Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 629-638.doi: 10.3864/j.issn.0578-1752.2019.04.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Plant Density and Plant Growth Regulator on Stalk Traits of Maize and Their Regulation

XU TianJun,LÜ TianFang,CHEN ChuanYong,LIU YueE,ZHANG YiTian,LIU XiuZhi,ZHAO JiuRan(),WANG RongHuan()   

  1. Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2018-11-06 Accepted:2018-12-29 Online:2019-02-16 Published:2019-02-27
  • Contact: JiuRan ZHAO,RongHuan WANG E-mail:maizezhao@126.com;ronghuanwang@126.com

Abstract:

【Objective】Studying and defining the effects of planting density and plant growth regulator on maize stalk traits can provide theoretical basis and technical support for rational close planting, optimizing suitable population structure and realizing high yield of maize. 【Method】 JK968 was used as material. The experiment was conducted to study the effects of planting density and plant growth regulator on maize stalk traits with three planting density treatments, 6.0×10 4 plant/hm 2 (D1), 7.5×10 4plant/hm 2 (D2) and 9.0×10 4plant/hm 2 (D3), and plant growth regulator treatment (ethylene and chloramphenicol compounds, CK). 【Result】 (1) With the increase of planting density, the lodging rate was increased. In the condition of D1 density, the lodging rate of JK968 was 69.1% and 83.4% lower than that of D2 and D3 treatments, respectively. Among them, the lodging rate in D3 was 22.6% and 47.8% higher than D2 and D1, respectively. The ethylene and chloramphenicol (EC) treatment significantly reduced the lodging rate, and the lodging rate D1, D2 and D3 after EC treatment decreased 5.0%, 19.8% and 41.0% than that of the control, respectively. (2) Plant height, ear height, ear position coefficient and center of gravity height were significant different among three plant densities and EC treatment, which showed an increasing trend with the increase of planting density. EC treatment significantly reduced the internodes length below the 6th node of the shoot, increased the internodes length above the 7th node of the shoot. Compared with the control, the height and the ear position coefficient were decreased slightly after EC treatment, while the ear height and gravity center height were significantly decreased. (3) There were significant differences in the bending strength and puncture strength of stem epidermis between different treatments. The stem bending force and rind penetration strength were first increased and then decreased from booting stage to mature stage and reached the maximum value in milk stage. The stem bending force and rind penetration strength of 3rd, 4th and 5th internodes aboveground were significantly different with the increase of planting density and significantly increased after EC treatment. The stem bending force and rind penetration strength of different internodes showed that 3rd > 4th > 5th. (4) The number of grains per panicle and 100-grain weight was significantly decreased with the increase of planting density. After EC treatment, the number of grains per panicle, 100-grain weight and yield increased compared with the control. Under the D1, D2 and D3, the yield of EC treated were 438.8 kg·hm -2, 1 041.3 kg·hm -2 and 3 376.5 kg·hm -2 higher than those of CK, with an increase of 3.6%, 8.2% and 27.8%, respectively. 【Conclusion】 With the increase of planting density, the plant height and height of center of gravity were increased, the basal internodes were belonged, the basal internodes fullness and bending resistance were decreased. EC treatment significantly reduced the internodes length below the 6th node of shoot, significantly increased the internodes length above the 7th node of shoot, slightly reduced plant height, significantly reduced the height of center of gravity and ear height, shortened the length of base internodes and increased the filling degree of base internodes, thus improving the lodging resistance of stem. Therefore, spraying plant growth regulators can significantly increase the bending resistance of maize stalks and the puncture strength of stalk epidermis, significantly reduce ear height, height of center of gravity and lodging rate, which is beneficial to high and stable yield of maize under the conditions of high lodging risk such as frequent wind disasters and high planting density.

Key words: maize, stem characters, planting density, plant growth regulator

Table 1

Meteorological condition during maize growth stage"

月份
Month
降水量
Precipitation (mm)
平均气温
Average temperature (℃)
最大瞬时风速
Maximum instantaneous wind speed (m·s-1)
2015 2016 2015 2016 2015 2016
5 68.4 89.6 20.7 20.3 7.9 7.5
6 150.6 69.8 24.1 24.7 9.2 8.6
7 126.2 222.2 25.8 26.7 10.3 9.5
8 81.2 45.6 25.3 26.2 7.3 6.4
9 83.1 76.8 19.7 20.4 8.4 8.1

Table 2

The lodging conditions under different treatments"

密度
Planting density
(×104 plant/hm2
处理
Treatment
倒伏发生时期
Lodging stage
倒伏分级
Lodging degree
倒伏率
Lodging percentage (%)
2015 2016 2015 2016 2015 2016
6.0 (D1) CK V14 V12 2 2 8.9 8.7
TR V14 V12 0 0 5.6 2.1
7.5 (D2) CK V14 V12 3 3 23.3 33.7.
TR V14 V12 1 0 8.9 8.5
9.0 (D3) CK V14 V12 4 4 51.2 54.9
TR V14 V12 1 1 11.6 12.5

Table 3

The change of plant height, ear height, culms gravity height and internodes length under different treatments"

年际
Year
密度
Planting density
(×104 plant/hm2)
处理
Treatment
株高
Plant height
(cm)
穗位高
Ear height
(cm)
穗位系数
Ear position coefficients
重心高度
Culm gravity height
(cm)
1-6节间长度
Internodes length between one to six node (cm)
7节以上节间长度
Internodes
length above seven (cm)
2015 6.0 (D1) CK 311.0c 110.2c 0.35b 77.5d 95.3bc 181.1f
TR 306.2d 104.3e 0.34b 72.2e 85.4d 196.7c
7.5 (D2) CK 314.5b 116.6b 0.37a 86.3b 103.8a 187.2e
TR 306.3d 106.2d 0.35b 79.8c 93.0c 202.5b
9.0 (D3) CK 325.8a 124.4a 0.38a 90.3a 109.5a 193.6d
TR 317.0b 109.3e 0.32c 84.7b 96.4b 209.4a
2016 6.0 (D1) CK 276.7bc 112.1bc 0.37a 95.7c 83.6c 172.7e
TR 272.7c 94.0d 0.35ab 87.0d 76.2e 183.2cd
7.5 (D2) CK 281.7b 118.3ab 0.38a 100.7b 88.8 b 179.9d
TR 278.7bc 96.7cd 0.36ab 90.5d 78.0e 190.4b
9.0 (D3) CK 287.7a 124.0a 0.39a 106.0a 91.5a 186.6bc
TR 284.7a 103.0ab 0.37a 93.7c 82.0d 198.1a
变异来源
Source of variation
密度 Planting density ** ** ** ** ** **
年际 Year ** ** ** ** ** **
EC ** ** ** ** ** **
密度×EC Plant density× EC NS NS NS NS NS NS
EC×年际 EC×Year NS ** NS * NS NS
密度×年际 Plant density×Year NS NS NS NS NS NS
密度×EC×年际
Planting density×EC×Year
NS NS NS NS NS NS

Fig. 1

The change of maize stems cross-sectional area under different treatments"

Table 4

The change of snapping resistance of maize basal culm under different treatments (N·mm-2)"

年际
Year
密度
Planting density
(×104 plant/hm2)
处理
Treatment
节位 Node
12展叶期 V12 吐丝期Silking stage 乳熟期Milk stage 收获期 Harvest stage
3 4 5 3 4 5 3 4 5 3 4 5
2015 6.0 (D1) CK 358.7bc 250.9b 244.7ab 500.9b 350.8b 275.8b 648.1b 605.7b 431.7b 523.4b 468.9b 403.3b
TR 542.9a 384.6a 278.2a 639.2a 421.3a 388.0a 779.2a 670.1a 589.4a 634.6a 568.9a 521.6a
7.5 (D2) CK 270.9d 244.3bc 164.1cd 366.0c 286.5c 193.6d 555.8c 479.6d 381.2c 419.7d 309.9d 251.2e
TR 385.0b 288.6b 222.5b 538.5ab 329.1b 290.3b 627.7b 539.8c 458.1b 489.7c 386.6c 348.9c
9.0 (D3) CK 247.2d 189.9c 122.6d 326.9c 204.9d 176.5d 436.7d 403.5e 281.1d 333.4e 287.7e 204.6f
TR 304.8cd 236.1bc 170.0c 487.5b 268.4c 234.6c 526.2c 495.0d 381.7c 402.3d 312.3d 283.6d
2016 6.0 (D1) CK 330.5c 290.9b 231.2b 505.3b 401.4b 374.9b 654.8b 522.6c 477.0b 546.5b 365.5c 302.4c
TR 527.4a 343.4a 253.3a 619.9a 510.6a 437.8a 744.1a 606.4a 513.2a 615.4a 470.6a 380.6a
7.5 (D2) CK 255.2f 232.5d 148.2d 362.5d 280.1d 294.9d 568.9d 445.2e 362.9e 504.1d 332.5d 267.1d
TR 349.2 b 268.5c 208.5c 458.8c 350.3c 238.9c 632.3c 535.2b 422.7c 534.4c 399.3b 318.5b
9.0 (D3) CK 202.9e 176.0e 109.7e 276.5f 217.3f 176.1f 467.9f 367.0f 272.4f 396.8f 238.2f 192.2e
TR 297.0d 223.2d 148.5d 302.1e 255.4e 194.4e 587.5e 468.4d 391.0d 452.3e 297.7e 274.7d
变异来源
Source of variation
密度
Plant density
** ** ** ** ** ** ** ** ** ** ** **
年际
Year
* NS * ** ** ** NS ** * ** ** **
EC ** ** ** ** ** ** ** ** ** ** ** **
密度×EC
Plant density×EC
* NS NS NS * * NS NS NS ** ** *
EC×年际
EC×Year
NS NS NS NS NS ** NS NS * ** NS **
密度×年际
Plant density× Year
NS NS NS NS NS ** NS NS NS ** NS **
密度×EC×年际
Plant density× EC× Year
NS NS NS NS * ** NS NS ** * ** **

Table 5

The change of rind penetration strength of maize basal culm under different treatments (N·mm-2)"

年际
Year
密度
Plant density
(×104 plant/hm2)
处理
Treatment
节位 Node
12展叶期 V12 吐丝期Silking stage 乳熟期Milk stage 收获期 Harvest stage
3 4 5 3 4 5 3 4 5 3 4 5
2015 6.0 (D1) CK 27.9bc 20.9c 17.8c 50.4b 43.6bc 38.4b 60.1b 54.0b 48.2b 56.3b 50.2b 43.6b
TR 42.6a 37.5a 27.1a 56.6a 52.9a 48.7a 65.1a 63.3a 58.5a 60.9a 57.8a 53.1a
7.5 (D2) CK 24.2cd 17.2d 14.1d 43.5c 39.6cd 35.5c 55.6c 50.0bc 43.5c 52.3d 45.9cd 38.9d
TR 31.2b 29.0b 24.2a 48.1b 44.6b 38.7b 58.5b 53.1b 47.7b 54.8cd 49.3b 42.7bc
9.0 (D3) CK 21.8d 15.0d 13.0d 34.9e 31.5e 25.4d 42.2d 39.5d 35.4d 40.6e 36.5e 32.1e
TR 29.7b 25.5b 21.0b 40.0d 37.1d 32.7c 53.3c 47.5c 43.7c 52.2d 45.5cd 40.8c
2016 6.0 (D1) CK 26.4c 18.8d 16.6d 48.5b 42.0b 36.5b 56.8b 49.9b 45.8b 54.4b 48.6b 40.5b
TR 39.3a 36.2a 25.8a 53.4 a 51.2a 45.6a 63.3a 60.4a 56.1a 58.2a 55.3a 51.4a
7.5 (D2) CK 22.6d 16.0e 13.2e 41.3d 37.7c 33.4c 52.3c 47.4c 41.2d 49.0d 43.3d 36.5d
TR 29.6b 26.7b 23.2b 46.9c 42.9b 35.5b 55.0b 51.3b 43.7bc 50.7c 46.0c 40.9b
9.0 (D3) CK 20.1e 14.3f 12.7e 33.5f 30.0e 23.6e 40.7d 37.7e 34.7e 37.7e 34.6e 30.4e
TR 27.0c 23.5c 19.8c 37.6e 36.0d 30.8d 50.5c 44.8d 41.3cd 48.9d 42.5d 38.0c
变异来源
Source of variation
密度Plant density ** ** ** ** ** ** ** ** ** ** ** **
年际 Year ** ** * ** * ** * ** ** ** ** **
EC ** ** ** ** ** ** ** ** ** ** ** **
密度×EC Plant density× EC * ** NS NS NS ** NS * * ** * **
EC×年际 EC×Year NS NS NS NS NS NS NS NS NS NS NS NS
密度×年际 Plant density×Year NS NS NS NS NS NS NS NS NS NS NS NS
密度×EC×年际
Plant density× EC× Year
NS NS NS NS NS NS NS NS NS NS NS NS

Table 6

The yield and yield components under different treatments"

密度
Planting density
(×104 plant/hm2)
处理
Treatment
穗粒数Ear grain 百粒重
100-grain weight (g)
产量
Yield (kg·hm-2)
2015 2016 2015 2016 2015 2016
6.0 (D1) CK 679.5a 613.5b 39.2ab 33.7ab 12831.5d 11433.0e
TR 687.8a 636.7 a 40.2a 34.6a 13401.6cd 11740.4d
7.5 (D2) CK 646.0c 576.3cd 38.8b 32.1d 13540.5c 11970.0c
TR 659.7b 586.5c 39.7a 33.0c 14903.0b 12690.0b
9.0 (D3) CK 580.9e 546.0e 36.1d 32.0d 13283.4e 11018.3f
TR 626.3d 575.6d 37.4c 32.7cd 16372.0a 14682.5a
变异来源
Source of variation
密度Plant density ** ** **
年际 Year ** ** **
EC ** ** **
密度×EC Plant density× EC ** NS **
EC×年际 EC×Year NS NS NS
密度×年际 Plant density×Year ** NS **
密度×EC×年际
Plant density× EC× Year
* NS **
[1] 赵久然, 王荣焕 . 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013,15(3):1-6.
doi: 10.3969/j.issn.1008-0864.2013.03.01
ZHAO J R, WANG R H . Development process, problem and countermeasure of maize production in China. Journal of Agricultural Science and Technology, 2013,15(3):1-6. (in Chinese)
doi: 10.3969/j.issn.1008-0864.2013.03.01
[2] 白永新, 张润生, 李鹏, 魏振飞, 白宇皓, 张建华, 郭盛 . 玉米品种抗倒伏关联特性的鉴定. 山西农业科学, 2016,44(11):1592-1596.
doi: 10.3969/j.issn.1002-2481.2016.11.04
BAI Y X, ZHANG R S, LI P, WEI Z F, BAI Y H, ZHANG J H, GUO S . Identification of traits associated with lodging resistance in maize. Journal of Shanxi Agricultural Sciences, 2016,44(11):1592-1596. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2016.11.04
[3] FLINT-GARCIA S A, DARRAH L L, MCMULLEN M D, HIBBARD B E . Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theoretical and Applied Genetics, 2003,107(7):1331-1336.
doi: 10.1007/s00122-003-1387-9 pmid: 12928781
[4] 田保明, 杨光圣 . 农作物倒伏及其评价方法. 中国农学通报, 2005,21(7):111-114.
doi: 10.3969/j.issn.1000-6850.2005.07.034
TIAN B M, YANG G S . The performance of lodging and developing a standard test for lodging resistance in crops. Chinese Agricultural Science Bulletin, 2005,21(7):111-114. (in Chinese)
doi: 10.3969/j.issn.1000-6850.2005.07.034
[5] TOLLENAAR M, LEE E A . Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002,88:161-169.
doi: 10.1016/S0378-4290(02)00024-2
[6] KHOSRAVI G R, ANDERSON I C . Growth, yield, and yield components of ethephon-treated corn. Plant Growth Regulation, 1991,10(1):27-36.
doi: 10.1007/BF00035128
[7] 王群英, 胡昌浩 . 玉米茎秆抗倒特性的解剖研究. 作物学报, 1991,17(1):70-75.
WANG Q Y, HU C H . Studies on the anatomical structures of the stalks of maize with different resistance to lodging. Scientia Agricultura Sinica, 1991,17(1):70-75. (in Chinese)
[8] 程富丽, 杜雄, 刘梦星, 靳小利, 崔彦宏 . 玉米倒伏及其对产量的影响. 玉米科学, 2011,19(1):105-108.
CHENG F L, DU X, LIU M X, JIN X L, CUI Y H . Lodging of summer maize and the effects on grain yield. Journal of Maize Sciences, 2011,19(1):105-108. (in Chinese)
[9] PEIFFER J A, FLINT-GARCIA S A, DE LEON N, MCMULLEN M D, KAEPPLER S M, BUCKLER E S . The genetic architecture of maize stalk strength. PLoS ONE, 2013,8(6):e67066.
doi: 10.1371/journal.pone.0067066 pmid: 3688621
[10] WILKINSON S, DAVIES W J . ABA-based chemical signaling: The co-ordination of responses to stress implants. Plant Cell and Environment, 2002,25(2):195-210.
doi: 10.1046/j.0016-8025.2001.00824.x pmid: 11841663
[11] PENG S B, BURESH R J, HUANG J L, ZHONG X H, ZOU Y B, YANG J C, WANG G H, LIU Y Y, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A . Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development, 2010,30(3):649-656.
doi: 10.1051/agro/2010002
[12] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺 . 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016,42(12):1864-1872.
doi: 10.3724/SP.J.1006.2016.01864
REN B C, LI L L, DONG S T, LIU P, ZHAO B, YANG J S, WANG D B, ZHANG J W . Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Scientia Agricultura Sinica, 2016, 42(12):1864-1872. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01864
[13] 刘明, 齐华, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男 . 深松方式与施氮量对玉米茎秆解剖结构及倒伏的影响. 玉米科学, 2013,21(1):57-63.
LIU M, QI H, ZHANG W J, ZHANG Z P, LI X F, SONG Z W, YU J L, WU Y N . Effects of deep loosening and nitrogen application on anatomical structures of stalk and lodging in maize. Journal of Maize Science, 2013,21(1):57-63. (in Chinese)
[14] 宋朝玉, 张继余, 张清霞, 陈希群, 李祥云, 王圣健 . 玉米倒伏的类型、原因及预防、治理措施. 作物杂志, 2006(1):36-38.
doi: 10.3969/j.issn.1001-7283.2006.01.016
SONG C Y, ZHANG J Y, ZHANG Q X, CHEN X Q, LI X Y, WANG S J . Corn lodging types, causes and prevention and treatment measures. Crops, 2006(1):36-38. (in Chinese)
doi: 10.3969/j.issn.1001-7283.2006.01.016
[15] 汪黎明, 姚国旗, 穆春华, 李建生, 戴景瑞 . 玉米抗倒性的遗传研究进展. 玉米科学, 2011,19(4):1-4.
WANG L M, YAO G Q, MU C H, LI J S, DAI J R . Advances in genetic research of maize lodging resistance. Journal of Maize Sciences, 2011,19(4):1-4. (in Chinese)
[16] 孙世贤, 顾慰连, 戴俊英 . 密度对玉米倒伏及其产量的影响. 沈阳农业大学学报, 1989,20(4):413-416.
SUN S X, GU W L, DAI J Y . The effect of density on lodging of crop. Journal of Shenyang Agricultural University, 1989,20(4):413-416. (in Chinese)
[17] 高鑫, 高聚林, 于晓芳, 王志刚, 孙继颖, 苏治军, 胡树平, 叶君, 王海燕, 崔超, 李维敏 . 高密植对不同类型玉米品种茎秆抗倒特性及产量的影响. 玉米科学, 2012,20(4):69-73.
doi: 10.3969/j.issn.1005-0906.2012.04.015
GAO X, GAO J L, YU X F, WANG Z G, SUN J Y, SU Z J, HU S P, YE J, WANG H Y, CUI C, LI W M . Stalks lodging-resistance characteristics and yield traits among different maize varieties under high close planting. Journal of Maize Sciences, 2012,20(4):69-73. (in Chinese)
doi: 10.3969/j.issn.1005-0906.2012.04.015
[18] 田再民, 黄智鸿, 陈建新, 史宝林, 魏东, 瞿文洁, 李环 . 种植密度对3个紧凑型玉米品种抗倒伏性和产量的影响. 玉米科学, 2016,24(5):83-88.
TIAN Z M, HUANG Z H, CHEN J X, SHI B L, WEI D, QU W J, LI H . Effects of planting density on lodging resistance and yield of three erectophile maize varieties. Journal of Maize Sciences, 2016,24(5):83-88. (in Chinese)
[19] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明 . 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007,33(10):1688-1695.
doi: 10.3321/j.issn:0496-3490.2007.10.019
GOU L, HUANG J J, ZHANG B, LI T, SUN R, ZHAO M . Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Scientia Agricultura Sinica, 2007,33(10):1688-1695. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2007.10.019
[20] PICKETT L K, LILJEDAHL J B, HAUGH G G, ULLSTRUP A J . Rheological properties of corn stalk subjected to transverse loading. Transactions of the American Society Agricultural Engineers, 49(157):53-58.
doi: 10.7209/tanso.1993.53
[21] 姚敏娜, 施志国, 薛军, 杨再文, 勾玲, 张旺锋 . 种植密度对玉米茎秆皮层结构及抗倒伏能力的影响. 新疆农业科学, 2013,12(5):56-60.
doi: 10.6048/j.issn.1001-4330.2013.11.007
YAO M N, SHI Z G, XUE J, YANG Z W, GOU L, ZHANG W F . The effects of different planting densities on the cortex structure of steam and lodging resistance in maize. Xinjiang Agricultural Sciences, 2013,12(5):56-60. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2013.11.007
[22] 卫晓轶, 张明才, 李召虎, 段留生 . 不同基因型玉米对乙烯利调控反应敏感性的差异. 作物学报, 2011,37(10):1819-1827.
doi: 10.3724/SP.J.1006.2011.01819
WEI X Y, ZHANG M C, LI Z H, DUAN L S . Differences in responding sensitivity to ethephon among different maize genotypes. Scientia Agricultura Sinica, 2011,37(10):1819-1827. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01819
[23] 董学会, 段留生, 孟繁林, 何钟佩, 李召虎 . 30%已·乙水剂对玉米产量和茎秆质量的影响. 玉米科学, 2006,14(1):138-140.
DONG X H, DUAN L S, MENG F L, HE Z P, LI Z H . Effects of spraying 30% DTA-6 ethephon solution on yield and straw quality of maize. Journal of Maize Sciences, 2006,14(1):138-140. (in Chinese)
[24] 张倩, 张海燕, 谭伟明, 段留生 . 30%矮壮素·烯效唑微乳剂对水稻抗倒伏性状及产量的影响. 农药学学报, 2011,13(2):144-148.
ZHANG Q, ZHANG H Y, TIAN W M, DUAN L S . Effects of chlormequat-uniconazole 300 micro-emulsion on lodging resistance and yield of rice. Chinese Journal of Pesticide Science, 2011,13(2):144-148. (in Chinese)
[25] 杨锦忠, 陈明利, 张洪生 . 中国1950s到2000s玉米产量-密度关系的Meta分析. 中国农业科学, 2013,46(17):3562-3570.
doi: 10.3864/j.issn.0578-1752.2013.17.004
YANG J Z, CHEN M L, ZHANG H S . Meta-analysis of the relationship between maize crop yield and plant density from 1950s to 2000s in China. Scientia Agricultura Sinica, 2013,46(17):3562-3570. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.17.004
[26] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆 . 密度对玉米产量(>15000kg·hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45(16):3437-3445.
doi: 10.3864/j.issn.0578-1752.2012.16.025
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K . Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012,45(16):3437-3445. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.16.025
[27] 卢霖, 董志强, 董学瑞, 焦浏, 李光彦, 高娇 . 乙矮合剂对不同密度夏玉米茎秆抗倒伏能力及产量的影响. 作物杂志, 2015(2):70-77.
doi: 10.16035/j.issn.1001-7283.2015.02.015
LU L, DONG Z Q, DONG X R, JIAO L, LI G Y, GAO J . Effects of ethylene-chlormequat-potassium on stem lodging resistance and yield of summer maize under different sowing densities. Crops, 2015(2):70-77. (in Chinese)
doi: 10.16035/j.issn.1001-7283.2015.02.015
[28] 张洪生, 赵明, 吴沛波, 翟延举, 姜雯 . 种植密度对玉米茎秆和穗部性状的影响. 玉米科学, 2009,17(5):130-133.
ZHANG H S, ZHAO M, WU P B, ZHAI Y J, JIANG W . Effects of the plant density on the characteristics of maize stem and ear. Journal of Maize Sciences, 2009,17(5):130-133. (in Chinese)
[29] 叶德练, 王庆燕, 张钰石, 李建民, 段留生, 张明才, 李召虎 . 乙烯利和氮肥对玉米基部节间性状和抗折断力的调控研究. 中国农业大学学报, 2015,20(6):1-8.
doi: 10.11841/j.issn.1007-4333.2015.06.01
YE D L, WANG Q Y, ZHANG Y S, LI J S, DUAN L S, ZHANG M C, LI Z H . Study of ethehon and nitrogen rate in regulating the basal internode characteristics and breaking resistance of maize. Journal of China Agricultural University, 2015,20(6):1-8. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2015.06.01
[30] 张子学, 朱仕燕, 李文阳, 刘正 . 化控剂-乙烯利对玉米植株主要性状和产量的影响. 中国农学通报, 2014,30(3):209-213.
doi: 10.11924/j.issn.1000-6850.2013-1067
ZHANG Z X, ZHU S Y, LI W Y, LIU Z . Effect of chemical control agent-ethephon on main characters and yield of maize. Chinese Agricultural Science Bulletin, 2014,30(3):209-213. (in Chinese)
doi: 10.11924/j.issn.1000-6850.2013-1067
[31] 薛珠政, 卢和顶, 林建新, 杨人震 . 种植密度对玉米单株和群体效应的影响. 玉米科学, 1999,7(2):52-54.
XUE Z Z, LU H D, LIN J X, YANG R Z . Effect on single plant and population efficiency by different density on maize. Journal of Maize Sciences, 1999,7(2):52-54. (in Chinese)
[32] 李宁, 李建民, 翟志席, 李召虎, 段留生 . 化控技术对玉米植株抗倒伏性状农艺性状及产量的影响. 玉米科学, 2010,18(6):38-42.
LI N, LI J M, ZHAI Z X, LI Z H, DUAN L S . Effects of chemical regulator on the lodging resistance traits, agricultural characters and yield of maize. Journal of Maize Sciences, 2010, 18(6):38-42. (in Chinese)
[33] 马延华, 孙德全, 李绥艳, 林红, 潘丽艳, 李东林, 陈绍江 . 玉米乳熟期茎秆木质素含量的遗传分析. 玉米科学, 2016,21(1):19-23.
doi: 10.13597/j.cnki.maize.science.20160104
MA Y H, SUN D Q, LI S Y, LIN H, PAN L Y, LI D L, CHEN S J . Genetic analysis of lignin content in maize stalk at milk stage. Journal of Maize Sciences, 2016,21(1):19-23. (in Chinese)
doi: 10.13597/j.cnki.maize.science.20160104
[34] 王永学, 张战辉, 刘宗华 . 玉米抗倒伏性状的配合力效应及通径分析. 河南农业大学学报, 2011,45(1):1-6.
WANG Y X, ZHANG Z H, LIU Z H . Combining ability and path analysis of lodging resistance traits in maize. Journal of Henan Agricultural University, 2011,45(1):1-6. (in Chinese)
[35] 丰光, 黄长玲, 邢锦丰 . 玉米抗倒伏的研究进展. 作物杂志, 2008(4):12-14.
doi: 10.3969/j.issn.1001-7283.2008.04.004
FENG G, HUANG C L, XING J F . The research progress in lodging resistance of maize. Crops, 2008(4):12-14. (in Chinese)
doi: 10.3969/j.issn.1001-7283.2008.04.004
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!