Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1308-1323.doi: 10.3864/j.issn.0578-1752.2019.08.002

Special Issue: MALE STERILITY OF CROP

• MALE STERILITY OF CROP • Previous Articles     Next Articles

Comparative Transcriptome Analysis Among the Three Line of Cytoplasmic Male Sterility in Maize

XUE YaDong1,YANG Lu1,YANG HuiLi1,LI Bing1,LIN YaNan1,ZHANG HuaiSheng1,GUO ZhanYong1,TANG JiHua1,2()   

  1. 1 College of Agronomy, Henan Agricultural University/Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002
    2 Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei
  • Received:2018-12-10 Accepted:2019-02-14 Online:2019-04-16 Published:2019-04-26
  • Contact: JiHua TANG E-mail:tangjihua1@163.com

Abstract:

【Objective】It is one of the most efficient ways to utilize cytoplasmic male sterile (CMS) lines in hybrid seed production, which could improve the purity of seeds, reduce the cost in creating hybrid seeds and enhance the competitiveness of Chinese seed companies. The comparative transcriptome analysis of the anthers at different development stages from the CMS line, the maintainer line and the restorer line (the three lines) were performed in order to understand the mechanism of sterility and restoration of CMS-C in maize, and also to elucidate the regulation network between the restorer gene and the sterile gene, which will provide the fundamental basis for the employment of maize CMS in hybrid seed production.【Method】The transcriptome sequencing was carried out on the anthers at the prophaseⅠ, the metaphaseⅠand the tetrad stage from the three lines based on the elite inbred line Yu87-1. Method of comparative analysis was used to deal with all the transcripts by the tools such as hisat2, ballgown and DESeq2, and to predict genes involved in the regulation network between the sterile gene and the restorer gene, between the different development stages and through the development time series. qRT-PCR was used to verify the differentially expressed genes. The activity of ATPase was quantified with by the spectrophotometric method for the verification of the putative hypothesis.【Result】Transcriptome sequencing totally produced 156.59 Gb sequence data. After mapping and assembling, 53035 Unigenes were obtained. A total of 5676 differentially expressed (DE) genes were identified from the pairwise comparisons (except for comparisons between the restorer lines and the maintainer lines) in the anthers at the different stages from the three lines. Of those, 4705 DE genes between the comparisons of the development stages, 2693 DE genes between the comparisons of the different lines and 135 DE genes related to the time series. The GO molecular functional analysis showed that the genes related to ATP binding, DNA binding and zinc ion binding were highly enriched, in cell component analysis, genes located in integral component of membrane, nucleus and plasma membrane were enriched, and in biological process, genes involved in DNA-templated transcription, regulation of transcription, oxidation-reduction process and primary metabolic process were enriched. KEGG pathway analysis indicated that the oxidative phosphorylation pathways, the carbon metabolism pathways and glycolysis pathways were mostly enriched. Compared to the maintainer lines, several genes involving in the oxidative phosphorylation pathways were significantly down-regulated in the sterile lines, while those down-regulated genes were recovered, besides other genes in the same pathways were also coordinately regulated. The expression trend determined by qRT-PCR on the selected DE genes was in accordance with that in the transcriptome data. The enzyme activity results show that the activity of ATPase in the sterile line was greatly reduced compared to the maintainer line, while in the restorer line, the activities the ATPase were restored due to the existence of the restorer gene.【Conclusion】 The onset of the changes in the gene expression caused by the sterile gene in the anthers of CMS-C maize may happen after metaphaseⅠ and before telophase Ⅱ in meiosis before visible phenotype occurred. The energy deficiency model may account for the mechanism of the sterility in maize CMS-C, and the energy requirements were compensated by the restorer gene through direct or indirect manner.

Key words: Zea mays, cytoplasmic male sterility, transcriptome, differentially expressed gene, regulation network

Table 1

Primers used to analyze differentially expressed genes"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 作用 Function
Zm00001d043834-F GAGCAAGCTACAGAGCAGCA Zm00001d043834表达分析
Zm00001d043834-R GCACCACCAAAGAGACCAAT For the expression of Zm00001d043834
Zm00001d009222-F GAGATCCAGAGCGCCATTT Zm00001d009222表达分析
Zm00001d009222-R GAGCCCAGGAAGAGGAAGAT For the expression of Zm00001d009222
Zm00001d007966-F GTGCATCACCAAGCTCTTCC Zm00001d007966表达分析
Zm00001d007966-R GTGCCACCTCCAATCATCTT For the expression of Zm00001d007966
Zm00001d009727-F TTGTCTGCACGAGGAATCAG Zm00001d009727表达表达
Zm00001d009727-R ACCAGACGACATCGTGTTCA For the expression of Zm00001d009727

Table 2

Output statistics of sequencing analysis"

样品
Sample
总序列
Total read pairs
总碱基数
Total bases (Billion)
GC含量
GC percentage (%)
Q30比例
Q30 percentage (%)
比对序列比例
Total mapping reads percentage (%)
CrP11 18374016 5.51 54.5 94.3 90.0
CrP12 16560680 4.96 54.5 93.7 91.1
CrP13 27650293 6.91 52.5 100.0 91.3
CrM11 17989607 5.39 54.5 93.3 90.6
CrM12 16908690 5.07 53.5 95.0 90.7
CrM13 26782609 6.69 52.0 100.0 91.5
CrT21 18705720 5.61 54.5 93.7 90.2
CrT22 17698741 5.31 54.5 95.0 90.1
CrT23 13798055 2.48 55.0 80.5 83.6
CRP11 22127378 6.63 54.0 100.0 90.6
CRP12 24978644 7.49 54.0 100.0 90.8
CRP13 27365104 6.84 52.0 100.0 91.7
CRM11 28575880 8.57 54.0 100.0 90.4
CRM12 18086263 5.42 55.0 97.6 89.8
CRM13 29768530 7.44 52.5 100.0 91.3
CRT21 27996156 8.39 55.5 93.3 90.3
CRT22 20498349 6.14 55.5 94.7 90.1
CRT23 12902671 2.32 55.0 78.9 83.1
NrP11 17959776 5.38 54.0 94.0 91.0
NrP12 18272442 5.48 55.0 94.7 90.4
NrP13 28541683 7.13 52.0 100.0 90.8
NrM11 19324515 5.79 55.5 94.0 89.6
NrM12 18245189 5.47 55.5 94.0 89.8
NrM13 29194399 7.29 52.5 100.0 92.1
NrT21 21652022 6.49 57.0 100.0 89.4
NrT22 20912786 6.27 56.0 100.0 90.0

Fig. 1

Volcano plot of differentially expressed genes A: Comparison between prophaseⅠand metaphaseⅠin the sterile lines; B: Comparison between prophaseⅠand metaphaseⅠin the restorer lines; C: Comparison between the restorer lines and the sterile lines at tetrad stage; D: Comparison between the maintainer lines and the sterile lines at tetrad stage"

Table 3

Statistics for differentially expressed (DE) genes"

差异比较
Comparison
表达趋势
Up-/Down regulated
差异基因数
DE gene numbers
差异比较
Comparison
表达趋势
Up-/Down regulated
差异基因数
DE gene numbers
CrM1/CrP1 上调Up 48 CRP1/CrP1 上调Up 57
下调Down 73 下调Down 160
CrT2/CrM1 上调Up 85 CRM1/CrM1 上调Up 273
下调Down 329 下调Down 380
CrT2/CrP1 上调Up 230 CRT2/CrT2 上调Up 975
下调Down 1088 下调Down 454
CRM1/CRP1 上调Up 233 NrP1/CrP1 上调Up 50
下调Down 192 下调Down 53
CRT2/CRM1 上调Up 142 NrM1/CrM1 上调Up 99
下调Down 188 下调Down 64
CRT2/CRP1 上调Up 732 NrT2/CrT2 上调Up 723
下调Down 775 下调Down 409
NrM1/NrP1 上调Up 52 发育时序
Time Series
NA/无 135
下调Down 54
NrT2/NrM1 上调Up 356 NrT2/NrP1 上调Up 786
下调Down 560 下调Down 1078

Fig. 2

GO classification of differentially expressed genes"

Table 4

Top fifteen metabolic pathways involving differentially expressed gene quantity statistics"

代谢通路
Pathway ID
通路名称
Name of pathways
通路出现次数
Occurrences of pathways
基因数目
Counts of genes
zma01200 碳代谢 Carbon metabolism 1 28
zma00010 糖酵解 Glycolysis/Gluconeogenesis 1 20
zma03030 DNA复制 DNA replication 1 19
zma00620 丙酮酸盐代谢 Pyruvate metabolism 2 16
zma03440 同源重组 Homologous recombination 1 15
zma00071 脂肪酸降解 Fatty acid degradation 5 14
zma00130 辅酶Q及其他萜-醌合成 Ubiquinone and other terpenoid-quinone biosynthesis 6 13
zma00040 戊糖与葡萄糖醛酸相互转换 Pentose and glucuronate interconversions 1 9
zma00073 角质、软木脂及蜡质合成 Cutin, suberine and wax biosynthesis 12 8
zma00940 苯丙烷合成 Phenylpropanoid biosynthesis 5 6
zma00290 缬氨酸、亮氨酸和异亮氨酸合成 Valine, leucine and isoleucine biosynthesis 2 5
zma02010 ABC运输 ABC transporters 1 5
zma00500 淀粉和蔗糖代谢 Starch and sucrose metabolism 1 4
zma00770 泛酸酯和辅酶A合成 Pantothenate and CoA biosynthesis 1 4
zma04016 植物MAPK信号途径 MAPK signaling pathway-plant 1 4

Table 5

Differential expression of the genes involved in oxidative phosphorylation pathway"

基因编号
ID number of gene
中期Ⅰ恢复系比不育系
CR/Cr-m1
四分体恢复系比不育系
CR/Cr-t2
四分体保持系比不育系
Nr/Cr-t2
不育系四分体比前期Ⅰ
Cr-t2/p1
保持系四分体比中期Ⅰ
Nr-t2/m1
保持系四分体比前期Ⅰ
Nr-t2/p1
恢复系四分体比前期Ⅰ
CR-t2/p1
染色体
Chr.
基因功能描述
Description
Zm00001d033552 2.94±0.83 3.60±0.83 3.78±0.93 4.09±0.93 5.95±0.93 5.15±0.83 1 腺苷三磷酸酶4, 质膜类型
ATPase 4 plasma membrane-type
Zm00001d043834 1.33±0.40 1.44±0.40 1.42±0.40 1.07±0.35 3 类线粒体腺苷三磷酸合成酶贝塔亚基
ATP synthase subunit beta, mitochondrial-like
Zm00001d045122 4.60±1.08 4.04±1.19 9 腺苷三磷酸酶8, 质膜类型
ATPase 8 plasma membrane-type
Zm00001d041214 1.74±0.54 3 腺苷三磷酸酶4, 质膜类型
ATPase 4 plasma membrane-type
Zm00001d015569 1.64±0.41 5 液泡质子泵同系物1
Vacuolar proton pump homolog 1
Zm00001d037576 2.22±0.6 2.54±0.67 -1.85±0.60 6 焦磷酸供能的液泡质膜质子泵
Pyrophosphate-energized vacuolar membrane proton pump
Zm00001d009222 3.38±1.07 -3.61±1.06 -7.12±1.77 -7.90±1.77 8 焦磷酸供能的液泡质膜质子泵
Pyrophosphate-energized vacuolar membrane proton pump
Zm00001d052022 -5.78±1.58 4 腺苷三磷酸酶8, 质膜类型
ATPase 8 plasma membrane-type
Zm00001d045497 -2.04±0.59 9 V型质子偶联腺苷三磷酸亚基e1
V-type proton ATPase subunit e1
Zm00001d027304 -3.2±0.90 -2.94±1.00 -3.17±0.90 1 腺苷三磷酸酶9, 质膜类型
ATPase 9, plasma membrane-type
Zm00001d007966 -1.18±0.30 -1.17±0.30 2 琥珀酸脱氢酶4
Succinate dehydrogenase4
Zm00001d036728 -4.01±0.95 6 腺苷三磷酸酶2, 质膜类型
ATPase 2, plasma membrane-type
Zm00001d009727 -8.63±2.86 8 线粒体细胞色素c氧化酶亚基5b-2
Cytochrome c oxidase subunit 5b-2 mitochondrial

Fig. 3

Comparative analysis of genes along with the microspore development A:Zm00001d033552;B:Zm00001d043834;C:Zm00001d009222;D:Zm00001d037576"

Fig. 4

differentially expressed genes in oxidative phosphorylation pathways Green boxes: Enzymes specific to this species; Red boxes: Up-regulated genes; Skyblue boxes: Down-regulated genes"

Fig. 5

qTR-PCR expression of differentially expressed genes in different development stages CR: Restorer lines; Cr: Sterile lines; Nr: Maintainer lines; M1: Metaphase 1; T2: Telophase 2 (tetrad); MN: Mononucleate stage"

Table 6

Expression of cytochrome P450 genes"

时期
stage
比较
Comparison
表达
Expression
差异倍数log2FLC 基因ID
Gene ID
染色体
Chr.
功能描述
Description
末期2
Telo2
Nr/Cr 上调Up 21.83 Zm00001d024412 10 NADPH-细胞色素P450还原酶
NADPH-cytochrome P450 reductase
9.20 Zm00001d042814 3 86A1型细胞色素P450
Cytochrome P450 86A1
7.31 Zm00001d011932 8 类89A2型细胞色素P450
Cytochrome P450 89A2-like
6.94 Zm00001d013862 5 细胞色素P450大家族蛋白
Cytochrome P450 superfamily protein
6.92 Zm00001d029526 1 78A5型细胞色素P450
Cytochrome P450 78A5
下调Down -17.05 Zm00001d039697 3 类711A1型细胞色素P450
Cytochrome P450 711A1-like
-20.91 Zm00001d004486 2 71D7型细胞色素P450
Cytochrome P450 71D7
CR/Cr 上调Up 18.54 Zm00001d024412 10 细胞色素P450还原酶
Cytochrome P450 reductase
8.54 Zm00001d042814 3 86A1型细胞色素P450
Cytochrome P450 86A1
7.29 Zm00001d013862 5 推断的细胞色素P450大家族蛋白
Putative cytochrome P450 superfamily protein
7.23 Zm00001d011932 8 类89A2型细胞色素P450
Cytochrome P450 89A2-like
6.46 Zm00001d012326 8 细胞色素P450大家族蛋白
Cytochrome P450 superfamily protein
5.82 Zm00001d029526 1 78A5型细胞色素P450
Cytochrome P450 78A5
下调Down -1.22 Zm00001d002937 2 细胞色素P450,72家族,A亚族,多肽8
Cytochrome P450 family 72 subfamily A polypeptide 8
-20.04 Zm00001d039697 3 类711A1型细胞色素P450
Cytochrome P450 711A1-like
-23.94 Zm00001d004486 2 71D7型细胞色素P450
Cytochrome P450 71D7
中期1
Meta1
Nr/Cr 上调Up - - - -
下调Down - - - -
CR/Cr 上调Up 7.46 Zm00001d011932 8 类89A2型细胞色素P450
Cytochrome P450 89A2-like
6.79 Zm00001d013862 5 推断的细胞色素P450大家族蛋白
Putative cytochrome P450 superfamily protein
3.88 Zm00001d020673 7 推断的细胞色素P450大家族蛋白
Putative cytochrome P450 superfamily protein
下调Down -3.58 Zm00001d049573 4 推断的细胞色素P450大家族蛋白
Putative cytochrome P450 superfamily protein
-4.16 Zm00001d037701 6 推断的细胞色素P450大家族蛋白
Putative cytochrome P450 superfamily protein
-16.87 Zm00001d039697 3 类711A1型细胞色素P450
Cytochrome P450 711A1-like
前期1
Prop1
Nr/Cr 上调Up 19.96 Zm00001d024412 10 NADPH-细胞色素P450还原酶
NADPH--cytochrome P450 reductase
17.59 Zm00001d042814 3 86A1型细胞色素P450
Cytochrome P450 86A1
下调Down - - - -
CR/Cr 上调Up 17.44 Zm00001d042814 3 86A1型细胞色素P450
Cytochrome P450 86A1
下调Down - - - -

Fig. 6

Assay for Activity of ATPase of anthers from the three lines CR: Restorer lines; Cr: Sterile lines; Nr: Maintainer lines; ** indicates difference at the 0.01 level; *** indicates difference at the 0.001 level"

Fig. 7

Timeline expression analysis of the genes atp6c, atp9-1, cox2-1 and nad4 located in mitochondrial genome A:atp6c;B:atp9-1;C:cox2-1;D:nad4"

[1] DEWEY R, LEVINGS C S, TIMOTHY D H . Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the texas male-sterile cytoplasm. Cell, 1986,44(3):439-449.
doi: 10.1016/0092-8674(86)90465-4
[2] PENG X, WANG K, HU C, ZHU Y, WANG T, YANG J, TONG J, LI S, ZHU Y . The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biology, 2010,10(1):125.
doi: 10.1186/1471-2229-10-125
[3] WANG Z, ZOU Y, LI X, ZHANG Q, CHEN L, WU H, SU D, CHEN Y, GUO J, LUO D, LONG Y, ZHONG Y, LIU Y G . Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. The Plant Cell, 2006,18(3):676-687.
doi: 10.1105/tpc.105.038240
[4] LUO D, XU H, LIU Z, GUO J, LI H, CHEN L, FANG C, ZHANG Q, BAI M, YAO N, WU H, WU H, JI C, ZHENG H, CHEN Y, YE S, LI X, ZHAO X, LI R, LIU Y G . A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nature Genetics, 2013,45(5):573-577.
[5] SINGH M . Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. The Plant Cell, 1991,3(12):1349-1362.
doi: 10.1105/tpc.3.12.1349
[6] BROWN G G . Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. Journal of Heredity, 1999,90(3):351-356.
[7] UYTTEWAAL M, ARNAL N, QUADRADO M, MARTIN-CANADELL A, VRIELYNCK N, HIARD S, GHERBI H, BENDAHMANE A, BUDAR F, MIREAU H . Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. The Plant Cell, 2008,20(12):3331-3345.
[8] CUI X, WISE R P, SCHNABLE P S . The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 1996,272(5266):1334-1336.
[9] FUJII S, TORIYAMA K . Suppressed expression of retrograde- regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proceedings of the National Academy of Sciences of the USA, 2009,106(23):9513-9518.
doi: 10.1073/pnas.0901860106
[10] ITABASHI E, IWATA N, FUJII S, KAZAMA T, TORIYAMA K . The fertility restorer gene,Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. The Plant Journal, 2011,65(3):359-367.
[11] KITAZAKI K, ARAKAWA T, MATSUNAGA M, YUI-KURINO R, MATSUHIRA H, MIKAMI T, KUBO T . Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). The Plant Journal, 2015,83(2):290-299.
[12] BENTOLILA S, ALFONSO A A, HANSON M R . A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proceedings of the National Academy of Sciences of the USA, 2002,99(16):10887-10892.
doi: 10.1073/pnas.102301599
[13] BROWN G G, FORMANOVÁ N, JIN H, WARGACHUK R, DENDY C, PATIL P, LAFOREST M, ZHANG J, CHEUNG W Y, LANDRY B S . The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal, 2003,35(2):262-272.
[14] KOIZUKA N, IMAI R, FUJIMOTO H, HAYAKAWA T, KIMURA Y, KOHNO-MURASE J, SAKAI T, KAWASAKI S, IMAMURA J . Genetic characterization of a pentatricopeptide repeat protein gene,orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. The Plant Journal, 2003,34(4):407-415.
[15] HU J, WANG K, HUANG W, LIU G, GAO Y, WANG J, HUANG Q, JI Y, QIN X, WAN L, ZHU R, LI S, YANG D, ZHU Y . The rice pentatricopeptide repeat protein Rf5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. The Plant Cell, 2012,24(1):109-122.
[16] TANG H, LUO D, ZHOU D, ZHANG Q, TIAN D, ZHENG X, CHEN L, LIU Y G . The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Molecular Plant, 2014,7(9):1497-1500.
[17] HUANG W, YU C, HU J, WANG L, DAN Z, ZHOU W, HE C, ZENG Y, YAO G, QI J, ZHANG Z, ZHU R, CHEN X, ZHU Y . Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proceedings of the National Academy of Sciences of the USA, 2015,112(48):14984-14989.
doi: 10.1073/pnas.1511748112
[18] CHEN L, LIU Y G . Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014,65(1):579-606.
doi: 10.1146/annurev-arplant-050213-040119
[19] 陈伟程, 罗福和, 季良越 . 玉米C型胞质雄花不育的遗传及其在生产上的应用. 作物学报, 1979,5(4):21-28.
CHEN W C, LUO F H, JI L Y . Some genetic aspects of the C-type cytoplasmic male-sterility in maize and its use in breeding. Acta Agronomica Sinica, 1979,5(4):21-28. (in Chinese)
[20] 汤继华, 刘宗华, 陈伟程, 胡彦民, 季洪强, 季良越 . 玉米C型胞质不育恢复主基因SSR标记. 中国农业科学, 2001,34(6):592-596.
TANG J H, LIU Z H, CHEN W C, HU Y M, JI H Q, JI L Y . The SSR markers of the main restorer genes for CMS-C cytoplasmic male sterility in maize. Scientia Agricultura Sinica, 2001,34(6):592-596. (in Chinese)
[21] DEWEY R E, TIMOTHY D H, LEVINGS C S . Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Current Genetics, 1991,20(6):475-482.
doi: 10.1007/BF00334775
[22] ALLEN J O, FAURON C M, MINX P, ROARK L, ODDIRAJU S, LIN G N, MEYER L, SUN H, KIM K, WANG C, DU F, XU D, GIBSON M, CIFRESE J, CLIFTON S W, NEWTON K J . Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics, 2007,177(2):1173-1192.
doi: 10.1534/genetics.107.073312
[23] LEE S L, GRACEN V E, EARLE E D . The cytology of pollen abortion in C-cytoplasmic male-sterile corn anthers. American Journal of Botany, 1979,66(6):12.
[24] 陈伟程, 李桂珍 . 玉米C型胞质雄性不育系花粉败育的细胞学研究. 华北农学报, 1987,2(1):1-6.
CHEN W C, LI G Z . A cytological study in pollen abortion in C-cytoplasmic male-sterile corn (Zea mays, L.). Acta Agriculturae Boreali-Sinica, 1987,2(1):1-6. (in Chinese)
[25] LIU Q, LAN Y, WEN C, ZHAO H, WANG J, WANG Y . Transcriptome sequencing analyses between the cytoplasmic male sterile line and its maintainer line in Welsh onion (Allium fistulosum L.). International Journal of Molecular Sciences, 2016,17(7):1058.
[26] LIU C, MA N, WANG P Y, FU N, SHEN H L . Transcriptome sequencing and De Novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in Chili pepper (Capsicum annuum L.). PLoS ONE, 2013,8(6):e65209.
[27] LI C, ZHAO Z, LIU Y, LIANG B, GUAN S, LAN H, WANG J, LU Y, CAO M . Comparative transcriptome analysis of isonuclear-alloplasmic lines unmask key transcription factor genes and metabolic pathways involved in sterility of maize CMS-C. PeerJ-the Journal of Life and Environmental Science, 2017,5:e3408.
[28] MA J, SKIBBE D S, FERNANDES J, WALBOT V . Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biology, 2008,9(12):R181.
doi: 10.1186/gb-2008-9-12-r181
[29] KIM D, LANGMEAD B, SALZBERG S L . HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015,12(4):357-360.
[30] PERTEA M, PERTEA G M, ANTONESCU C M, CHANG T C, MENDELL J T, SALZBERG S L . StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015,33(3):290-295.
doi: 10.1038/nbt.3122
[31] LOVE M I, HUBER W, ANDERS S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014,15(12):550.
doi: 10.1186/s13059-014-0550-8
[32] YU G, WANG L G, HAN Y, HE Q Y . ClusterProfiler: An R package for comparing biological themes among gene clusters. A Journal of Integrative Biology, 2012,16(5):284-287.
doi: 10.1089/omi.2011.0118
[33] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[34] HU J, HUANG W C, HUANG Q, QIN X J, YU C C, WANG L L, LI S Q, ZHU R S, ZHU Y G . Mitochondria and cytoplasmic male sterility in plants. Mitochondrion, 2014,19(B):282-288.
doi: 10.1016/j.mito.2014.02.008
[35] TOUZET P, MEYER E H . Cytoplasmic male sterility and mitochondrial metablolism in plants. Mitochondrion, 2014,19(B):166-171.
doi: 10.1016/j.mito.2014.04.009
[36] WERCK-REICHHART D, FEYEREISEN R . Cytochromes P450: A success story. Genome biology, 2000, 1(6): reviews3003.1-3003.9.
[37] XU J, WANG X Y, GUO W Z . The cytochrome P450 superfmily: Key players in plant development and defense. Journal of Integrative Agriculture, 2015,14(9):1673-1686.
doi: 10.1016/S2095-3119(14)60980-1
[38] QIAN W F, ZHANG J Z . Gene dosage and gene duplicability. Genetics, 2008,179(4):2319-2324.
doi: 10.1534/genetics.108.090936
[39] SPADAFORA N, PERROTTA L, NIEUWLAND J, ALBANI D, BITONTI B M, HERBERT R J, DOONAN J H, MARCHBANK A M, SICILIANO I, GRØNLUND A L, FRANCIS D, ROGERS H J, . Gene dosage effect of WEE1 on growth and morphogenesis from Arabidopsis hpocotyl explants. Annals of Botany, 2012,110(8):1631-1639.
[40] CHANG N, SUN Q Q, LI Y Q, MU Y J, HU J L, FENG Y, LIU X M, GAO H B . PDV2 has a dosage effect on chloroplast division in Arabidopsis. Plant Cell Reports, 2017,36(3):471-480.
[41] KELLIHER T, WALBOT V . Emergence and patterning of the five cell types of the Zea mays anther locule. Developmental Biology, 2011,350(1):32-49.
[42] FANG W, WANG Z, CUI R, LI J, LI Y . Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal, 2012,70:929-939.
[43] WANG J W, SCHWAB R, CZECH B, MICA E, WEIGEL D . Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell, 2008,20:1231-1243.
[44] SOTELO-SILVEIRA M, CUCINOTTA M, CHAUVIN A L , CHAVEZ MONTES R A, COLOMBO L, MARSCH-MARTINEZ N, DE FOLTER S. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiology, 2013,162:779-799.
[45] LI H, PINOT F, SAUVEPLANE V, WERCK-REICHHART D, DIEHL P, SCHREIBER L, FRANKE R, ZHANG P, CHEN L, GAO Y W, LIANG W Q, ZHANG D B . Cytochrome P450 family member CYP704B2 catalyzes the omega-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell, 2010,22:173-190.
doi: 10.1105/tpc.109.070326
[46] DJUKANOVIC V, SMITH J, LOWE K, YANG M Z, GAO H R, JONES S, MICHOLSON M G, WEST A, LAPE J, BIDNEY D, FALCO S C, JANTZ D, LYZNIK L A . Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homeing endonuclease. The Plant Journal, 2013,76:888-899.
doi: 10.1111/tpj.12335
[1] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[2] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[3] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[4] XU Ke,FAN ZhiLong,YIN Wen,ZHAO Cai,YU AiZhong,HU FaLong,CHAI Qiang. Coupling Effects of N-fertilizer Postponing Application and Intercropping on Maize Photosynthetic Physiological Characteristics [J]. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143.
[5] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[6] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[7] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[10] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[11] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[12] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[13] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[14] LI Ming,LI YingChun,NIU XiaoGuang,MA Fen,WEI Na,HAO XingYu,DONG LiBing,GUO LiPing. Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering [J]. Scientia Agricultura Sinica, 2021, 54(17): 3647-3665.
[15] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!