development and performance of the cytoplasmic-nuclear male sterile line NJCMS1A of soybean. Scientia Agricultura Sinica, 1999,32(5):23-27. (in Chinese)
[9] 赵团结, 盖钧镒 . 大豆不育细胞质资源的发掘与鉴定. 作物学报, 2006,32(11):1604-1610.
ZHAO T J, GAI J Y . Identification and evaluation of new sources of male-sterile cytoplasm in soybean. Acta Agronomica Sinica, 2006,32(11):1604-1610. (in Chinese)
[10] NIE Z X, ZHAO T J, YANG S P, GAI J Y . Development of a cytoplasmic male-sterile line NJCMS4A for hybrid soybean production. Plant Breeding, 2017,136(4):516-525.
doi: 10.1111/pbr.2017.136.issue-4
[11] 张磊, 戴瓯和, 黄志平, 李杰, 张丽亚, 胡晨 . 杂交大豆杂优豆1号选育. 大豆科技, 2007,25(2):14-16.
ZHANG L, DAI O H, HUANG Z P, LI J, ZHANG L Y, HU C . Breeding of hybrid soybean Zayoudou No. 1. Soybean Science & Technology, 2007,25(2):14-16. (in Chinese)
[12] 彭宝, 赵丽梅, 王曙明, 程砚喜, 孙寰, 王跃强, 李建平, 张伟龙 . 杂交豆2号选育及高产制种技术研究. 吉林农业科学, 2008,33(2):3-4, 7.
PENG B, ZHAO L M, WANG S M, CHENG Y X, SUN H, WANG Y Q, LI J P, ZHANG W L . Studies on breeding of HybSoy2 soybean and high yield seed production technique. Journal of Jilin Agricultural Sciences, 2008,33(2):3-4, 7. (in Chinese)
[13] 彭宝, 赵丽梅, 张伟龙, 张井勇, 孙寰, 王曙明, 李建平, 李茂海 . 大豆杂交种杂交豆3号选育报告. 吉林农业科学, 2010,35(6):4-5.
PENG B, ZHAO L M, ZHANG W L, ZHANG J Y, SUN H, WANG S M, LI J P, LI M H . A breeding report of hybrid soybean HybSoy3. Journal of Jilin Agricultural Sciences, 2010,35(6):4-5. (in Chinese)
[14] 彭宝, 张连发, 张伟龙, 赵丽梅, 张春宝, 赵晓明, 张井勇, 孙寰, 徐亚杰, 路明鉴 . 大豆杂交种杂交豆5号选育报告. 吉林农业科学, 2011,36(6):7-8.
PENG B, ZHANG L F, ZHAGN W L, ZHAO L M, ZHANG C B, ZHAO X M, ZHANG J Y, SUN H, XU Y J, LU M J . A breeding report of hybrid soybean HyBsoy 5. Journal of Jilin Agricultural Sciences, 2011,36(6):7-8. (in Chinese)
[15] 黄志平, 李杰坤, 张磊, 胡国玉, 胡晨, 张丽亚 . 高蛋白杂交大豆“杂优豆2号”选育及栽培技术. 安徽农业科学 , 2013,41(5): 2029,2133.
HUANG Z P, LI J K, ZHANG L, HU G Y, HU C, ZHANG L Y . Study on breeding and cultivation technology of hybrid soybean Zayoudou No.2 with high-protein. Journal of Anhui Agriculture Science , 2013,41(5): 2029,2133. (in Chinese)
[16] 彭宝, 张伟龙, 张井勇, 张春宝, 闫昊, 张伟, 赵丽梅 . 杂交大豆新品种吉育607选育报告. 大豆科技, 2013(4):31-33.
PENG B, ZHANG W L, ZHANG J Y, ZHAGN C B, YAN H, ZHANG W, ZHAO L M . A breeding report of hybrid soybean Jiyu 607. Soybean Science & Technology, 2013(4):31-33. (in Chinese)
[17] 彭宝, 张伟, 张春宝, 闫昊, 李宏来, 赵丽梅, 张伟龙, 张井勇 . 杂交大豆吉育606选育及高产制种技术研究. 作物杂志, 2013(5):159-160.
PENG B, ZHANG W, ZHANG C B, YAN H, LI H L, ZHAO L M, ZHANG W L, ZHANG J Y . A breeding report and high yield seed production technique of hybrid soybean Jiyu606. Crops, 2013(5):159-160. (in Chinese)
[18] 李智, 周洪利 . 强优势阜杂交豆1号选育报告. 现代农业科技, 2014(12):43.
LI Z, ZHOU H L . A breeding report of high heterosis FU hybrid soybean1. Xiandai Nongye Keji, 2014(12):43. (in Chinese)
[19] 卫保国, 卫一超, 白志元, 雷梦林, 张海平, 张瑞军 . 杂交大豆新品种晋豆48号的选育及制种技术. 中国种业, 2015(9):65-66.
WEI B G, WEI Y C, BAI Z Y, LEI M L, ZHANG H P, ZHANG R J . A breeding report and yield seed production technique of hybrid soybean new variety Jindou48, China Seed Industry, 2015(9):65-66. (in Chinese)
[20] 彭宝, 张春宝, 严昊, 张井勇, 张伟龙, 赵丽梅, 张伟, 赵鑫 . 杂交大豆吉育609选育及栽培要点. 大豆科技, 2016(4):29-31.
PENG B, ZHANG C B, YAN H, ZHANG J Y, ZHANG W L, ZHAO L M, ZHANG W, ZHAO X . A breeding report and cultivation technology of hybrid soybean Jiyu 609. Soybean Science & Technology, 2016(4):29-31. (in Chinese)
[21] 彭宝 . 杂交大豆新品种吉育612的选育//中国作物学会大豆专业委员会. 第十届全国大豆学术讨论会论文摘要集. 2017: 8, 74.
PENG B . A breeding report of hybrid soybean Jiyu 612// China Crop Science Society Soybean Specialized Committee. Abstracts of Papers of 10th National Soybean Symposium. 2017: 8, 74. (in Chinese)
[22] 彭宝, 赵丽梅, 张井勇, 闫昊, 张春宝, 张伟, 张伟龙, 王鹏年, 丁孝羊 . 杂交大豆吉育610选育及栽培要点. 大豆科技, 2017(4):49-51.
PENG B, ZHAO L M, ZHANG J Y, YAN H, ZHANG C B, ZHANG W, ZHANG W L, WANG P N, DING X Y . A breeding report and cultivation technology of hybrid soybean Jiyu 610. Soybean Science & Technology, 2017(4):49-51. (in Chinese)
[23] 赵丽梅, 彭宝, 张伟龙, 张连发, 张井勇, 李建平, 李茂海, 孙寰 . 杂交大豆制种技术体系的建立. 大豆科学, 2010,29(4):707-711.
ZHAO L M, PENG B, ZHANG W L, ZHANG L F, ZHANG J Y, LI J P, LI M H, SUN H . Establishment of technology system for hybrid soybean seed production. Soybean Science, 2010,29(4):707-711. (in Chinese)
[24] DAI J Y, ZHANG R J, WEI B G, NIE Z X, XING G N, ZHAO T J, YANG S P, GAI J Y . Key biological factors related to outcrossing- productivity of cytoplasmic-nuclear male-sterile lines in soybean [Glycine max,(L.) Merr.]. Euphytica, 2017,213(12):266.
[25] 盖钧镒, 代金英, 杨守萍, 张瑞军, 白志元, 卫一超, 卫保国, 张海平 . 一种提高大豆不育系结实性的方法: 中国,CN106472301A. 2017-03-08.
GAI J Y, DAI J Y, YANG S P, ZHANG R J, BAI Z Y, WEI Y C, WEI B G, ZHANG H P . A method to improve seed setting of soybean sterile line: China,CN106472301A. 2017-03-08. (in Chinese)
[26] 张伟龙, 闫昊, 张春宝, 张井勇, 彭宝, 赵丽梅 . 密度与施氮量对大豆细胞质雄性不育系结实率及制种产量的影响. 吉林农业大学学报, 2016,38(6):671-674.
ZHANG W L, YAN H, ZHANG C B, ZHANG J Y, PENG B, ZHAO L M . Effects of density and nitrogen application amount on seed-setting rate and seed production yield of soybean cytoplasmic male sterile line. Journal of Jilin Agricultural University, 2016,38(6):671-674. (in Chinese)
[27] 张伟, 张伟龙, 张春宝, 赵丽梅, 李洪来, 彭宝, 张井勇, 闫昊, 邱强, 赵婧 . 一种提高杂交大豆制种产量的父母本种植方法: 中国, CN104106353A. 2014-10-22.
ZHANG W, ZHANG W L, ZHANG C B, ZHAO L M, LI H L, PENG B, ZHANG J Y, YAN H, QIU Q, ZHAO J . A parental planting method to increase the seed yield of hybrid soybean: China,CN104106353A. 2014-10-22. (in Chinese)
[28] ZHANG J Y, SUN H, ZHAO L M, ZHANG C M, YAN H, PENG B, LI W B . Nectar secretion of RN-type cytoplasmic male sterility three lines in soybean [Glycine max(L.) Merr.]. Journal of Integrative Agriculture, 2018,17(5):1085-1092.
[29] 张井勇, 赵丽梅, 彭宝, 张春宝, 张伟龙, 闫昊, 孙寰 . 雌性育性对大豆细胞质雄性不育系异交率的影响//第九届全国大豆学术讨论会, 2013: 5, 49.
ZHANG J Y, ZHAO L M, PENG B, ZHANG C B, ZHANG W L, YAN H, SUN H . Effect of female fertility on the outcrossing rate of male sterile lines with RN sterile cytoplasm//The Ninth National Soybean Symposium, 2013: 5, 49. (in Chinese)
[30] BERNARD R L, CREMEENS C R . Inheritance of the Eldorado male-sterile trait.Soybean Genetics. Newsletter, 1975,2:37-39.
[31] 宋启建, 吴天侠, 盖钧镒 . 大豆隐性核不育基因的遗传与应用研究若干问题探讨. 大豆科学, 1995,14(2):137-142.
SONG Q J, WU T X, GAI J Y . Application of soybean male sterility to population improvement. Soybean Science, 1995,14(2):137-142. (in Chinese)
[32] 赵团结, 盖钧镒 . 大豆不育性自然变异的发现与鉴定. 中国农业科学, 2006,39(9):1756-1764.
ZHAO T J, GAI J Y . Detection and identification of soybean natural variation of sterility. Scientia Agricultura Sinica, 2006,39(9):1756-1764. (in Chinese)
[33] 赵团结, 杨守萍, 盖钧镒 . 大豆显性核雄性不育突变体N7241S的发现与遗传分析. 中国农业科学, 2005,38(1):22-26.
ZHAO T J, YANG S P, GAI J Y . Discovery of a dominant nuclear male sterile mutant N7241S in Soybean and analysis of iIts inheritance. Scientia Agricultura Sinica, 2005,38(1):22-26. (in Chinese)
[34] 李曙光, 赵团结, 盖钧镒 . 大豆突变体NJS-1H核雄性不育性的细胞学与遗传学分析. 大豆科学, 2010,29(2):181-185.
LI S G, ZHAO T J, GAI J Y . Cytological and genetical characterization of a nuclear male 2sterille soybean mutant NJS21H. Soybean Science, 2010,29(2):181-185. (in Chinese)
[35] ZHAO T J, GAI J Y . Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3A in soybean. Eupytica, 2006,152(3):387-396.
doi: 10.1007/s10681-006-9226-0
[36] IBM Corp. IBM SPSS Statistics for Windows. Version 19.0 . Armonk, NY, USA: IBM Corp, 2010.
[37] 张井勇, 赵丽梅, 孙寰, 彭宝, 李文滨 . 大豆不育系育性稳定性研究概况. 大豆科学, 2015,34(4):712-716.
ZHANG J Y, ZHAO L M, SUN H, PENG B, LI W B . A review of fertility stability in male sterility for soybean. Soybean Science, 2015,34(4):712-716. (in Chinese)
[38] 张井勇, 孙寰, 赵丽梅, 彭宝, 张伟龙, 李曙光, 赵晓明 . 大豆RN不育胞质不育与恢复类型的研究. 大豆科学, 2010,29(4):559-564.
ZHANG J Y, SUN H, ZHAO L M, PENG B, ZHANG W L, LI S G, ZHAO X M . The classification of male-sterile lines with RN sterile cytoplasm and their restorers. Soybean Science, 2010,29(4):559-564. (in Chinese)
[39] 白羊年, 陈健, 喻德跃, 盖钧镒 . 大豆雄性不育系和大豆资源有关开花授粉性状的研究. 大豆科学, 2002,21(1):18-24.
BAI Y N, CHEN J, YU D Y, GAI J Y . A study on pollination- related traits in soybean male- sterile lines and soybean germplasm. Soybean Science, 2002,21(1):18-24. (in Chinese)
[40] 张井勇, 赵丽梅, 孙寰, 彭宝, 张伟, 张春宝, 张伟龙, 闫昊, 李慧, 王鹏年 . 一种高效大规模鉴定大豆种质对传粉昆虫吸引力的方法: 中国, CN106962176A. 2017-07-21.
ZHANG J Y, ZHAO L M, SUN H, PENG B, ZHANG W, ZHANG C B, YAN H, LI H, WANG P N . A large scale efficient evaluating method of attraction to pollination Insect on soybean: China,CN106962176A. 2017-07-21. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
[15] ZENG ShiXiao,NIAN Hai,CHENG YanBo,MA QiBin,WANG Liang. Effects of Different Soybean Varieties on the Yield and Quality of Yuba [J]. Scientia Agricultura Sinica, 2021, 54(2): 449-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!