Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1119-1135.doi: 10.3864/j.issn.0578-1752.2019.07.001

Special Issue: SPECIAL FOCUS ON GRAPE RESEARCH

• SPECIAL FOCUS ON GRAPE RESEARCH • Previous Articles     Next Articles

Effects of Different Sugar Sources on Protein Kinase Gene Expression in Grape Plantlets

LIANG GuoPing,LI WenFang,CHEN BaiHong,ZUO CunWu,MA LiJuan,HE HongHong,WAN Peng,AN ZeShan,MAO Juan()   

  1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070
  • Received:2018-07-25 Accepted:2018-10-15 Online:2019-04-01 Published:2019-04-04
  • Contact: Juan MAO E-mail:maojuan@gsau.edu.cn

Abstract:

【Objective】 To explore the effects of different exogenous sugars on the growth and development of grape plantlets and the regulation of protein kinase gene transcription, the candidate genes were tapped in the process of protein phosphorylation by using transcription, which made a foundation for the verification of grape protein kinase-related gene function.【Method】 Sucrose (2%), glucose (2%) and fructose (2%) were added to the basic medium, and the free-sugar treatment was as control, which were named as S20, G20, F20 and CK, respectively. After 37 days of culture, the fresh weight of the leaf-stem and root under different treatments was determined. Transcriptome sequencing of each treated foliages was performed by using Illumina HiSeq TM 2000, and a series of protein kinases related genes were screened by integrated bioinformatics analysis, including reference genomic alignment, differentially expressed gene (DEGs) screening, COG (Cluster of Orthologous Groups of proteins) annotation, GO (Gene Ontology) annotation, etc., and the expression characteristic of these genes were further analyzed by qRT-PCR. 【Result】 Compared with CK, ‘Red Globe’ grape plantlets under F20, G20 and S20 treatments exhibited significant differences in the fresh weight of leaf-stem, and the highest was obtained by F20 treatment, while the weight of fresh root under G20 was the highest. The SNP statistics found that the Transition was the main type of mutation, the second was Transversion. The highest number of SNPs that occurred in the Intergenic, and the next was the Upstream. Splice_Site_Donor and Synonymous_Stop events occurred with the least number of genes and equal. A total of 2 633 deferentially expressed genes were obtained in the 4 samples. The Venn diagram showed that there were a total of 180 differential genes under the 3 treatments compared with CK, and these genes were clustered into 3 groups. In the first group, 127 genes were only highly expressed under CK. The 19 genes of the second group were only highly expressed under G20, while the expression patterns of the 34 genes in third group were different under three treatments. The common 180 differential genes were annotated with 26 genes in the COG database to 11 functional categories, and these DEGs were mainly enriched in general functional categories. In the annotation of GO, the common genes were annotated in 14, 22 and 13 functional categories of molecular function, biological process and cellular component, respectively. Seven kinds of protein kinases were screened by this sequencing, including Glucokinase (GK), Mitogen-activated protein kinases (MAPKs), Calcineurin protein kinase (CBL), Protein phosphatase 2 (PP2A), Hexokinase (HXK), Histidine protein kinase (HPK) and Tyrosine kinase (TK), and these different protein kinases genes showed their own expression patterns among different treatments. By qRT-PCR analysis, 17 out of 20 screened genes expression were consistent with the transcriptome sequencing results. 【Conclusion】 Compared with glucose and sucrose, fructose was the best sugar during grape culture process. The sequencing results showed that 180 DEGs all responded to three different sugars. In the COG annotation, these genes were mainly enriched in membrane ester transport and metabolism, the synthesis, transport and decomposition of secondary metabolites and carbohydrates. In the GO databases, the most of common DEGs were annotated in the activities of protein kinases and oxidoreductases. Seven protein kinases were identified, which were selectively in responses to different exogenous sugars in quantity, functional, category and metabolic pathways, and had their own choice of expression specificity.

Key words: RNA-seq, exogenous sugar, protein kinase, signaling transduction

Table 1

qRT-PCR primer"

基因号 Gene ID 引物序列(5′-3′) Primer sequence (5′-3′)
GSVIVG01014744001 F-TCAAGGACATCACCACCACA R-TAGGCCCTTTACGACACACA
GSVIVG01015297001 F-ATAGAAGACGCGGTTGGACA R-TACCCAAGATCACTGCAGCA
GSVIVG01014081001 F-AAGACAAGCAGCCATCTCCT R-TGTGCCTGCAACAGCTTTAG
GSVIVG01019739001 F-AGGATTGGTTGAAGGCTCCA R-AAGGCGTGACTCAGATGGAT
GSVIVG01026984001 F-TTGAAGGGGCACTGTCTCAT R-ACTGGTGGGTCTGGATTGAA
GSVIVG01038192001 F-AGCCTCCAATCATGCCCATA R-ATGATCCATGTGCCGCAAAA
GSVIVG01038760001 F-ACGTTAGTGGAGGGAATGCT R-TGTCCCAATGTTCTCCCCAT
GSVIVG01001347001 F-TGGCCCTGAAAGTCCGTTAT R-TTCAACCAAGGCCGTCAATG
GSVIVG01020128001 F-GGAAGCAGCAATAACGTGGT R-TCTGCCAAGAGACAACCCAA
GSVIVG01025420001 F-GGGTTGGGTGCTGTTTTCAA R-TGCCTCCTTATGCCGAAACT
GSVIVG01038559001 F-GGGGTCCAAATTCTTTCGCA R-TTCCTCGCCATCATCATCCA
GSVIVG01000919001 F-TTCGGGCAAGTTTTGGAAGG R-AAAAGGGAGAAGGAGGTGGA
GSVIVG01011043001 F-GGGTTGGACGGCTGAATTTT R-GGAGGAACGAAACAATGGCA
GSVIVG01020071001 F-ATGAGGTTGGCTGCTACTGA R-AAGGCAAGAACACTGTCCCT
GSVIVG01000561001 F-TCTTGGGCTTGGATGGAGTT R-AGCATGTCGGTCCACTCTTT
GSVIVG01007646001 F-AGGCATGGAGAGAAGAAGCA R-TCTGGGAGGTTTTCAGCACT
GSVIVG01009192001 F-AGCGAGGGTGTAAGGTTTGT R-TCAGCAGTCACATCCTTGGT
GSVIVG01009685001 F-ACGGAACTCAGCGTATCAGT R-TCGTCATCATCGGGTTTCCA
GSVIVG01013564001 F-GTTCCGGCCAAATATGAGCA R-TTGACCGGAAGAAATTCGCC
GSVIVG01014110001 F-TGTAGCTGCACCAACAACAC R-TGGAGGGATTGAACCGTTGA
GSVIVG01014128001 F-AGGCTGCCACAAACAACTTT R-TGCGGATGTTGTAGAGCAGA
GSVIVG01023376001 F-TGGACTGTGAGGCTAAACGT R-TTTAAAAGCCTAGCCGTGCC
GSVIVG01023676001 F-TCATCATCCTCATCGCCATCA R-AACTTGTCGCATGGTTGGTC
GSVIVG01026000001 F-AGCGTTTGGGGACTTGAGTA R-TCCCAGAGCAAGCAAGTACA
GSVIVG01026487001 F-TGACGGGAAAGCAGGAAGAA R-AAACATGCCCAAAAGTCCCC
GSVIVG01029835001 F-TGGCTTACGGAGGTGAACTT R-AGCACCCAGAGCAATCATCA
GSVIVG01032611001 F-TTCCCCACCCATCATTCACA R-TACGGTCATGGTGTAGGCAA
GAPDH F-TTCTCGTTGAGGGCTATTCCA R-CCACAGACTTCATCGGTGACA

Fig. 1

Effect of different exogenous sugars on the biomass of grape plantlets Different small letters means significant difference between treatments (P<0.05). The same as below"

Table 2

Transcriptome sequencing data"

样品
Sample
Raw reads Clean reads Clean Data GC含量
GC content (%)
%≥Q30
CK 20 632 503 19 840 139 4 998 523 222 45.43 90.26
S20 24 367 990 19 619 720 4 696 568 225 45.44 92.01
G20 25 739 838 24 923 975 6 279 049 182 45.44 90.38
F20 22 890 967 20 579 635 5 553 171 109 44.43 92.41

Table 3

Statistical SNP sites"

样品
Sample
SNP Number Genic SNP Intergenic SNP 转换
Transition (%)
颠换
Transversion (%)
杂合型
Heterozygosity (%)
CK 403 332 269 783 133 549 66.55 33.45 35.50
S20 489 805 313 349 176 456 67.18 32.82 37.19
G20 358 014 263 791 94 223 65.95 34.05 36.42
F20 331 527 252 625 78 902 65.89 34.11 35.16

Fig. 2

SNP annotation analysis"

Fig. 3

InDel annotation analysis"

Fig. 4

Alternative splice analysis"

Fig. 5

Venn diagram of DEGs and common DEGs analysis"

Fig. 6

COG analysis of DEGs"

Fig. 7

GO enrichment analysis of DEGs"

Fig. 8

Analysis of the expression of seven protein kinases"

Fig. 9

qRT-PCR analysis of DEGs"

[1] KADLECEK P, RANK B, TICHA I . Photosynthesis and photoprotection in Nicotiana tabacum L. in vitro-grown plantlets. Journal of Plant Physiology, 2003,160(9):1017.
[2] RUAN Y L . Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014,65:33-67.
doi: 10.1146/annurev-arplant-050213-040251 pmid: 24579990
[3] YUE C, CAO H L, WANG L, ZHOU Y H, HUANG Y T, HAO X Y, WANG Y C, WANG B, YANG Y J, WANG X C . Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology, 2015,88:591-608.
doi: 10.1007/s11103-015-0345-7 pmid: 26216393
[4] SOLAROVA J, POSPHILSILOVA J, CATSKY J, SANTRUCEK J . Photosynthesis and growth of tobacco plantlets independence on carbon supply. Photosynthetica, 1989,23(4):629-637.
[5] SMEEKENS S, MA J K, HANSON J, ROLLAND F . Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 2010,13(3):273-278.
doi: 10.1016/j.pbi.2009.12.002 pmid: 20056477
[6] NGUYEN Q T, KOZAI T, NIU G, NGUYEN U V . Photosynthetic characteristics of coffee (Coffea arabusta) plantlets in vitro in response to different CO2 concentrations and light intensities. Plant Cell Tissue & Organ Culture, 1999,55:133-139.
doi: 10.1023/A:1006224026639
[7] 张曦, 林金星, 单晓昳 . 拟南芥无机氮素转运蛋白及其磷酸化调控研究进展. 植物学报, 2016,51(1):120-129.
doi: 10.11983/CBB14222
ZHANG X, LIN J X, SHAN X Y . Progress in inorganic nitrogen transport proteins and their phosphorylation regulatory mechanism in Arabidopsis. Chinese Bulletin of Botany, 2016,51(1):120-129. (in Chinese)
doi: 10.11983/CBB14222
[8] 尹双双, 高文远, 王娟, 刘辉, 左北梅 . 药用植物不定根培养的影响因素. 中国中药杂志, 2012,37(24):3691-3694.
doi: 10.4268/cjcmm20122403
YIN S S, GAO W Y, WAN J, LIU H, ZUO B M . Influencing factors on culture of medicinal plants adventitious roots. China Journal of Chinese Material Medcia, 2012,37(24):3691-3694. (in Chinese)
doi: 10.4268/cjcmm20122403
[9] 邹英宁 . 不同碳源对中国李离体培养的影响. 安徽农业科学, 2010, 38(4): 1720, 1776.
doi: 10.3969/j.issn.0517-6611.2010.04.025
ZOU Y N . Effect of different carbon sources on the culture of Chinese plum (Prunus salicina) in vitro. Journal of Anhui Agricultural Sciences, 2010, 38(4): 1720, 1776. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2010.04.025
[10] 王博, 范桂枝, 詹亚光, 李康 . 不同碳源对白桦愈伤组织生长和三萜积累的影响. 植物生理学通讯, 2008,44(1):97-99.
WANG B, FAN G Z, ZHAN Y G, LI K . Effects of different carbon sources on callus growth and accumulation of triterpenoids in Birch (Betula platyphylla suck.). Plant Physiology Communications, 2008,44(1):97-99. (in Chinese)
[11] 王思瑶, 崔瞳肸, 翟睿, 林香雨, 李欣, 孙璐, 詹亚光, 尹静 . 不同碳源对柽柳丛生芽生长、三萜及黄酮物质积累的影响. 植物生理学报, 2017,53(12):2189-2196.
WANG S Y, CUI T X, ZHAI R, LIN X Y, LI X, SUN L, ZHAN Y G, YIN J . Effects of different carbon sources on the growth and accumulation of triterpenoids and flavonoids in tufted buds of Tamarix chinensis. Plant Physiology Journal, 2017,53(12):2189-2196. (in Chinese)
王爱民, 刘文, 傅中滇 . 不同碳源对红边朱蕉组培苗生长的影响. 徐州师范大学学报 (自然科学版), 2003,21(3):76-78.
WANG A M, LIU W, FU Z D . A preliminary study on the reducing cost of tissue culture plantlet of cordyline terminalis. Journal of Xuzhou Normal University ((Nature Sciences Edition), 2003,21(3):76-78. (in Chinese)
[12] KOZAI T, KUBOTA C, JEONGB R . Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tissue & Organ Culture, 1997,51:49-56.
doi: 10.1023/A:1005809518371
[13] GUGLIELMINETTI L, PERATA P, MORITA A, LORETI E, YAMAGUCHI J, ALPI A . Characterization of isoforms of hexose kinases in rice embryo. Phytochemistry, 2000,53(2):195-200.
doi: 10.1016/S0031-9422(99)00541-5 pmid: 10680171
[14] TURNER J F , CHENSEE, HARISSON D D. Glucokinase of pea seeds. Biochimica et Biophysica Acta-Enzymology, 1997,480:367-375.
[15] MARTINEZ-BARAJAS E, RANGALL D D . Purification and characterization of a glucokinase from young tomato (Lycopersicon esculentum L. Mill.) fruct. Planta, 1998,205:567-573.
[16] 赵书平, 谈宏斌, 鹿丹, 裴丽丽, 崔喜艳, 马有志, 陈明, 徐兆师, 张小红 . 植物蛋白激酶介导的非生物胁迫和激素信号转导途径的研究进展. 植物遗传资源学报, 2017,18(2):358-366.
doi: 10.13430/j.cnki.jpgr.2017.02.022
ZHAO S P, TAN H B, LU D, PEI L L, CUI X Y, MA Y Z, CHEN M, XU Z S, ZHANG X H . Research progress of plant protein kinase mediated abiotic stress and hormone signal transduction pathway. Journal of Plant Genetic Resources, 2017,18(2):358-366. (in Chinese)
doi: 10.13430/j.cnki.jpgr.2017.02.022
[17] RANTY B, ALDON D, GALAUD J P . Plant calmodulins and calmodulin-related proteins: Multifaceted relays to decode calcium signals. Plant Signaling & Behavior, 2006,1(3):96-104.
doi: 10.4161/psb.1.3.2998 pmid: 19521489
[18] BATISTIC O, KUDLA J . Integration and channeling of calcium signaling through the CBL calciumsensor/CIPK protein kinase network. Planta, 2004,219:915-924.
doi: 10.1007/s00425-004-1333-3
[19] WEINL S, KUDLA J . The CBL-CIPK Ca 2+-decoding signaling network: Function and perspectives . New Phytologist, 2009,184(3):517-528.
doi: 10.1111/nph.2009.184.issue-3
[20] LUAN S . The CBL-CIPK network in plant calcium signaling. Trends in Plant Science, 2009,14:37-42.
doi: 10.1016/j.tplants.2008.10.005
[21] YU Q Y, AN L J, LI W L . The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Reports, 2014,33:203-214.
doi: 10.1007/s00299-013-1507-1
[22] KENTARO F, TOMOYUKI F, SHUN-ICHI Y, TETSU S, YUSUKE K, YUTAKA Y, HIROMI K, HITOSHI N, TOMOTAKE K . The PP2A-like protein phosphatase ppg1 and the far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy. Cell Reports, 2018,23:3579-3590.
doi: 10.1016/j.celrep.2018.05.064
[23] 刘钊, 贾霖, 贾盟, 关明俐, 曹英豪, 刘丽娟, 曹振伟, 李莉云, 刘国振 . 水稻PP2Ac类磷酸酶蛋白质在盐胁迫下的表达. 中国农业科学, 2012,45(12):2339-2345.
doi: 10.3864/j.issn.0578-1752.2012.12.001
LIU Z, JIA S, JIA M, GUAN M L, CAO Y H, LIU L J, CAO Z W, LI L Y, LIU G Z . Expression on profiling of rice PP2Ac type phosphatase proteins in seedlings under salt-stressed conditions. Scientia Agricultura Sinica, 2012,45(12):2339-2345. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.12.001
[24] 雍彬, 何兵, 徐攀, 虞传洋, 王东 . 甘薯HXK基因的克隆、组织表达及生物信息分析. 四川大学学报(自然科学版), 2014,51(2):378-384.
doi: 10.3969/j.issn.0490-6756.2014.02.029
YONG B, HE B, XU P, YU C Y, WANG D . Cloning, organ-specific expression pattern and sequence analysis of HXK gene in sweet potato. Journal of Sichuan University (Natural Science Edition), 2014,51(2):378-384. (in Chinese)
doi: 10.3969/j.issn.0490-6756.2014.02.029
[25] KARVE A, RAUH B L, XIA X . Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta, 2008,228(3):411-425.
[26] HERICOURT F, CHEFDOR F, DJEGHDIR I, LARCHER M, LAFONTAINE F, COURDAVAULT V, AUGUIN D, COSTE F, DEPIERREUX C, TANIGAWA M, MAEDA T, GLEVAREC G, CARPIN S . Functional divergence of poplar histidine-aspartate kinase hk1 paralogs in response to osmotic stress. International Journal of Molecular Sciences, 2016,17(12):2061.
doi: 10.3390/ijms17122061 pmid: 5187861
[27] WOLANIN P M, THOMASON P A, STOCK J B . Histidine protein kinases: Key signal transducers outside the animal kingdom. Genome Biology, 2002, 3(10): reviews3013. 1.
[28] HUPFELD T, CHAPUY B, SCHRADER V, BEUTLER M, VELTKAMP C, KOCH R, CAMERON S, AUNG T, HAASE D, LAROSEE P, TRUEMPER L, WULF G G . Tyrosinekinase inhibition facilitates cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsic CML cell drug resistance. British Journal of Haematology, 2013,161(2):204.
doi: 10.1111/bjh.12246 pmid: 23432194
[29] MAO J, LI W F, MI B Q, DAWUDA M M, CALDERON-URREA A, MA Z H, ZHANG Y M, CHEN B H . Different exogenous sugars affect the hormone signal pathway and sugar metabolism in ‘Red Globe’ (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis. Planta, 2017,246:537-552.
[30] KIM D, PERTEA G, TRAPENLL C, PIMENTEL H, KELLEYR R, SALZBERG S L . TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013,14(4):R36.
doi: 10.1186/gb-2013-14-4-r36 pmid: 4053844
[31] ANDERS S, HUBER W . Differential expression analysis for sequence count data. Genome Biology, 2010,11(10):R106.
doi: 10.1186/gb-2010-11-10-r106
[32] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative and the 2 -ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[33] ROLLAND F, BAENA-GONZALEZ E, SHEEN J . Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 2006,57:675-709.
doi: 10.1146/annurev.arplant.57.032905.105441 pmid: 16669778
[34] FILICHKIN S A, HAMILYON M, DHARMAWARDHANA P D, SINGH S K, SULLIVAN C, BEN-HUR A, REDDY A S N, JAISWAL P . Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science, 2018. doi: 10.3389/fpls.2018.00005.
doi: 10.3389/fpls.2018.00005
[35] 贾新平, 孙晓波, 邓衍明, 梁丽建, 叶晓青 . 鸟巢蕨转录组高通测序及分析. 园艺学报, 2014,41(11):2329-2341.
JIA X P, SUN X B, DENG Y M, LIANG L J, YE X Q . Sequencing and analysis of the transcriptome of Asplenium nidus. Acta Horticulturae Sinica, 2014,41(11):2329-2341. (in Chinese)
[36] 张雪, 唐铭浩, 陈蒙, 李春艳, 刘海峰 . 山葡萄不同着色时期果皮转录组测序分析. 果树学报, 2017,34(7):781-789.
doi: 10.13925/j.cnki.gsxb.20160404
ZHANG X, TANG M H, CHEN M, LI C Y, LIU H F . Sequencing analysis of transcriptome of Vitis amurensis during different periods of coloration. Journal of Fruit Science, 2017,34(7):781-789. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20160404
[37] 魏利斌, 苗红梅, 张海洋 . 芝麻发育转录组分析. 中国农业科学, 2012,45(7):1246-1256.
doi: 10.3864/j.issn.0578-1752.2012.07.002
WEI L B, MIAO H M, ZHANG H Y . Transcriptomic analysis of sesame development. Scientia Agricultura Sinica, 2012,45(7):1246-1256. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.07.002
[38] PROUD C G . Phosphorylation and signal transduction pathways in translational control. Cold Spring Harb Perspect Biology, 2018. doi: 10.1101/cshperspect.a033050.
doi: 10.1101/cshperspect.a033050
[39] IRWIN D M, TAN H . Evolution of glucose utilization: Glucokinase and glucokinase regulator protein. Molecular Phylogenetics & Evolution, 2014,70(1):195-203.
doi: 10.1016/j.ympev.2013.09.016 pmid: 3897444
[40] GUTIERREZNOGUES A, GARCIAHERRERO C M, ORIOLA J, VINCENT O, NAVAS M A . Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochimica et Biophysica Acta (BBA)-Molecular Bassis of Disease, 2018,1864(7):2385-2394.
doi: 10.1016/j.bbadis.2018.04.020 pmid: 29704611
[41] KAWAI S, MUKAI T, MORI S, MIKAMI B, MURATA K . Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. Journal of Bioscience & Bioengineering, 2005,99(4):320-330.
doi: 10.1263/jbb.99.320 pmid: 16233797
[42] MOORE B, SHEEN J . Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 2003,300(5617):332-336.
doi: 10.1126/science.1080585 pmid: 12690200
[43] CHO Y H, YOO S D, SHEEN J . Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell, 2007,127(2):579-589.
doi: 10.4161/psb.2.2.3894 pmid: 17081979
[44] KELLY G, SADE N, DORON-FAIGENBOIM A, LERNER S, SHATIL-COHEN A, YESELSON Y, EGBARIA A, KOTTAPALLI J, SCHAFFER A A, MOSHELION M, GRANOT D . Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. The Plant Journal, 2017,91:325-339.
doi: 10.1111/tpj.13568 pmid: 28390076
[45] HU R B, ZHU Y F, SHEN G X, ZHANG H . Overexpression of the PP2A-C5gene confers increased salt tolerance in Arabidopsis thaliana. Plant Signaling & Behavior, 2017,12(2):e1276687.
[46] RAZAVIZADEH R, SHOJAIE B, KOMATSU S . Characterization ofPP2A-A3, mRNA expression and growth patterns in Arabidopsis thaliana, under drought stress and abscisic acid. Physiology & Molecular Biology of Plants, 2018(1):1-13.
[47] LIU L L, REN H M, CHEN L Q, WANG Y, WU W H . A protein kinase, calcineurin B-like protein-interacting protein Kinase9, interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis. Plant Physiology, 2013,161(1):266-277.
doi: 10.1104/pp.112.206896 pmid: 23109687
[48] COLCOMBET J, HIRT H . Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochemical Journal, 2008,413(2):217-226.
doi: 10.1042/BJ20080625 pmid: 18570633
[49] ANDREASSON E, ELLIS B . Convergence and specificity in the Arabidopsis MAPK nexus. Trends in Plant Science, 2010,15(2):106-113.
doi: 10.1016/j.tplants.2009.12.001 pmid: 20047850
[50] SINGHA H S, CHAKRABORTY S, DEKA H . Stress induced MAPK genes show distinct pattern of codon usage in Arabidopsis thaliana, Glycine max and Oryza sativa. Bioinformation, 2014,10(7):436-442.
[51] WOLANIN P M, THOMASON P A, STOCE J B . Histidine protein kinases: Key signal transducers outside the animal kingdom. Genome Biology, 2002, 3(10): reviews3013. 1.
[52] LIM W A, PAWSON T . Phosphotyrosine signaling: Evolving a new cellular communication system. Cell, 2010,142:661-667.
doi: 10.1016/j.cell.2010.08.023 pmid: 20813250
[53] LIN W W, LI B, LU D P, CHEN S X, ZHU N, HE P, SHAN L B . Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(9):3632-3637.
[54] REDDY M M, RAJASEKHARAN R . Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity. Archives of Biochemistry & Biophysics, 2007,460(1):122-128.
doi: 10.1016/j.abb.2007.01.003 pmid: 17291444
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[3] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[4] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[5] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[6] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[7] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[8] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[9] GAO Yan,ZHU YaNan,LI QiuFang,SU SongKun,NIE HongYi. Transcriptomic Analysis of Genes Related to Nursing Behavior in the Brains of Apis mellifera ligustica [J]. Scientia Agricultura Sinica, 2020, 53(19): 4092-4102.
[10] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[11] ShuLei GUO,XiaoMin LU,JianShuang QI,LiangMing WEI,Xin ZHANG,XiaoHua HAN,RunQing YUE,ZhenHua WANG,ShuangGui TIE,YanHui CHEN. Explore Regulatory Genes Related to Maize Leaf Morphogenesis Using RNA-Seq [J]. Scientia Agricultura Sinica, 2020, 53(1): 1-17.
[12] JIN MEI,ZHANG LIJUAN,CAO QIAN,GUO XinYing. The Screening and Identification of LncRNA Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5 [J]. Scientia Agricultura Sinica, 2019, 52(4): 738-754.
[13] LIANG YingBo,LI Ze,QIU DeWen,ZENG HongMei,LI GuangYue,YANG XiuFen. Identification and Analysis of Differentially Expressed Genes Induced by Protein Elicitor PevD1 in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2019, 52(21): 3794-3805.
[14] ZI XiangDong, LUO Bin, XIA Wei, ZHENG YuCai, XIONG XianRong, LI Jian, ZHONG JinCheng, ZHU JiangJiang, ZHANG ZhengFan. Transcriptomic Analysis of IVF Embryonic Development in the Yak (Bos grunniens) Via RNA-Seq [J]. Scientia Agricultura Sinica, 2018, 51(8): 1577-1589.
[15] WANG DanDan, TANG YuTing, MA YueHui, WANG LiGang, PAN DengKe, JIANG Lin. Studying the Molecular Mechanism of Heart Development by Using ZBED6 Gene Knockout Pig [J]. Scientia Agricultura Sinica, 2018, 51(7): 1390-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!