Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (8): 1577-1589.doi: 10.3864/j.issn.0578-1752.2018.08.015

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Transcriptomic Analysis of IVF Embryonic Development in the Yak (Bos grunniens) Via RNA-Seq

ZI XiangDong1, LUO Bin1, XIA Wei1, ZHENG YuCai1, XIONG XianRong1, LI Jian1, ZHONG JinCheng2ZHU JiangJiang2, ZHANG ZhengFan1   

  1. 1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041; 2Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041
  • Received:2017-07-04 Online:2018-04-16 Published:2018-04-16

Abstract: 【Objective】The objectives of this study were to investigate the transcriptome differences and identify function, classification and metabolic pathways of the differentially expressed genes (DEG) at different developmental stages of yak embryos derived from in vitro fertilization (IVF), which are necessary to better understand the mechanism that regulates embryonic development and provide theoretical basis for improving in vitro embryo production in the yak (Bos grunniens). 【Method】Total RNA was extracted from IVF derived yak embryos at 2-cell, 4-cell, 8-cell, morula and blastocyst stages and amplified via the Smart-seq2 method, and the constructed RNA libraries were sequenced using the HiSeqTM2500 high-throughput sequencing method. 【Result】After IVF, the average cleavage rates and blastocyst rates were 69.3% and 26.2%, respectively. A total of 47 355 570 to 50 855 888 clean reads were obtained from 2-cell, 4-cell, 8-cell, morula and blastocyst stages, respectively, of which, 85.65% to 90.02% were covered in the yak reference genome. In total, the number of transcripts mapped to yak genome was highest for 8-cell (14 893) and lowest for blastocysts (9 827). The transcripts mainly had five patterns of alternative splice, of which, the two largest proportions were transcription start site (TSS) and transcription terminal site (TTS). The SNP numbers of the five stages of yak embryonic transcripts were 116 601, 234 131, 196 420, 70 841 and 94 840, respectively. A total of 1 221, 1 116, 142 and 564 transcripts were first detected at the 4-cell, 8-cell, morula and blastocyst stages, respectively. As embryo development proceeded, maternally derived transcripts such as BMP15, KIT, GDF9, STAT3, ZP3 and ZP4 etc.were decreased, whereas embryonic transcripts such as SARS,IL18, ACO2, TXN2, ATP5B, PCGF4, UBE3A, MAPK13, SNURF and JUP etc. were increased at specific stages. When |log2ratio| ≥1 and Q-value<0.05 were set as thresholds for identifying DEGs, a total of 6 922, 7 601, 8 071 and 10 555 DEGs were identified from 2-cell vs. 4 cell, 4-cell vs. 8-cell, 8-cell vs. morula, and morula vs. blastocyst, respectively. The GO distributions of the DEGs were classified into three categories: biological processes (BP), cellular components (CC), molecular functions (MF) with a total of 62 subcategories of two successive stages. KEGG enrichment analysis of DEGs showed that DEGs of 2-cell vs. 4-cell participated in 308 pathways, and significantly enriched in 11 pathways such as spliceosome, RNA transport and ubiquitin mediated proteolysis etc. DEGs of 4-cell vs. 8-cell participated in 310 pathways, and significantly enriched in 9 pathways such as olfactory transduction, neuroactive ligand-receptor interaction and nucleotide excision repair etc. DEGs of 8-cell vs. morula participated in 316 pathways, and significantly enriched in 10 pathways such as olfactory transduction, ubiquitin mediated proteolysis and neuroactive ligand-receptor interaction etc. DEGs of morula vs. blastocyst participated in 315 pathways, significantly enriched in 2 pathways i.e., spliceosome and RNA transport.ConclusionThis is the first study for analyzing the transcriptomes of IVF derived yak-embryos at different stages using high-throughput sequencing. A number of DEGs and their function, classification and metabolic pathways were discovered, which enriched transcriptome information for yak embryos. In addition, the results provided a foundation and reference to uncover the mechanism that regulates embryonic development and improves in vitro embryo production of the yak species. 

Key words: yak, in vitro fertilization, embryo, transcriptome, RNA-Seq

[1]    Wiener G, Han J L, Long R J. The Yak. Bangkok: Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, 2003. 1-13.
[2]    Zi X D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology, 2003, 59: 1303-1312.
[3]    Zi X D, Yin R H, Chen S W, Liang G N, Zhang D W, Guo C H. Developmental competence of embryos derived from reciprocal in vitro fertilization between yak (Bos grunniens) and cattle (Bos taurus). Journal of Reproduction and Development, 2009, 55(5): 480-483.
[4]    Xiao X, Zi X D, Niu H R, Xiong X R, Zhong J C, Li J, Wang L, Wang Y. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes. Reproductive Biology and Endocrinology, 2014, 12: 30.
[5]    Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[6]    朱志明, 陈红萍, 林如龙, 缪中纬, 辛清武, 李丽, 张丹青, 郑嫩珠. 山麻鸭开产期和产蛋高峰期卵巢组织转录组分析. 中国农业科学, 2016, 49(5): 998-1007.
ZHU Z M, CHEN H P, LIN R L, MIAO Z W, XIN Q W, LI L, ZHANG D Q, ZHENG N Z. Transcriptome analysis of ovary tissue in early laying period and egg laying peak period of Shanma ducks. Scientia Agricultura Sinica, 2016, 49(5): 998-1007. (in Chinese)
[7]    王文龙, 冯陈晨, 红梅, 岳建伟, 呼和巴特尔, 刘春霞. 不同发育阶段斯氏副柔线虫比较转录组学分析. 中国农业科学, 2017, 50(23): 4644-4655.
WANG W L, FENG C C, HONG M, YUE J W, HUHE B T E, LIU C X. The comparative transcriptome analysis of Parabronema skrjabini at different developmental stages. Scientia Agricultura Sinica, 2017, 50(23): 4644-4655. (in Chinese)
[8]    Gilbert I, Scantland S, Sylvestre E L, Gravel C, Laflamme I, Sirard MA, Robert C. The dynamics of gene products fluctuation during bovine pre-hatching development. Molecular Reproduction and Development, 2009, 76(8): 762-772.
[9]    Picelli S, Bjorklund A K, Faridani O R, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods, 2013, 10(11): 1096?1098.
[10]   Yan L Y, Yang M Y, Guo H S, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nature Structural & Molecular Biology, 2013, 20(9): 1131-1139.
[11]   Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics, 2014, 15:4.       
[12]   Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Animal Reproduction Science, 2014, 149(1-2): 46-58.
[13]   Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O'Neill R, Ruan Y, Chen J, Tian XC. Transcriptional profiles of bovine in vivo preimplantation development. BMC Genomics, 2014, 15: 756.
[14]   于学颖, 郭芹芹, 郝海生, 孙尉峻, 赵学明, 朱化彬, 杨凌, 杜卫华. 谷胱甘肽促进牛体外受精胚胎发育的转录组初探. 畜牧兽医学报, 2016, 47 (7): 1363-1372.
YU X Y, GUO Q Q, HAO H S, SUN W J, ZHAO X M, ZHU H B, YANG L, DU W H. Transcriptome of bovine IVF Embryos treated with glutathione. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (7): 1363-1372. (in Chinese)
[15]   兰道亮, 熊显荣, 位艳丽, 徐通, 钟金城, 字向东, 王永, 李键. 基于RNA-Seq 高通量测序技术的牦牛卵巢转录组研究: 进一步完善牦牛基因结构及挖掘与繁殖相关新基因. 中国科学: 生命科学, 2014, 44(3): 307-317.
LAN D L, XIONG XR, WEI Y L, XU T, ZHONG J C, ZI X D, WANG Y, LI J. RNA-Seq analysis of yak ovary: improving yak gene structure information and mining reproduction-related genes. Scientia Sinica Vitae, 2014, 44(3): 307-317. (in Chinese)
[16]   兰道亮, 熊显荣, 陈亚冰, 泽让东科, 艾鷖, 李键. 牦牛体外成熟卵母细胞差异转录组学研究. 中国科学(生命科学), 2017, 47(10): 1099-1112.
LAN D L, XIONG X R, CHEN Y B, ZERANG D K, AI Y, LI J. Differential transcriptome analysis of yak oocytes in vitro maturation. Scientia Sinica Vitae, 2017, 47(10): 1099-1112. (in Chinese)
[17]   郑杰, 蒲思颖, 杨远潇, 王琴, 杨绕芬, 字向东. 基于高通量测序的犏牛囊胚玻璃化冷冻损伤机制研究. 2017, 48 (10): 1871-1881.
ZHENG J, PU S Y, YANG Y X, WANG Q, YANG R F, ZI X D. Exploring mechanism for vitrification damage of the cross-bred blastocysts of the yak via high-throughput sequencing. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (10): 1871-1881. (in Chinese)
[18]   曾贤彬, 柴志欣, 王永, 马志杰, 杨琴, 宋乔乔, 钟金城. 犏牛精子发生阻滞的比较转录组研究. 中国科学(生命科学), 2014, 44(6): 584-601.
ZENG X B, CHAI Z X, WANG Y, MA Z J, YANG Q, SONG Q Q, ZHONG J C. Comparative transcriptome analysis of spermatogenesis arrest in cattle-yak. Scientia Sinica Vitae, 2014, 44(6): 584-601. (in Chinese)
[19]   张春强, 赵德超, 韩志玲, 张文广, 张家新. 父源性印记基因在牛早期胚胎中的表达. 中国农业科学, 2013, 46(18): 3887-3893.
ZHANG C Q, ZHAO D C, HAN Z L, ZHANG W G, ZHANG J X. The expression of paternal impringting genes in bovine early stage embryo. Scientia Agricultura Sinica, 2013, 46(18): 3887-3893. (in Chinese)
[20]   Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin H A, Qian X, Lang Y, Zhou R, Wang L, Wang K, Xia J, Liao S, Pan S, Lu X, Hou H, Wang Y, Zang X, Yin Y, Ma H, Zhang J, Wang Z, Zhang Y, Zhang D, Yonezawa T, Hasegawa M, Zhong Y, Liu W, Zhang Y, Huang Z, Zhang S, Long R, Yang H, Wang J, Lenstra J A, Cooper D N, Wu Y, Wang J, Shi P, Wang J, Liu J. The yak genome and adaptation to life at high altitude. Nature Genetics, 2012, 44(8): 946-949.
[21]   Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics, 2009, 25(9): 1105?1111.
[22]   Wanger G P, Kin K, Lynch V J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 2012, 131(4): 281?285.
[23]   Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26(1): 136?138.
[24]   Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1995, 57(1): 289-300.
[25] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.
[27]   Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 2011, 27(17): 2325-2329.
[28]   Robert C, McGraw S, Massicotte L, Pravetoni M, Gandolfi F, Sirard MA. Quantification of housekeeping transcript levels during the development of bovine preimplantation embryos. Biology of Reproduction, 2002, 67(5): 1465-1472.
[29]   Kues W A, Sudheer S, Herrmann D, Carnwath J W, Havlicek V, Besenfelder U, Lehrach H, Adjaye J, Niemann H. Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19768-19773.
[30]   Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 4139-4144.
[31]   Ortega M S, Kurian J J, McKenna R, Hansen P J. Characteristics of candidate genes associated with embryonic development in the cow: evidence for a role for WBP1 in development to the blastocyst stage. PLoS One, 2017, 12(5): e0178041.
[32]   Lee M T, Bonneau A R, Takacs C M, Bazzini A A, DiVito K R, Fleming E S, Giraldez A J. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013, 503(7476): 360-364.
[33]   Serafini P C, Silva I D, Smith G D, Motta E L, Rocha A M, Baracat E C. Endometrial claudin-4 and leukemia inhibitory factor are associated with assisted reproduction outcome. Reproductive Biology and Endocrinology, 2009, 7: 30.
[34]   Moriwaki K, Tsukita S, Furuse M. Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Developmental Biology, 2007, 312(2): 509-522.
[35]   Webb P G, Spillman M A, Baumgartner H K. Claudins play a role in normal and tumor cell motility.BMC Cell Biology2013, 14: 19.,
[36]   Munch E M, Sparks A E, Gonzalez Bosquet J, Christenson L K, Devor E J, Van Voorhis B J. Differentially expressed genes in preimplantation human embryos: potential candidate genes for blastocyst formation and implantation. Journal of Assisted Reproduction and Genetics, 2016, 33(8): 1017-1025.
[37]   Tadros W, Lipshitz H D. The maternal-to-zygotic transition: a play in two acts. Development, 2009, 136(18): 3033-3042.
[38]   Sirard M A. Factors affecting oocyte and embryo transcriptomes. Reproduction in Domestic Animal, 2012, 47(Suppl. 4): 148-155.
[39]   Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature, 1988, 332(6163): 459-461.
[40]   Briscoe J, Small S. Morphogen rules: design principles of gradient-mediated embryo patterning. Development, 2015, 142(23): 3996-4009.
[41]   Zuo Y, Su G, Wang S, Yang L, Liao M, Wei Z, Bai C, Li G. Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget, 2016, 7(45): 74120-74131.
[42]   Rauwerda H, Pagano J F B, de Leeuw W C, Ensink W, Nehrdich U, de Jong M, Jonker M, Spaink H P, Breit T M. Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics, 2017, 18(1): 287.
[43]   Sato M, Sato K. Dynamic regulation of autophagy and endocytosis for cell remodeling during early development. Traffic, 2013, 14(5): 479-486.
[44]   Abada A, Elazar Z. Getting ready for building: signaling and autophagosome biogenesis. EMBO reports, 2014, 15(8): 839-852.
[45]   Altmäe S, Reimand J, Hovatta O, Zhang P, Kere J, Laisk T, Saare M, Peters M, Vilo J, Stavreus-Evers A, Salumets A. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks. Molecular Endocrinology, 2012, 26(1): 203-217.
[46]   Shi C, Han H J, Fan L J, Guan J, Zheng X B, Chen X, Liang R, Zhang X W, Sun K K, Cui Q H, Shen H. Diverse endometrial mRNA signatures during the window of implantation in patients with repeated implantation failure. Human Fertility (Cambridge), Doi: 10.1080/14647273.2017.1324180.
[47]   Hospenthal M K, Freund S M V, Komander D. Assembly, analysis and architecture of atypical ubiquitin chains. Nature Structural & Molecular Biology, 2013, 20(5): 555-565.
[48]   Isom S C, Stevens J R, Li R, Spollen W G, Cox L, Spate L D, Murphy C N, Prather R S. Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies. Physiological Genomics, 2013, 45(14): 577-589.
[49]   Kim Y Y, Roubal I, Lee Y S, Kim J S, Hoang M, Mathiyakom N, Kim Y. Alcohol-induced molecular dysregulation in human embryonic stem cell-derived neural precursor cells. PLoS One, 2016, 11(9): e0163812.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[3] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[6] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[7] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[8] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[9] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[10] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[11] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[12] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[13] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[14] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
[15] QIN QiuHong,HE XuJiang,JIANG WuJun,WANG ZiLong,ZENG ZhiJiang. The Capping Pheromone Contents and Putative Biosynthetic Pathways in Larvae of Honeybees Apis cernana [J]. Scientia Agricultura Sinica, 2021, 54(11): 2464-2475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!