Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5290-5301.doi: 10.3864/j.issn.0578-1752.2021.24.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells

HU RongRong(),DING ShiJie(),GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo(),ZHOU GuangHong()   

  1. College of Food Science and Technology, Nanjing Agricultural University/National Meat Quality and Safety Control Engineering Technology Research Center/Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095
  • Received:2021-05-20 Accepted:2021-07-31 Online:2021-12-16 Published:2021-12-28
  • Contact: ChangBo TANG,GuangHong ZHOU E-mail:1119776527@qq.com;shijieding@njau.edu.cn;changbotang@hotmail.com;guanghong.zhou@hotmail.com

Abstract:

【Objective】The objective of this study was to investigate the regulatory effects of Trolox, an antioxidant water-soluble vitamin E analogue, on the proliferation and differentiation of pig muscle stem cells, which possibly was affected by reactive oxygen species. The study could provide a theoretical fundament for further optimizing the proliferation and differentiation process of cultured meat seed cells in vitro. 【Method】Initially, 0, 50, 100 and 200 μmol·L-1 of Trolox was added to pig muscle stem cells during their proliferation culture for 3 d, respectively. The blood cell counter and CCK8 technology were both used to detect the influence of Trolox on the cell proliferation. RT-qPCR was employed to measure the expression level of PAX7 gene for the further characterizing cellular stemness induced by Trolox. Meanwhile, Western Blotting was also used to testify the expression level of PAX7 protein. The intracellular reactive oxygen species was stained by CellROX fluorescent dye, and the High-throughput High-content Live Cell Confocal Imaging System was adopted to evidence the regulatory effect of Trolox on reactive oxygen species. Trolox was additionally used to the in vitro myogenic differentiation of pig muscle stem cells. RT-qPCR was used to detect the expression levels of early differentiation marker genes MYOG, CAV-3 and terminal differentiation marker gene myosin heavy chain (MyHC). Western Blotting was applied to detect the expression of MyHC protein, whereas Immunofluorescence technique stained MyHC and counted the proportion of MyHC positive cells. 【Result】The cell proliferation fold statistics indicated that the proliferation fold of pig muscle stem cells in 50 or 100 μmol·L-1 Trolox treatment groups was significantly higher than that under the control group (P<0.05); CCK8 test showed that the absorbance value under 50 or 100 μmol·L-1 Trolox treatment groups on the 3rd day was significantly higher than that under the controls (P<0.05); Trolox concentrations at 100 or 200 μmol·L-1 significantly up-regulated the expression of PAX7 gene (P<0.05), but had no dominant effect for the improvement of PAX7 proteins with no statistical difference (P>0.05). The level of reactive oxygen species in the cells was significantly reduced (P<0.001) when Trolox applied. Moreover, after the addition of Trolox to the cells in their differentiation process, MYOG and CAV-3 in the predifferentiation stage as well as MyHC genes in the terminal differentiation stage were dramatically up-regulated (P<0.05). However, Western Blotting results exhibited that the expression of MyHC protein had no a huge change (P>0.05), while the immunofluorescence results displayed that the proportion of MyHC positive cells had an increasing trend but there was no statistical difference (P>0.05). 【Conclusion】Trolox promoted the proliferation and differentiation of pig muscle stem cells via reducing reactive oxygen species in the cells.

Key words: Trolox, pig muscle stem cells, reactive oxygen species, proliferation, differentiation

Table 1

The primer information of RT-qPCR"

基因 Gene 引物序列 Primer Sequence 产物长度 Product length (bp)
PAX7 上游 Forward GTGCCCTCAGTGAGTTCGATT 152
下游 Reverse TCCAGACGGTTCCCTTTGTC
MYOG 上游 Forward AGGCTACGAGCGGACTGA 230
下游 Reverse GCAGGGTGCTCCTCTTCA
CAV-3 上游 Forward GCCCAGATCGTCAAGGACAT 195
下游 Reverse CAGGCGGTAGCACCAATACT
MyHC 上游 Forward AGGACCAAGTACGAGACGGA 105
下游 Reverse AGCTTCCACGTGTTCCTCAG

Fig. 1

The Morphology of pig muscle stem cells cultured for different days A-C: Pig muscle stem cells cultured for 1, 2 and 3 d (50×); D-F: Pig muscle stem cells cultured for 1, 2 and 3 d (200×)"

Fig. 2

The effect of Trolox on the proliferation of pig muscle stem cells in vitro A-D: Pig muscle stem cells cultured with Trolox of 0, 50, 100 and 200 μmol∙L-1 for 3 d (50×); E: Proliferation fold of pig muscle stem cells after culturing with different concentrations of Trolox for 3 d; F: CCK8 detect the proliferation of pig muscle stem cells cultured with different concentrations of Trolox for 1, 2 and 3 d"

Fig. 3

The regulation of Trolox on reactive oxygen species in pig muscle stem cells A: CellROX fluorescent staining of pig muscle stem cells in the control group on the 3 d; B: CellROX fluorescent staining of pig muscle stem cells in the 100 μmol∙L-1 Trolox treatment group on the 3 d. 1: DAPI staining; 2: CellROX stains reactive oxygen species; 3: 1 and 2 overlap. NC: The negative control group; C-E: Average fluorescence intensity per unit area, fluorescence staining area, total fluorescence stained by CellROX of a single pig muscle stem cell"

Fig. 4

The effects of different concentrations of Trolox on PAX7"

Fig. 5

The effect of Trolox on the differentiation of pig muscle stem cells A-C: The process of myogenic differentiation of pig muscle stem cells in vitro; A: Pig muscle stem cells proliferated for 2 d; B: Pig muscle stem cells proliferated for 4 d in the predifferentiation stage; C: Pig muscle stem cells differentiated for 5 d after changing the differentiation medium (50×); D-E: Relative mRNA expression of MYOG and CAV-3 in the predifferentiation stage; F: Relative mRNA expression of MyHC; G: Relative protein expression of MyHC; H-K: The MyHC immunofluorescence staining pictures of the treatment groups p-d-, p-d+, p+d+, p+d-, respectively. p: The process of cell proliferation; d: The process of cell differentiation; +: 100 μmol∙L-1 Trolox treatment; -: No Trolox treatment. 1: DAPI stainning; 2: The fluorescence of target protein; 3: 1 and 2 overlap. L: Statistical results of MyHC positive cells in different treatment groups"

[1] ZHANG G Q, ZHAO X R, LI X L, DU G C, ZHOU J W, CHEN J. Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 2020, 97:443-450.
[2] 周光宏, 丁世杰, 徐幸莲. 培养肉的研究进展与挑战. 中国食品学报, 2020, 20(5):1-11.
ZHOU G H, DING S J, XU X L. Progress and challenges in cultured meat. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5):1-11. (in Chinese)
[3] 周景文, 张国强, 赵鑫锐, 李雪良, 堵国成, 陈坚. 未来食品的发展: 植物蛋白肉与细胞培养肉. 食品与生物技术学报, 2020, 39(10):1-8.
ZHOU J W, ZHANG G Q, ZHAO X R, LI X L, DU G C, CHEN J. Future of food: plant-based and cell-cultured meat. Journal of Food Science and Biotechnology, 2020, 39(10):1-8. (in Chinese)
[4] BACH A D, STEM-STRAETER J, BEIER J P, BANNASCH H, STARK G B. Engineering of muscle tissue. Clinics in Plastic Surgery, 2003, 30(4):589-599.
doi: 10.1016/S0094-1298(03)00077-4
[5] FORCINA L, MIANO C, PELOSI L, MUSARÒ A. An overview about the biology of skeletal muscle satellite cells. Current Genomics, 2019, 20(1):24-37.
doi: 10.2174/1389202920666190116094736
[6] DING S J, WANG F, LIU Y, LI S, ZHOU G H, HU P. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery, 2017, 3:17003.
doi: 10.1038/cddiscovery.2017.3
[7] FU X, XIAO J, WEI Y N, LI S, LIU Y, YIN J, SUN K, SUN H, WANG H T, ZHANG Z K, ZHANG B T, SHENG C, WANG H Y, HU P. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Research, 2015, 25(6):655-673.
doi: 10.1038/cr.2015.58
[8] DING S J, SWENNEN G N M, MESSMER T, GAGLIARDI M, MOLIN D G M, LI C B, ZHOU G H, POST M J. Maintaining bovine satellite cells stemness through p38 pathway. Scientific Reports, 2018, 8(1):10808.
doi: 10.1038/s41598-018-28746-7
[9] 龚觉晓. 体外培养环境对骨髓间充质干细胞分化成心肌样细胞的影响[D]. 南京: 南京医科大学, 2004.
GONG J X. An experimental study on inducing bone marrow mesenchymal stem cells to differentiate into cardiomyogenic cells in the culture microenvironment in vitro[D]. Nanjing: Nanjing Medical University, 2004. (in Chinese)
[10] KOZAKOWSKA M, PIETRASZEK-GREMPLEWICZ K, JOZKOWICZ A, DULAK J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility, 2015, 36(6):377-393.
doi: 10.1007/s10974-015-9438-9
[11] RAY P D, HUANG B W, TSUJI Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 2012, 24(5):981-990.
doi: 10.1016/j.cellsig.2012.01.008
[12] 陈培, 张钦宪. PTEN-PI3K/AKT细胞信号转导通路与肿瘤. 癌变·畸变·突变, 2010, 22(6):484-487.
CHEN P, ZHANG Q X. PTEN-PI3K/AKT cell signal transduction pathway and tumor. Carcinogenesis, Teratogenesis & Mutagenesis, 2010, 22(6):484-487. (in Chinese)
[13] 王雪鹏, 李茂强, 边振宇, 季成, 何齐芳, 姚旺祥, 朱六龙. PI3K/Akt信号通路在骨髓间充质干细胞增殖及成骨分化调控中的作用. 中华骨质疏松和骨矿盐疾病杂志, 2014, 7(3):250-257.
WANG X P, LI M Q, BIAN Z Y, JI C, HE Q F, YAO W X, ZHU L L. Roles of P13K/Akt signaling pathway in regulating bone mesenchymal stem cells proliferation and differentiation. Chinese Journal of Osteoporosis and Bone Mineral Research, 2014, 7(3):250-257. (in Chinese)
[14] BARBIERI E, SESTILL P. Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction, 2012, 2012:982794.
[15] ADHIHETTY P J, IRRCHER I, JOSEPH A M, LJUBICIC V, HOOD D A. Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental Physiology, 2003, 88(1):99-107.
doi: 10.1113/eph8802505
[16] 刘奥, 祁星, 张颖超, 徐天雪, 易静, 杨洁. 细胞内氧化还原状态荧光探针的原理与应用. 上海交通大学学报(医学版), 2018, 38(1):101-107.
LIU A, QI X, ZHANG Y C, XU T X, YI J, YANG J. Principle and applications of fluorescent probes for intracellular redox detection. Journal of Shanghai Jiao Tong University (Medical Science), 2018, 38(1):101-107. (in Chinese)
[17] PANIERI E, SANTORO M M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death & Disease, 2016, 7(6):e2253.
[18] TAN D Q, SUDA T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxidants & Redox Signaling, 2018, 29(2):149-168.
[19] RYALL J G, DELL'ORSO S, DERFOUL A, JUAN A, ZARE H, FENG X S, CLERMONT D, KOULNIS M, GUTIERREZ-CRUZ G, FULCO M, SARTORELLI V. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell, 2015, 16(2):171-183.
doi: 10.1016/j.stem.2014.12.004
[20] GU Y J, LI T, DING Y L, SUN L X, TU T, ZHU W, HU J B, SUN X C. Changes in mesenchymal stem cells following long-term culture in vitro. Molecular Medicine Reports, 2016, 13(6):5207-5215.
doi: 10.3892/mmr.2016.5169
[21] L'HONORE A, COMMERE P H, NEGRONI E, PALLAFACCHINA G, FRIGUET B, DROUIN J, BUCKINGHAM M, MONTARRAS D. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife, 2018, 7:e32991.
doi: 10.7554/eLife.32991
[22] MALINSKA D, KUDIN A P, BEJTKA M, KUNZ W S. Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion, 2012, 12(1):144-148.
doi: 10.1016/j.mito.2011.06.015
[23] HORN A P, BERNARDI A, FROZZA R L, GRUDZINSKI P B, HOPPE J B, SOUZA L F, CHAGASTELLES P, WYSE A T, BERNARD E A, BATTASTINI A M O, CAMPOS M M, LENZ G, NARDI N B, SALBEGO C. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells & Development, 2011, 20(7):1171-1181.
[24] FROTA JUNIOR M L C D, PIRES A S, ZEIDÁN-CHULIÁ F, BRISTOT I J, LOPES F M, DE BITTENCOURT PASQUALI M A, ZANOTTO-FILHO A, BEHR G A, KLAMT F, GELAIN D P, MOREIRA J C F. In vitro optimization of retinoic acid-induced neuritogenesis and TH endogenous expression in human SH-SY5Y neuroblastoma cells by the antioxidant Trolox. Molecular and Cellular Biochemistry, 2011, 358(1):325-334.
doi: 10.1007/s11010-011-0983-2
[25] XIA Z G, DICKENS M, RAINGEAUD J, DAVIS R J, GREENBERG M E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270(5240):1326-1331.
doi: 10.1126/science.270.5240.1326
[26] GARCÍA-PRAT L, MARTÍNEZ-VICENTE M, PERDIGUERO E, ORTET L, RODRÍGUEZ-UBREVA J, REBOLLO E, RUIZ-BONILLA V, GUTARRA S, BALLESTAR E, SERRANO A L, SANDRI M, MUÑOZ-CÁNOVES P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584):37-42.
doi: 10.1038/nature16187
[27] LE MOAL E, PIALOUX V, JUBAN G T, GROUSSARD C, ZOUHAL H, CHAZAUD B, MOUNIER R. Redox control of skeletal muscle regeneration. Antioxidants & Redox Signaling, 2017, 27(5):276-310.
[28] ROCHETEAU P, GAYRAUD-MOREL B, SIEGL-CACHEDENIER I, BLASCO M A, TAJBAKHSH S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell, 2012, 148(1/2):112-125.
doi: 10.1016/j.cell.2011.11.049
[29] OLGUIN H C, OLWIN B B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Developmental Biology, 2004, 275(2):375-388.
doi: 10.1016/j.ydbio.2004.08.015
[30] HERNÁNDEZ-HERNÁNDEZ J M, GARCÍA-GONZÁLEZ E G, BRUN C E, RUDNICKI M A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Seminars in Cell & Developmental Biology, 2017, 72:10-18.
[31] QUACH N L, BIRESSI S, REICHARDT L F, KELLER C, RANDO T A. Focal adhesion kinase signaling regulates the expression of caveolin 3 and β1 integrin, genes essential for normal myoblast fusion. Molecular Biology of the Cell, 2009, 20(14):3422-3435.
doi: 10.1091/mbc.e09-02-0175
[32] BAI T, LI J Q, SINCLAIR A, IMREN S, MERRIAM F, SUN F, O'KELLY M B, NOURIGAT C, JAIN P, DELROW J J, BASOM R S, HUNG H C, ZHANG P, LI B W, HEIMFELD S, JIANG S Y, DELANEY C. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nature Medicine, 2019, 25(10):1566-1575.
doi: 10.1038/s41591-019-0601-5
[33] 唐朝春. 抗氧化物对人脐血CD34~+细胞体外扩增的影响[D]. 上海: 华东理工大学, 2018.
TANG C C. The effect of antioxidant on the Ex vivo expansion of cord blood CD34+ cells[D]. Shanghai: East China University of Science and Technology, 2018. (in Chinese)
[34] VON MALTZAHN J, JONES A E, PARKS R J, RUDNICKI M A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. PNAS, 2013, 110(41):16474-16479.
doi: 10.1073/pnas.1307680110
[35] KEREN A, TAMIR Y, BENGAL E. The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Molecular and Cellular Endocrinology, 2006, 252(1/2):224-230.
doi: 10.1016/j.mce.2006.03.017
[36] SEGALÉS J, PERDIGUERO E, MUÑOZ-CÁNOVES P. Epigenetic control of adult skeletal muscle stem cell functions. The FEBS Journal, 2015, 282(9):1571-1588.
doi: 10.1111/febs.2015.282.issue-9
[37] PERDIGUERO E, RUIZ-BONILLA V, SERRANO A L, MUÑOZ-CÁNOVES P. Genetic deficiency of p38α reveals its critical role in myoblast cell cycle exit: the p38α-JNK connection. Cell Cycle, 2007, 6(11):1298-1303.
doi: 10.4161/cc.6.11.4315
[38] PALACIOS D, MOZZETTA C, CONSALVI S, CARETTI G, SACCONE V, PROSERPIO V, MARQUEZ V E, VALENTE S, MAI A, FORCALES S V, SARTORELLI V, PURI P L. TNF/p38α/ polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell, 2010, 7(4):455-469.
doi: 10.1016/j.stem.2010.08.013
[39] MOZZETTA C, CONSALVI S, SACCONE V, FORCALES S V, PURI P L, PALACIOS D. Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation. Cell Cycle, 2011, 10(2):191-198.
[40] 甘强, 金礼吉, 安利佳. 耦联性转录与翻译新进展: 真核生物细胞核内的翻译. 遗传, 2003, 25(6):718-720.
GAN Q, JIN L J, AN L J. The new advance of coupled transcription and translation: translation within the nuclei in eukaryotes. Hereditas(Beijing), 2003, 25(6):718-720. (in Chinese)
[41] STEPHAN J R, YU F T, COSTELLO R M, BLEIER B S, NOLAN E M. Oxidative post-translational modifications accelerate proteolytic degradation of calprotectin. Journal of the American Chemical Society, 2018, 140(50):17444-17455.
doi: 10.1021/jacs.8b06354
[42] ARDITE E, BARBERA J A, ROCA J, FERNÁNDEZ-CHECA J C. Glutathione depletion impairs myogenic differentiation of murine skeletal muscle C2C12 cells through sustained NF-kappaB activation. The American Journal of Pathology, 2004, 165(3):719-728.
doi: 10.1016/S0002-9440(10)63335-4
[43] GUTTRIDGE D C, MAYO M W, MADRID L V, WANG C Y, BALDWIN A S. NF-κB-Induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000, 289(5488):2363-2366.
doi: 10.1126/science.289.5488.2363
[44] GUTTRIDGE D C, ALBANESE C, REUTHER J Y, PESTELL R G, BALDWIN A S. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Molecular & Cellular Biology, 1999, 19(8):5785-5799.
[45] L′HONORE A, COMMÈRE P H, OUIMETTE J F, MONTARRAS D, DROUIN J, BUCKINGHAM M. Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Developmental Cell, 2014, 29(4):392-405.
doi: 10.1016/j.devcel.2014.04.006
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[3] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[4] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[5] CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels [J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[10] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[11] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[12] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[13] LI Yu,WANG Fang,WENG ZeBin,SONG HaiZhao,SHEN XinChun. Preparation of Soybean Protein-Derived Pro-osteogenic Peptides via Enzymatic Hydrolysis [J]. Scientia Agricultura Sinica, 2021, 54(13): 2885-2894.
[14] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[15] ZHAO JiYu,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Relationship Between Growth and Development Characteristics and Yield Formation of Summer Maize Varieties Differing in Maturities [J]. Scientia Agricultura Sinica, 2021, 54(1): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!