Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 1058-1065.doi: 10.3864/j.issn.0578-1752.2019.06.009

• HORTICULTURE • Previous Articles     Next Articles

Physiological Mechanism of S-adenosylmethionine on Alleviating Chlorothalonil Residue in Tomato

GU ChaoHeng,YAN YanYan,WEI XiYa,SHI QingHua,GONG Biao()   

  1. College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology / Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, Tai’an 271018, Shandong
  • Received:2018-11-18 Accepted:2019-01-14 Online:2019-03-16 Published:2019-03-22
  • Contact: Biao GONG E-mail:gongbiao@sdau.edu.cn

Abstract:

【Objective】 In order to provide basic mechanism for vegetable safe production, this study aimed at revealing the physiological mechanism of S-adenosylmethionine (SAM)-induced pesticide metabolism. 【Method】 The fresh-eating tomato ‘QianXi’ and broad-spectrum pesticide ‘chlorothalonil, CHT’ were selected as the experimental materials. Then, we studied the effects of exogenous SAM on the metabolism of pesticide, reactive oxygen species and glutathione. 【Result】 The results showed that the CHT residues were significantly reduced by exogenous spraying 0.5-2 μmol·L -1 SAM. However, no significantly changes could be observed when the concentrations of SAM arrived at 0.5 μmol·L -1. Compared with control, the activities of glutathione S-transferase (GST), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) were significantly increased under CHT treatment. And similar results could be obtained with the contents of glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (GSH+GSSG). The GSH/GSSG were induced by CHT firstly, and then decreased. At the same time, superoxide anion ($\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$) and hydrogen peroxide (H2O2) were significantly induced by CHT. However, no significant changes were observed in malondialdehyde (MDA) content. Importantly, exogenous application of 0.5 μmol·L -1 SAM had significant effects on improving the activities of GST, GR and DHAR, as well as contents of GSH and GSH+GSSG. Similarly, no significant changes were observed in MDA contents among different treatments. 【Conclusion】 Taken together, exogenous application of 0.5 μmol·L -1 SAM could active the key enzymes of GR and DHAR to improve the glutathione cycle and GSH regeneration, which induced the CHT metabolism of tomato fruit depending on GST, $\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$, and H2O2 pathway.

Key words: tomato, pesticide metabolism, S-adenosylmethionine, reactive oxygen species, glutathione metabolism

Fig. 1

Effects of different concentrations of SAM on CHT contents of tomato fruits Different letters meant significant difference among treatments at 0.05 level. The same as below"

Fig. 2

Effects of CHT and CHT+SAM on contents of$\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$, H2O2 and MDA of tomato fruits"

Fig. 3

Effects of CHT and CHT+SAM on activities of GR and DHAR of tomato fruits"

Fig. 4

Effects of CHT and CHT+SAM on contents of GSH, GSSG, GSH+GSSG and GSH/GSSG of tomato fruits"

Fig. 5

Effects of CHT and CHT+SAM on GST activity of tomato fruits"

[1] 于安芬, 车宗贤, 王东晖, 李瑞琴, 白滨, 徐瑞, 宋政平 . 百菌清在番茄上的自然消解动态及健康风险研究. 西北农业学报, 2016,25(10):1508-1514.
doi: 10.7606/j.issn.1004-1389.2016.10.013
YU A F, CHE Z X, WANG D H, LI R Q, BAI B, XU R, SONG Z P . Study on natural dynamic degradation of chlorothalonil in tomato and its health risks. Acta Agriculturae Boreali-occidentalis Sinica, 2016,25(10):1508-1514. (in Chinese)
doi: 10.7606/j.issn.1004-1389.2016.10.013
[2] ZHOU Y H, XIA X J, YU G B, WANG J T, WU J X, WANG M M, YANG Y X, SHI K, YU Y L, CHEN Z X, GAN J, YU J Q . Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 2015,5:9018.
doi: 10.1038/srep09018 pmid: 25761674
[3] MUNTANE J . Regulation of drug metabolism and transporters. Current Drug Metabolism, 2009,10(8):932-945.
doi: 10.2174/138920009790274595
[4] SIMINSZKY B . Plant cytochrome P450-mediated herbicide metabolism. Phytochemistry Reviews, 2006,5:445-458.
doi: 10.1007/s11101-006-9011-7
[5] YIN Y L, ZHOU Y, ZHOU Y H, SHI K, ZHOU J, YU Y L, YU J Q, XIA X J . Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. Journal of Hazardous Materials, 2016,316:221-231.
doi: 10.1016/j.jhazmat.2016.04.070 pmid: 27236431
[6] 杜丽亚, 章钢娅, 靳伟 . 土壤含水量和胡敏酸对有机氯农药降解的影响. 土壤学报, 2006,43(2):158-162.
doi: 10.11766/trxb200409300225
DU Y L, ZHANG G Y, JIN W . Effects of soil water content and humic acid on degradation of organochlorine pesticides. Acta Pedologica Sinica, 2006,43(2):158-162. (in Chinese)
doi: 10.11766/trxb200409300225
[7] 刘鑫, 李晓彤, 荆鑫, 王硕硕, 巩彪, 魏珉, 史庆华 . S-腺苷甲硫氨酸对黄瓜断根扦插苗生长及生理代谢的影响. 园艺学报, 2018,45(8):1513-1522.
LIU X, LI X T, JING X, WANG S S, GONG B, WEI M, SHI Q H . Effect of S-adenosylmethionine on growth and physiological metabolism of cucumber cutting seedlings. Acta Horticulturae Sinica, 2018,45(8):1513-1522. (in Chinese)
[8] GONG B, LI X, VANDENLANGENBERG K M, WEN D, SUN S S, WEI M, LI Y, YANG F J, SHI Q H, WANG X F . Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal, 2014,12(6):694-708.
[9] GONG B, WANG X F, WEI M, YANG F J, LI Y, SHI Q H . Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissus and Organ Culture, 2016,124:377-391.
[10] CHEN Y W, TAN T W . Enhanced S-adenosylmethionine production by increasing ATP levels in baker's yeast(Saccharomyces cerevisiae). Journal of Agricultural and Food Chemistry, 2018,66(20):5200-5209.
[11] 何建社, 张利, 刘千里, 朱欣伟, 刘兴良, 冯秋红, 罗达, 史作民 . 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应. 生态学报, 2018,38(7):2362-2371.
doi: 10.5846/stxb201701230189
HE J S, ZHANG L, LIU Q L, ZHU X W, LIU X L, FENG Q H, LUO D, SHI Z M . Physiological and biochemical response of typical shrubs to drought stress in the Minjiang River dry valley. Acta Ecologica Sinica, 2018,38(7):2362-2371. (in Chinese)
doi: 10.5846/stxb201701230189
[12] 孙莎莎, 巩彪, 温丹, 王秀峰, 魏珉, 杨凤娟, 李岩, 史庆华 . 对羟基苯甲酸胁迫下褪黑素对黄瓜胚根生理生化特性的影响. 应用生态学报, 2016,27(3):897-903.
doi: 10.13287/j.1001-9332.201603.003
SUN S S, GONG B, WEN D, WANG X F, WEI M, YANG F J, LI Y, SHI Q H . Effect of exogenous melatonin on physiological and biochemical characteristics of cucumber radicles under p-hydroxybenzoic acid. Chinese Journal of Applied Ecology, 2016,27(3):897-903. (in Chinese)
doi: 10.13287/j.1001-9332.201603.003
[13] GONG B, LI X, BLOSZIES S, WEN D, SUN S S, WEI M, LI Y, YANG F J, SHI Q H, WANG X F . Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free Radical Biology and Medicine, 2014,71:36-48.
doi: 10.1016/j.freeradbiomed.2014.02.018 pmid: 24589373
[14] 李顺欣, 郅军锐, 杨广明, 岳文波, 叶茂 . 外源茉莉酸诱导的菜豆叶片生化抗性及其对西花蓟马体内保护酶和解毒酶活性的影响. 应用生态学报, 2017,28(9):2975-2983.
doi: 10.13287/j.1001-9332.201709.038
LI S X, ZHI J R, YANG G M, YUE W B, YE M . Resistance of bean leaves induced by exogenous jasmonic acid and its effects on activities of protective and detoxification enzymes in Frankliniella occidentalis. Chinese Journal of Applied Ecology, 2017,28(9):2975-2983. (in Chinese)
doi: 10.13287/j.1001-9332.201709.038
[15] FOYER C H, HALLIWELL B . The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976,133:21-25.
doi: 10.1007/BF00386001
[16] NAKANO Y, ASADA K . Hydrogen peroxide scanvenged by ascorbate-specific peroxidase in spinach chloroplast. Plant and Cell Physiology, 1981,22:867-880.
doi: 10.1093/oxfordjournals.pcp.a076232
[17] GONG B, WEN D, BLOSZIES S, LI X, WEI M, YANG F J, SHI Q H, WANG X F . Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiologiae Plantarum, 2014,36:2167-2181.
doi: 10.1007/s11738-014-1593-x
[18] 柴兴苹, 张玉秀, 谭金娟, 冯珊珊, 柴团耀 . Zn胁迫下小麦S-腺苷甲硫氨酸代谢途径关键基因表达模式分析. 植物生理学报, 2013,49(4):375-384.
CHAI X P, ZHANG Y X, TAN J J, FENG S S, CHAI T Y . Analysis of expression patterns of genes participated in S-adenosylmethionine (SAM) metabolic pathway in wheat under Zn stress. Plant Physiology Journal, 2013,49(4):375-384. (in Chinese)
[19] EZAKI B, HIGASHI A, NANBA N, NISHIUCHI T . An S-adenosyl methionine synthetase (SAMS) gene from Andropogon virginicus L. confers aluminum stress tolerance and facilitates epigenetic gene regulation in Arabidopsis thaliana. Frontiers in Plant Science, 2016,7:1627.
[20] NELSON D , WERCK-REICHHART D A . P450-centric view of plant evolution. Plant Journal, 2011,66(1):194-211.
doi: 10.1111/j.1365-313X.2011.04529.x pmid: 21443632
[21] LV B S, TIAN H Y, ZHANG F, LIU J J, LU S C, BAI M Y, LI C Y, DING Z J . Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 2018,14(1):e1007144.
doi: 10.1371/journal.pgen.1007144
[22] NOCTOR G, FOYER C H . Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiology, 2016,171(3):1581-1592.
doi: 10.1104/pp.16.00346 pmid: 27208308
[23] GUO Z F, TAN J L, ZHUO C L, WANG C Y, XIANG B, WANG Z Y . Abscisic acid, H2O2 and nitric oxide interactions mediated cold- induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnology Journal, 2014,12:601-612.
[24] 丁顺华, 陈珊, 卢从明 . 植物叶绿体谷胱甘肽还原酶的功能研究进展. 植物生理学报, 2016,52(11):1703-1709.
DING S H, CHEN S, LU C M . Research progress on functions of glutathione reductase in chloroplasts of plants. Plant Physiology Journal, 2016,52(11):1703-1709. (in Chinese)
[25] 谭维嘉, 梁革梅, 郭予元, 王武刚 . B.t杀虫剂预处理缓解棉铃虫对化学农药抗性及机理的研究. 中国农业科学, 1997,30(5):13-19.
TAN J W, LIANG G M, GUO Y Y, WANG W G . Study on the mechanism alleviation of cotton bollworm to insecticides by B.t treatment. Scientia Agricultura Sinica, 1997,30(5):13-19. (in Chinese)
[26] KWAK M K, LEE M H, PARK S J, SHIN S M, LIU R, KANG S O . Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione. Febs Letters, 2016,590(6):739-749.
doi: 10.1002/1873-3468.12102 pmid: 26898161
[27] DIAO Q N, SONG Y J, QI H Y . Exogenous spermidine enhances chilling tolerance of tomato ( Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels. Acta Physiologiae Plantarum, 2015,37(11):230.
doi: 10.1007/s11738-015-1980-y
[28] AGRAWAL S B, AGRAWAL M, LEE E H, KRAMER G F, PILLAI P . Changes in polyamine and glutathione contents of a green alga, Chlorogonium elongatum(Dang) France exposed to mercury. Environmental & Experimental Botany, 1992,32(2):145-151.
doi: 10.1016/0098-8472(92)90039-5
[29] 化文平, 刘文超, 王喆之, 李翠芹 . 干涉丹参SmORA1对植物抗病和丹参酮类次生代谢的影响. 中国农业科学, 2016,49(3):491-502.
doi: 10.3864/j.issn.0578-1752.2016.03.008
HUA W P, LIU W C, WANG Z Z, LI C Q . Effect of RNAi of SmORA1 on disease resistance and tanshinones secondary metabolism in Salvia miltiorrhiza. Scientia Agricultura Sinica, 2016,49(3):491-502. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.008
[30] 周琦, 郑幸果, 何辉煌, 康杰, 肖海华 . 植物S-腺苷甲硫氨酸合成酶的新功能展望. 生命的化学, 2017(4):57-63.
ZHOU Q, ZHENG X G, HE H H, KANG J, XIAO H H . Progresses in new functions of plantS-adenosylmethionine synthetase. Chemistry of Life, 2017(4):57-63. (in Chinese)
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[4] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[5] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[6] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[7] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[8] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[9] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[10] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[11] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[12] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[13] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[14] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[15] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!