Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1205-1214.doi: 10.3864/j.issn.0578-1752.2019.07.008

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Evaluation of Crop Rotation Yield Effect in Cold and Arid Regions of Northwest Hebei Province

DU YuQiong1,ZHANG LiFeng1,2,YAO ZhaoLei1,ZHANG JiZong1,2,LIU YuHua1,2()   

  1. 1 College of Agronomy, Hebei Agricultural University, Baoding 071000, Hebei
    2 Zhangbei Agricultural Resource and Ecological Environment Key Field Research Station, Ministry of Agriculture, Zhangjiakou 076450, Hebei
  • Received:2018-11-15 Accepted:2019-01-21 Online:2019-04-01 Published:2019-04-04
  • Contact: YuHua LIU E-mail:hblyh@126.com

Abstract:

【Objective】The study was carried out to promote the rational and balanced utilization of water and nutrients in crop production in cold and arid areas of Northwest Hebei province, where water, temperature and soil resources were scarce, and to protect the farmland ecological environment. 【Method】A field experiment of rotation and continuous cropping with five main crop combinations was designed in the meadow chestnut soil and sandy chestnut soil farmland by using the cross planting method. The yield effect of rotation of main crop in the region was studied by repeating the experiment between years. 【Result】Compared with continuous cropping, the yield of potato, beet and oat under rotation conditions in meadow chestnut soil farmland increased by 58%-94%, 28%-53% and 16%-70%, respectively; The yield of faba bean increased by 4%-43% rotated with other crops except for beet; The yield of potato and faba bean stubble forage maize increased by 12% and 5%, respectively, compared with continuous cropping, and the yield of beet and oat stubble forage maize was only 81% and 93% of that of continuous cropping, respectively. In sandy chestnut soil farmland, the yield of potatoes and beets in different Preceding crop fields increased by 5%-36%, 13%-36%, respectively, compared with continuous cropping; The yield of beet stubble forage millet decreased, and it increased by 5%-30% rotating with other crops compared with continuous cropping; The yield of forage millet stubble oats decreased, while that of other stubbles increased by 9%-15% compared with continuous cropping. The yield of potato and oat stubble flax was 5% and 8% higher than that of continuous cropping, respectively, and the yield of forage millet and beet stubble flax was only 94% and 99% of continuous cropping, respectively. 【Conclusion】The rotation of potato and oat, potato and beet in meadow chestnut soil was mutually beneficial, forage maize stubble potato, oat stubble beet, faba bean stubble beet, forage maize stubble beet and faba bean stubble potato showed commensalism rotation. In sandy chestnut soil field, oats stubble potato, potato stubble beet showed commensalism rotation, and this could be applied in production.

Key words: cold and arid of northwestern Hebei province, crop rotation, yield, effect evaluation

Table 1

Crops, fertilizing amount, sowing and harvesting time in the experiments"

土壤类型
Soil type
作物
Crops
施肥量
Fertilizing amount (kg·hm-2)
播种和收获期Sowing and harvesting date (M-D)
2016 2017 2018
N P 播种
Sowing
收获
Harvesting
播种
Sowing
收获
Harvesting
播种
Sowing
收获
Harvesting
草甸栗钙土
Meadow chestnut soil
马铃薯Potato 213.74 55.94 05-02 08-25 04-25 09-16 04-28 09-12
蚕豆Faba bean 208.12 46.91 05-04 08-24 05-19 08-26 05-15 09-09
玉米Forage maize 321.97 46.91 05-22 08-26 05-19 09-11 05-15 09-15
莜麦Oat 242.91 25.67 05-21 09-03 05-25 09-08 05-23 09-01
甜菜Beet 267.88 70.16 05-25 10-01 05-27 10-01 05-29 10-03
砂质栗钙土
Sandy chestnut soil
马铃薯Potato 161.05 42.19 05-01 08-27 04-25 09-15 04-26 09-11
亚麻Flax 64.31 18.95 05-22 08-28 05-20 09-01 05-23 08-28
谷子Forage millet 257.35 37.44 05-29 09-22 05-10 09-12 05-18 09-14
莜麦Oat 244.54 40.24 05-21 09-07 05-25 09-07 05-23 08-31
甜菜Beet 213.80 55.98 05-24 09-30 05-27 10-02 04-26 09-11

Table 2

Experimental design and crop planting in the test area"

试验小区
Experimental plot
草甸栗钙土田Meadow chestnut soil field 砂质栗钙土田Sandy chestnut soil field
2015 2016 2017 2018 2015 2016 2017 2018
1 B P B P B P B P
2 O P O P O P O P
3 FM P FM P M P M P
4 FB P FB P F P F P
5 P P P P P P P P
6 B FB B FB B F B F
7 O FB O FB O F O F
8 FM FB FM FB M F M F
9 FB FB FB FB F F F F
10 P FB P FB P F P F
11 B FM B FM B M B M
12 O FM O FM O M O M
13 FM FM FM FM M M M M
14 FB FM FB FM F M F M
15 P FM P FM P M P M
16 B O B O B O B O
17 O O O O O O O O
18 FM O FM O M O M O
19 FB O FB O F O F O
20 P O P O P O P O
21 B B B B B B B B
22 O B O B O B O B
23 FM B FM B M B M B
24 FB B FB B F B F B
25 P B P B P B P B

Table 3

Average economic yield of different crop rotations of meadow chestnut soil field in 2016-2018 (kg·hm-2)"

后茬作物
Succeeding crop
前茬作物Previous crop
马铃薯Potato 蚕豆Faba bean 玉米Forage maize 莜麦Oat 甜菜Beet
马铃薯Potato 2852.34±739.97aA 4511.95±992.87bAB 5071.08±1399.53bB 5532.83±1174.21bB 4541.19±1356.91bAB
蚕豆Faba bean 1741.89±465.88abA 1583.96±191.93abA 2259.55±1029.6bA 1647.64±190.78abA 1338.10±420.28aA
玉米Forage maize 17042.13±3180.76aA 15943.61±1593.10aA 15221.82±2753.93aA 14228.26±3259.53aA 12400.59±4496.71aA
莜麦Oat 2615.22±536.36bB 2250.27±351.03abAB 2200.68±445.65abAB 1541.59±409.38aA 1788.30±662.93aAB
甜菜Beet 11007.97±1535.99cB 10076.49±789.28cB 10107.38±1316.53cB 9181.86±386.43bB 7187.91±1205.40aA

Table 4

Average economic yield of different crop rotations of sandy chestnut soil field in 2016-2018 (kg·hm-2)"

后茬作物
Succeeding crop
前茬作物Previous crop
马铃薯Potato 亚麻Flax 谷子Forage millet 莜麦Oat 甜菜Beet
马铃薯Potato 3112.98±590.53aA 4010.72±930.10abAB 3773.71±550.18abAB 4318.84±725.18bB 3970.45±280.77abAB
亚麻Flax 1289.42±138.85aA 1225.87±158.33aA 1157.65±169.49aA 1325.84±207.95aA 1211.34±79.68aA
谷子Forage millet 7746.90±2732.56aA 7186.10±2696.62aA 5947.81±1165.48aA 6225.64±1257.66aA 5930.60±1796.59aA
莜麦Oat 2001.59±766.46aA 1890.33±677.62aA 1639.54±461.51aA 1734.93±732.97aA 1978.40±522.85aA
甜菜Beet 8666.19±2134.00 bA 7825.86±457.90abA 7214.63±981.98abA 7700.16±1252.81abA 6367.97±1655.00aA

Table 5

Effect of rotation of different crops on meadow chestnut soil field"

作物
Crop
马铃薯茬
Stubble of potato
蚕豆茬
Stubble of faba bean
玉米茬
Stubble of forage maize
莜麦茬
Stubble of oat
甜菜茬
Stubble of beet
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
马铃薯
Potato
1.00 CK 1.58 + 偏利Commensalism 1.78 + 偏利Commensalism 1.94 + 偏利Commensalism 1.59 + 偏利Commensalism
蚕豆
Faba bean
1.10 + 偏利Commensalism 1.00 CK 1.43 + 偏利Commensalism 1.04 + 偏利Commensalism 0.84 - 偏害Amensalism
玉米
Forage maize
1.12 + 偏利Commensalism 1.05 + 偏利Commensalism 1.00 CK 0.93 - 偏害Amensalism 0.81 - 偏害Amensalism
莜麦
Oat
1.70 + 偏利Commensalism 1.46 + 偏利Commensalism 1.43 + 偏利Commensalism 1.00 CK 1.16 + 偏利Commensalism
甜菜
Beet
1.53 + 偏利Commensalism 1.40 + 偏利Commensalism 1.41 + 偏利Commensalism 1.28 + 偏利Commensalism 1.00 CK

Table 6

Effect of rotation of different crops on sandy chestnut soil field"

作物
Crops
马铃薯茬
Stubble of potato
亚麻茬
Stubble of flax
谷子茬
Stubble of forage millet
莜麦茬
Stubble of oat
甜菜茬
Stubble of beet
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
比值
Ratio
效应
Effect
类型
Type
马铃薯
Potato
1.00 CK 1.29 + 偏利Commensalism 1.21 + 偏利Commensalism 1.39 + 偏利Commensalism 1.28 + 偏利Commensalism
亚麻
Flax
1.05 + 偏利
Commensalism
1.00 CK 0.94 - 偏害Amensalism 1.08 + 偏利Commensalism 0.99 - 偏害Amensalism
谷子
Forage millet
1.30 + 偏利Commensalism 1.21 + 偏利Commensalism 1.00 CK 1.05 + 偏利Commensalism 1.00 0 中性
Neutal interaction
莜麦
Oat
1.15 + 偏利Commensalism 1.09 + 偏利Commensalism 0.95 - 偏害Amensalism 1.00 CK 1.14 + 偏利Commensalism
甜菜
Beet
1.36 + 偏利Commensalism 1.23 + 偏利Commensalism 1.13 + 偏利Commensalism 1.21 + 偏利Commensalism 1.00 CK

Table 7

Different rotation patterns and effects on different fields in the cold and arid region of northwestern Hebei province"

土壤类型
Soil type
轮作类型Rotation patterns
互利轮作(++)
Positive interaction
rotation(++)
偏利轮作(+)
Commensalism rotation
(+)
中性轮作(0)
Neutral interaction rotation(0)
偏害轮作(-)
Amensalism rotation
(-)
互害轮作 (--)
Negative interaction
rotation(--)
草甸栗钙土
Meadow chestnut soil
马铃薯→蚕豆
Potato →faba bean
马铃薯→莜麦
Potato →oat
马铃薯→甜菜
Potato →beet
马铃薯→玉米
Potato →forage maize
蚕豆→玉米
Faba bean →forage maize
蚕豆→莜麦
Faba bean →oat
莜麦→甜菜
Oat →beet
蚕豆茬甜菜
Beet after faba bean
玉米茬莜麦
Oat after forage maize
玉米茬甜菜
Beet after forage maize

Nil
甜菜茬蚕豆
Faba bean after beet
莜麦茬玉米
Forage maize after oat
甜菜茬玉米
Forage maize after beet

Nil
砂质栗钙土
Sandy chestnut soil
马铃薯→莜麦
Potato →oat
马玲薯→亚麻
Potato →flax
马铃薯→谷子
Potato →forage millet
马铃薯→甜菜
Potato →beet
莜麦→亚麻
Oat →flax
甜菜→莜麦
Beet →oat
谷子茬甜菜
Beet after forage millet
亚麻茬谷子
Forage millet after flax
莜麦茬谷子
Forage millet after oat
亚麻茬甜菜
Beet after flax
甜菜茬谷子
Forage millet after beet
谷子茬亚麻
Flax after foragemillet
谷子茬莜麦
Oat after forage millet
甜菜茬亚麻
Flax after beet

Nil
[1] 张立峰, 徐长金 . 北方高寒半干旱农牧交错带资源环境障碍与农牧生产力开发. 资源科学, 1999,21(5):64-67.
doi: 10.3321/j.issn:1007-7588.1999.05.011
ZHANG L F, XU C J . Environmental problems and development of agro­pastoral productivity in ecotone between agriculture and animal husbandry in cold semiarid areas in northern China. Resources Science, 1999,21(5):64-67. (in Chinese)
doi: 10.3321/j.issn:1007-7588.1999.05.011
[2] 刘沛松, 贾志宽, 李军, 李永平, 刘世新 . 宁南旱区草粮轮作系统中紫花苜蓿适宜利用年限研究. 草业学报, 2008,17(3):31-39.
doi: 10.3321/j.issn:1004-5759.2008.03.005
LIU P S, JIA Z K, LI J, LI Y P, LIU S X . A study on optimal duration of Medicago sativa growth in M. sativa-grain crop rotation system in arid region of southern Ningxia. Acta Prataculturae Sinica, 2008,17(3):31-39. (in Chinese)
doi: 10.3321/j.issn:1004-5759.2008.03.005
[3] 韩丽娜, 丁静, 韩清芳, 丁瑞霞, 聂俊峰, 贾志宽, 李文静 . 黄土高原区草粮(油)翻耕轮作的土壤水分及作物产量效应. 农业工程学报, 2012,28(24):129-137.
doi: 10.3969/j.issn.1002-6819.2012.24.019
HAN L N, DING J, HAN Q F, DING R X, NIE J F, JIA Z K, LI W J . Effects of alfalfa-grain (oil) crop plowing rotation on soil moisture and crop yield in Loess Plateau. Transactions of the Chinese Society of Agriculture Engineering, 2012,28(24):129-137. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.24.019
[4] 山仑, 刘忠民, 辛业全, 邓西平, 马国忠 . 宁夏山区草田轮作研究——Ⅰ不同轮作方式的生产力及效益. 水土保持学报, 1992,6(4):60-68.
SHAN L, LIU Z M, XIN Y Q, DENG X P, MA G Z . A study on the grass and field crops rotation in mountain region of southern Ningxia. Journal of Soil and Water Conservation, 1992,6(4):60-68. (in Chinese)
[5] 鲁鸿佩, 孙爱华 . 草田轮作对粮食作物的增产效应. 草业科学, 2003,20(4):10-13.
doi: 10.3969/j.issn.1001-0629.2003.04.004
LU H P, SUN A H . The effect of grass crop rotation on crop yield increase. Pratacultural Science, 2003,20(4):10-13. (in Chinese)
doi: 10.3969/j.issn.1001-0629.2003.04.004
[6] 陈海江, 司伟, 魏丹, 李玉梅 . 粮豆轮作技术的“减肥增效”效应研究——基于东北地区轮作定位试验和农户调研分析. 大豆科学, 2018,37(4):545-550.
CHEN H J, SI W, WEI D, LI Y M . Study on the effect of reducing fertilizer input and increasing efficiency of grain-soybean rotation technology: Based on the rotation location experiment and the analysis household survey in northeast China. Soybean Science, 2018,37(4):545-550. (in Chinese)
[7] CROOKSTON R K, KUELE J E, COPELAND P J, FORD J H, LUESCHEN W E . Rotation cropping sequence affects yield of corn of soybean. Agronomy Journal, 1991,83(1):108-113.
doi: 10.2134/agronj1991.00021962008300010026x
[8] 杨宁, 赵护兵, 王朝辉, 张达斌, 高亚军 . 豆科作物-小麦轮作方式下旱地小麦花后干物质及养分累积、转移与产量的关系. 生态学报, 2012,32(15):4827-4835.
doi: 10.5846/stxb201107221085
YANG N, ZHAO H B, WANG Z H, ZHANG D B, GAO Y J . Accumulation and translocation of dry matter and nutrients of wheat rotated with legumes and its relation to grain yield in a dryland area. Acta Ecologica Sinica, 2012,32(15):4827-4835. (in Chinese)
doi: 10.5846/stxb201107221085
[9] 宋树慧 . 不同前茬对马铃薯生育及土壤特性的影响[D]. 内蒙古: 内蒙古农业大学, 2014.
SONG S H . Effects of different preceding crops on growth and soil properties of potato[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2014. ( in Chinese)
[10] 高盼, 刘玉涛, 王宇先, 杨慧莹, 徐莹莹, 王俊河, 徐婷 . 半干旱区玉米-大豆轮作对土壤物理性质和化学性质的影响. 黑龙江农业科学, 2018(9):23-26.
GAO P, LIU Y T, WANG Y X, YANG H Y, XU Y Y, WANG J H, XU T . Effects of maize soybean rotation on physical and chemical properties of soil in semi-arid area. Heilongjiang Agricultural Sciences, 2018(9):23-26. (in Chinese)
[11] 惠言 . 华北平原以豆科为基础的轮作方式对农作物产量和土壤理化性质的影响[D]. 开封: 河南大学, 2017.
HUI Y . Crop yields and soil physiochemical properties in response to legume-based cropping rotation in North China Plain[D]. Kaifeng: Henan University, 2017. (in Chinese)
[12] 李梅峰, 李元华, 程明军, 王厚军, 严东海 . 青贮饲用玉米与黑麦草稻田轮作的经济效益分析. 四川畜牧兽医, 2018,45(6):12-13.
LI M F, LI Y H, CHENG M J, WANG H J, YAN D H . Economic benefit analysis of silage corn and ryegrass paddy rotation. Sichuan Animal & Veterinary Sciences, 2018,45(6):12-13. (in Chinese)
[13] 吴艳飞, 张雪艳, 李元, 魏文杰, 高丽红 . 轮作对黄瓜连作土壤环境和产量的影响. 园艺学报, 2008,35(3):357-362.
doi: 10.3321/j.issn:0513-353X.2008.03.007
WU Y F, ZHANG X Y, LI Y, WEI W J, GAO L H . Influence of rotation on continuous cropping soil environment and cucumber yield. Acta Horticulturae Sinica, 2008,35(3):357-362. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2008.03.007
[14] WILLEY R W, OSIRU D S O . Studies on mixtures of maize and beans (Phaseolus vulgaris) with particular reference to plant population. The Journal of Agricultural Science, 1972,79:517-529.
doi: 10.1017/S0021859600025909
[15] REDDY M S, WILLEY R W . Growth and resource use studies in intercrop of pearl millet groundnut. Field Crops Research, 1981,4:13-24.
doi: 10.1016/0378-4290(81)90050-2
[16] 刘巽浩 . 耕作学. 北京:中国农业出版社, 1994: 117-120.
LIU X H . Farming System. Beijing: China Agricultural Press, 1994: 117-120. (in Chinese)
[17] 刘玉华, 张立峰, 边秀举 . 土地当量比计算方法的改进与应用. 河北农业大学学报, 1999,22(2):19-21.
LIU Y H, ZHANG L F, BIAN X J . Improvement and application of calculating method of land equivalent ratio. Journal of Agriculture University of Hebei, 1999,22(2):19-21. (in Chinese)
[18] 刘玉华 . 大田作物轮作效果定量评价研究. 沈阳农业大学学报(自然科学版), 1999,30(1):13-15.
LIU Y H . Studies on effects of quantitative evaluation of crop rotation. Natural Science Journal of Shenyang Agriculture University, 1999, 30(1):13-15. (in Chinese)
[19] 刘玉华, 张立峰, 边秀举 . 土地当量比的实质及应用分析. 耕作与栽培, 1999(4):64-65.
LIU Y H, ZHANG L F, BIAN X J . Essence and application analysis of land equivalent ratio. Tillage and Cultivation, 1999(4):64-65. (in Chinese).
[20] 刘玉华, 张立峰 . 土地当量比和复种指数的应用研究. 沈阳农业大学学报, 1998,29(3):24-27.
LIU Y H, ZHANG L F . Application of land equivalent ratio (LER) on sequential cropping. Journal of Shenyang Agricultural University, 1998,29(3):24-27. (in Chinese)
[21] 张立峰, 边秀举, 刘玉华 . 冀北高原作物耗水特性与倒茬效应研究. 中国农业科学, 2001,34(1):56-60.
doi: 10.3321/j.issn:0578-1752.2001.01.011
ZHANG L F, BIAN X J, LIU Y H . Studies on water consumption characteristics and effects of crops rotation in plateau of north Hebei province. Sciencia Agriculture Sinica, 2001,34(1):56-60. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2001.01.011
[22] 刘玉华, 张立峰 . 不同作物种植方式产出效果的定量评价. 中国农业科学, 2005,38(4):709-713.
doi: 10.3321/j.issn:0578-1752.2005.04.011
LIU Y H, ZHANG L F . Quantitative evaluation of output efficiency in different cropping patterns. Scientia Agriculture Sinica, 2005,38(4):709-713. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2005.04.011
[23] 刘玉华, 张立峰 . 不同种植方式土地利用效率的定量评价. 中国农业科学, 2006,39(1):57-60.
doi: 10.3321/j.issn:0578-1752.2006.01.008
LIU Y H, ZHANG L F . Quantitative evaluation of landuse efficiency under different cropping patterns. Scientia Agriculture Sinica, 2006,39(1):57-60. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2006.01.008
[24] 陈阜 . 农业生态学. 2版. 北京: 中国农业出版社, 2011: 77-78.
CHEN F . Agricultural Ecology.2nd edtion. Beijing: China Agriculture Press, 2011: 77-78. (in Chinese)
[25] 崔婷茹 . 坝上地区农业气候资源特征及高效利用策略[D]. 保定: 河北农业大学, 2017.
CUI T R . Characteristics of agricultural climatic resources and effective utilization strategy in Bashang area[D]. Baoding: Hebei Agricultural University, 2017. ( in Chinese)
[26] 宋树慧, 何梦麟, 任少勇, 肖强, 蒙美莲, 陈有君, 杨丽辉, 魏翠果 . 不同前茬对马铃薯产量、品质和病害发生的影响. 作物杂志, 2014(2):123-126.
SONG S H, HE M L, REN S Y, XIAO Q, MENG M L, CHEN Y J, YANG L H, WEI C G . Effect of different preceding crops on yield, quality and disease of potato. Crops, 2014(2):123-126. (in Chinese)
[27] 谢奎忠, 陆立银, 罗爱花, 胡新元 . 长期连作对马铃薯土传病害和产量的影响. 中国种业, 2018(2):65-67.
XIE K Z, LU L Y, LUO A H, HU X Y . Effects of long-term continuous cropping on soil-borne diseases and yield of potato. China Seed Industry, 2018(2):65-67. (in Chinese)
[28] 谭雪莲, 郭晓冬, 马明生, 刘高远, 张平良, 吕军峰, 郭天文 . 连作对马铃薯土壤微生物区系和产量的影响. 核农学报, 2012,26(9):1322-1325, 1321.
TAN X L, GUO X D, MA M S, LIU G Y, ZHANG P L, LÜ J F, GUO T W . Effects of continuous cropping on soil, microflora and yield of potato. Journal of Nuclear Agricultural Sciences, 2012,26(9):1322-1325, 1321. (in Chinese)
[29] 李国庆 . 马铃薯连作障碍的土壤微生态研究进展//马铃薯产业与农村区域发展. 中国作物学会马铃薯专业委员会, 2013: 5.
LI G Q . Advances in soil micro ecology of potato continuous cropping obstacles//Potato Industry and Rural Development. China Crop Society Potato Professional Committee, 2013: 5. (in Chinese)
[30] 梁烜赫 . 种植马铃薯必须轮作倒茬. 吉林农村报, 2018-01-26(003).
LIANG X H . Potatoes must be grown in rotation. Jilin Rural Newspaper, 2018-01-26(003). (in Chinese)
[31] 张伟, 张冬梅, 韩彦龙, 刘化涛, 赵聪, 姜春霞, 李娜娜 . 不同前茬下旱地玉米的水分动态及产量效应. 山西农业科学, 2017,45(5):749-752, 781.
doi: 10.3969/j.issn.1002-2481.2017.05.20
ZHANG W, ZHANG D M, HAN Y L, LIU H T, ZHAO C, JIANG C X, LI N N . Effects of different previous crops on soil moisture and crop yield of maize in dryland. Journal of Shanxi Agriculture Sciences, 2017, 45(5):749-752, 781. (in Chinese).
doi: 10.3969/j.issn.1002-2481.2017.05.20
[32] 赵祥 . 河北坝上地区不同前作对青贮玉米产量的影响. 河北北方学院学报(自然科学版), 2012,28(3):31-32, 37.
doi: 10.3969/j.issn.1673-1492.2012.03.011
ZHAO X . Effect of different pre-cropping on yield of silage maize in Bashang area of Hebei province. Journal of Hebei North University (Natural Science Edition), 2012,28(3):31-32, 37. (in Chinese)
doi: 10.3969/j.issn.1673-1492.2012.03.011
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!