Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 478-490.doi: 10.3864/j.issn.0578-1752.2019.03.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatio-Temporal Variability of Soil Available Nutrients Based on Remote Sensing and Crop Model

FANG HuiTing1,2(),MENG JiHua1(),CHENG ZhiQiang1   

  1. 1 Key Laboratory of Digital Earth, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101
    2 University of Chinese Academy of Sciences, Beijing 100101
  • Received:2018-06-06 Accepted:2018-09-28 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 The spatio-temporal variability of soil available nutrients in Shuangshan farm during 2012-2016 was studied under uniform fertilization mode. The influence of human factors (such as fertilization management and crop rotation model) and natural factors (such as meteorology and topography) on the changes of available nutrients were analyzed, which could be used to provide references for soil available nutrients management and crop variable fertilization.【Method】 The time series satellite HJ-1 CCD imagery and the WOFOST crop model were selected to retrieve soil available nutrients. Based on the above soil available nutrients data, spatio-temporal variability of soil available nutrients analysis of available nutrients on different time scales (interannual and within-year) and different spatial scales (farm scale and field scale) was carried out. The hierarchical maps of soil available nutrients were used to qualitatively analyze the spatial variability of nutrients in five years. The specific statistical parameters were used to quantitatively analyze the average content and variability of soil available nutrients. The linear regression was used to analyze the relationship of variation and initial content of available nutrients. And the temporal variation characteristics of available nutrients were analyzed by the change curve of available nutrients. 【Result】 The average contents of available nitrogen (AN), available phosphorus (AP) and available potassium (AK) in the farm were not changed obviously from 2012 to 2016. The high and low values of available nutrients were all close to the middle value, which were concentrated at 280-360 mg·kg -1, 38-42 mg·kg -1and 160-200 mg·kg -1, respectively. And the area of these three parts increased by 18.5%, 23.1% and 23.8%, respectively, which showed uniform characteristics as a whole. The coefficient of variation of AN, AP, and AK changed from 0.314, 0.112, and 0.257 in 2012 to 0.131, 0.034, and 0.098 in 2016, respectively. And the spatial heterogeneity of available nutrients distributions was weakened. The variation of AN and AP were negatively correlated with the initial values in 2012, and the determination coefficient were 0.839 and 0.882, respectively. And the determination coefficient of AK was 0.569, its weak correlation was related to the instability of AK in the soil itself. The nutrients change characteristics of adjacent field indicated that the soil available nutrients on the field scales also showed obvious uniform characteristics. Crop rotation mode was the main factor affecting the difference of nutrients change between fields. For the field #1 and field #2 with the opposite rotation mode, artificial fertilization determined the general trend of nutrients change in the field. For leguminous plants, nitrogen fixation had a significant effect on the content of soil available nitrogen. The increase in temperature would promote the absorption of nutrients by crops to a certain extent, but this effect was not enough to change the general trend of nutrient changes. Soil leaching played a decisive role in the spatial variability of nutrients, especially for stronger precipitation. The effect of precipitation on nutrients spatial variability was more pronounced in areas with large topography variation.【Conclusion】 Farmland fertilization management and crop rotations were the dominant factors in the change of soil available nutrients, followed by topographic and climatic factors. The leaching of rainwater would lead to the loss and decline of soil available nutrients, which was more obvious in the area with larger topography. The amount of change in available nutrients was significantly related to the initial nutrients content. The increase of temperature would accelerate the decrease of available nutrients in soil, and its influence was less than that of precipitation. The above rules could be included in the prediction model of available nutrients, and different weights were assigned to these influencing factors to construct the prediction model, to achieve real-time dynamic monitoring of the variation of soil available nutrients in the inter-annual and growing seasons.

Key words: soil available nutrient, spatial-temporal variation, WOFOST crop model, uniform fertilization, correlation analysis

Fig. 1

Location and distribution of study area"

Table 1

Time-series HJ-1 CCD data of Shuangshan Farm"

传感器
Sensor
采集时间
Time
轨道号
Orbit number
HJ-1A CCD1 2014-5-03 451-52
HJ-1A CCD2 2014-6-06 448-56
HJ-1A CCD1 2014-6-23 453-53
HJ-1A CCD1 2014-8-06 451-56
HJ-1B CCD2 2014-9-06 448-56
HJ-1A CCD1 2014-9-18 454-53
HJ-1A CCD2 2014-9-24 452-56
HJ-1B CCD2 2014-10-04 452-56

Fig. 2

The spatial distribution maps of soil available nitrogen (AN) under farm scale from 2012 to 2016"

Table 2

The summary statistics for soil available nitrogen from 2012 to 2016"

年份 Year 平均值 Mean (mg·kg-1) 最小值 Min (mg·kg-1) 最大值 Max (mg·kg-1) 标准差 SD (mg·kg-1) 变异系数 CV
2012 297.2 96.5 466.8 149.43 0.47
2013 304.9 170.1 457.9 93.21 0.30
2014 298.0 176.1 568.6 155.31 0.49
2015 301.9 187.2 397.3 75.30 0.24
2016 304.2 179.8 373.8 81.27 0.26

Fig. 3

Relationships between contents of soil AN in 2012 and variation of the contents from 2012 to 2016 The horizontal axis represents the contents of AN in 2012, and the vertical axis represents the variation of the contents from 2012 to 2016"

Fig. 4

The spatial distribution maps of soil available nutrients under plot scale"

Fig. 5

The average changes of soil available nutrients during the growth season under field scale"

Fig. 6

The changes of soil AN during the growth season in plot #1 and #3"

Table 3

The statistics of monthly average temperature and total precipitation from 2012 to 2016"

年度
Year
指标
Item
1
Jan.
2
Feb.
3
Mar.
4
Apr.
5
May
6
Jun.
7
Jul.
8
Aug.
9
Sep.
10
Oct.
11
Nov.
12
Dec.
平均值
Mean
总和
Sum
2012 平均温度
Average temperature (℃)
-28.8 -21.1 -8.9 4.5 13.8 20 22.3 19.1 12.9 2.7 -11.2 -24.5 0 /
总降水量
Total precipitation (mm)
0.9 1.5 1.5 12.9 25.3 140.1 88.6 26.3 175.2 36.3 14.7 10.2 / 533.5
2013 平均温度
Average temperature (℃)
-27.6 -22 -12.3 2 14.9 19.4 21.4 19.1 12.3 3 -5.6 -17.8 0.6 /
总降水量
Total precipitation (mm)
6 9.8 12.4 13.9 93.8 109.8 228.1 104.8 51.5 39.1 12.4 5.4 / 687
2014 平均温度
Average temperature (℃)
-24.6 -23.7 -7.1 8.2 12.5 21.5 20.5 19.6 12.1 2.2 -8.8 -20.9 1 /
总降水量
Total precipitation (mm)
7.6 12.5 0 0.6 87.5 45.3 133.8 135.8 92.4 18.5 16.5 6.8 / 557.3
2015 平均温度
Average temperature (℃)
-19.8 -14.4 -6.9 4.7 11.4 20 22.5 20.8 12.7 3.7 -9.6 -17.2 2.3 /
总降水量
Total precipitation (mm)
0.1 22.6 7.3 16.1 37.4 60.3 14 106.1 72.4 25 1.3 6.9 / 369.5
2016 平均温度
Average temperature (℃)
-22.1 -18.3 -3.8 4.6 13.8 17.1 21.35 18.91 14.09 0.103 -16.8 -21.46 0.6 /
总降水量
Total precipitation (mm)
1.2 0.2 4 12 54.7 111.5 58.2 57.6 158.1 17.8 26.8 3.4 / 505.5

Table 4

The precipitation frequency of moderate, heavy and torrential rain from 2012 to 2016"

年度
Year
中雨
Moderate rain
(10-25 mm)
大雨
Heavy rain
(25-50 mm)
暴雨
Torrential rain
(50-100 mm)
总计
Total
2012 9 3 1 13
2013 20 5 0 25
2014 13 2 1 16
2015 10 2 0 12
2016 9 2 1 12
[1] BROCCA L, MELONE F, MORAMARCO T, MORBIDELLI R . Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 2010,46(2):W02516. DOI: 10.1029/2009WR008016.
doi: 10.1029/2009WR008016
[2] ZHU Q, LIAO K H, XU Y, YANG G S, WU S H, ZHOU, S L . Monitoring and prediction of soil moisture spatial-temporal variations from a hydropedological perspective: A review. Soil Research, 2012,50(8):625-637. DOI: 10.1071/SR12228.
[3] DU H, WANG K L, PENG W X, ZENG F P, SONG T Q, ZHANG H, LU S Y . Spatial heterogeneity of soil mineral oxide components in depression between karst hills, Southwest China. Chinese Geographical Science, 2014, 24(2):163-179. DOI: 10.1007/s11769- 013-0630-9.
doi: 10.1007/s11769-013-0630-9
[4] L. DARILEK J , HUANG B, WANG Z Y, QI Y B, ZHAO Y C, SUN W X, GU Z Q, SHI X Z. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agriculture Ecosystems & Environment, 2009,129(1):286-292. DOI: 10.1016/j.agee.2008.10.002.
doi: 10.1016/j.agee.2008.10.002
[5] 徐剑波, 宋立生, 彭磊, 张桥 . 土壤养分空间估测方法研究综述. 生态环境学报, 2011,20(Z2):1379-1386. DOI: 10.16258/j.cnki.1674- 5906.2011.z2.019
XU J B, SONG L S, PENG L, ZHANG Q . Research review on methods of spatial prediction of soil nutrients. Ecology and Environmental Sciences, 2011,20(Z2):1379-1386. DOI: 10.16258/j. cnki.1674-5906.2011.z2.019. (in Chinese)
[6] 程先富, 史学正, 于东升, 潘向章 . 江西省兴国县土壤全氮和有机质的空间变异及其分布格局 . 应用与环境生物学报, 2004(1):64-67.
CHENG X F, SHI X Z, YU D S, PANG X Z . Spatial variance and distribution of total nitrogen and organic matter of soil in Xingguo County of Jiangxi, China. Chinese Journal of Applied and Environmental Biology, 2004(1):64-67. (in Chinese)
[7] 邱扬, 傅伯杰, 王军, 陈利顶 . 黄土高原小流域土壤养分的时空变异及其影响因子 . 自然科学进展, 2004(3):56-61.
QIU Y, FU B J, WANG J, CHENG L D . Spatio-temporal variability of soil nutrients and its influencing factors in small watershed of Loess Plateau . Progress in Natural Science:Materials International, 2004(3):56-61. (in Chinese)
[8] 于洋, 赵业婷, 常庆瑞 . 渭北台塬区耕地土壤速效养分时空变异特征. 土壤学报, 2015,52(6):1251-1261.
YU Y, ZHAO Y T, CHANG Q R . Spatial-temporal variability of soil readily available nutrients in cultivated land of Weibei tableland area . Acta Pedologica Sinica,2015, 52(6):1251-1261. (in Chinese)
[9] Qui W W, CURTIN D, JOHNSTONE P, Beare M, Hernandez-- Rameriz G, Qiu W W . Small-scale spatial variability of plant nutrients and soil organic matter: an arable cropping case study. Communications in Soil Science & Plant Analy, 2016,47(19):2189-2199. DOI: 10.1080/ 00103624.2016.1228945.
doi: 10.1080/00103624.2016.1228945
[10] LAMSAL S . Visible near-infrared reflectance spectrocopy for geospatial mapping of soil organic matter. Soil Science, 2009,174(174):35-44.
doi: 10.1097/SS.0b013e3181906a09
[11] EHSANI M R, UPADHYAYA S K, FAWCETT W R, PROTSAILO L V, SLAUGHTER D . Feasibility of detecting soil nitrate content using a mid-infrared technique. Transactions of the Asae, 2001,44(6):1931-1940. DOI: 10.13031/2013.6991.
doi: 10.13031/2013.6991
[12] 程朋根, 吴剑, 李大军, 何挺 . 土壤有机质高光谱遥感和地统计定量预测. 农业工程学报, 2009,25(3):142-147.
CHENG P G, WU J, LI D J, HE T . Quantitative prediction of soil organic matter content using hyperspectral remote sensing and geo-statistics. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(3):142-147. (in Chinese)
[13] 郭燕, 纪文君, 吴宏海, 史舟 . 基于野外Vis-NIR光谱的土壤有机质预测与制图. 光谱学与光谱分析, 2013,33(4):1135-1140. DOI: 10.3964/j.issn.1000-0593(2013)04-1135-06.
GUO Y, JI W J, WU H H, SHI Z . Estimation and mapping of soil organic matter based on vis-NIRreflectance spectroscopy. Spectroscopy and Spectral Analysis, 2013,33(4):1135-1140. DOI: 10.3964/j.issn. 1000-0593(2013)04-1135-06. (in Chinese)
[14] CROFT H, KUHN N J, ANDERSON K . On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena, 2012,94(9):64-74. DOI: 10.1016/j.catena.2012.01.001.
doi: 10.1016/j.catena.2012.01.001
[15] GOMEZ C ,ROSSEL R A V,MCBRATNEY A B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma, 2008,146(3):403-411. DOI: 10.1016/j.geoderma.2008.06.011.
doi: 10.1016/j.geoderma.2008.06.011
[16] HBIRKOU C, PATZOLD S, MAHLEIN A K , WELP G . Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma, 2012,175/176:21-28. DOI: 10.1016/j. geoderma.2012.01.017.
doi: 10.1016/j.geoderma.2012.01.017
[17] MENG J H, YOU X Z, CHENG Z Q . Evaluating soil available nitrogen status with remote sensing.Precision Agriculture, 2015, 175-182. DOI: 10.3920/978-90-8686-814-8_21.
[18] 李燕丽, 潘贤章, 王昌昆, 刘娅, 赵其国 . 广西中南部耕地土壤有机质和全氮变化的遥感监测. 生态学报, 2014,34(18):5283-5291.
LI Y L, PAN X Z, WANG C K, LIU Y, ZHAO Q G . Monitoring changes of soil organic matter and total nitrogen in cultivated land in Guangxi by remote sensing. Acta Ecologica Sinica, 2014,34(18):5283-5291. (in Chinese)
[19] MA H, HUANG J, ZHU D, FAN J L . Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter. Mathematical and Computer Modelling, 2013,58(3):759-770. DOI: 10.1016/j.mcm. 2012.12.028
doi: 10.1016/j.mcm.2012.12.028
[20] CHENG Z Q, MENG J H, QIAO Y Y, WANG Y M, DONG W Q, HAN Y X . Preliminary study of soil available nutrient simulation using a modified WOFOST model and time-series remote sensing observations. Remote Sensing, 2018,10(2):64. doi: 10.3390/rs10010064
doi: 10.3390/rs10010064
[21] 蒙继华, 程志强, 王一明 . 基于WOFOST模型与遥感数据同化的土壤速效养分反演新方法. 遥感学, 2018(4):546-558. DOI: 10.11834/ jrs.20186431
MENG J H, CHENG Z Q, WANG Y M . Simulating soil available nutrients by a new method based on WOFOST model and remote sensing assimilation . Journal of Remote Sensing, 2018(4):546-558. DOI: 10.11834/jrs.20186431. (in Chinese)
[22] HUANG J X, SEDANO F, HUANG Y B, MA H Y, LI X L, LIANG S L, TIAN L Y, ZHANG X D, FAN J L, WU W B . Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural & Forest Meteorology 2016,216:188-202.
doi: 10.1016/j.agrformet.2015.10.013
[23] 郭旭东, 傅伯杰, 陈利顶, 马克明, 李俊然 . 河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析 . 地理学报, 2000(5):555-566. DOI: 10.11821/xb200005005.
GUO X D, FU B J, CHEN L D, MA K M, LI J R . The spatio-temporal variability of soil nutrients in Zunhua Plain of Hebei Province: Semivariogram and Kriging analysis . Acta Geographica Sinica, 2000(5):555-566. DOI: 10.11821/xb200005005. (in Chinese)
[24] 齐伟, 徐艳, 张凤荣 . 黄淮海平原农区县域土壤养分平衡评价方法及其应用. 中国农业科学, 2004,37(2):238-243.
QI W, XU Y, ZHANG F R . Study on evaluation methods of soil nutrient balance and application at county level in Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2004,37(2):238-243. (in Chinese)
[25] 张玲娥, 双文元, 云安萍, 牛灵安, 胡克林 . 30年间河北省曲周县土壤速效钾的时空变异特征及其影响因素. 中国农业科学, 2014,47(5):923-933. DOI: 10.3864/j.issn.0578-1752.2014.05.009.
ZHANG L E , SHUANG W Y A, YUN A P, NIU L A, HU K L . spatio-temporal variability and the influencing factors of soil available potassium in 30 years in Quzhou county, Hebei province . Scientia Agricultura Sinica, 2014,47(5):923-933. DOI: 10.3864/j.issn. 0578-1752.2014.05.009. (in Chinese)
[26] FOURNIER S, LEE T, GIERACH M M . Seasonal and interannual variations of sea surface salinity associated with the Mississippi River plume observed by SMOS and Aquarius. Remote Sensing of Environment, 2016,180:431-439. DOI: 10.1016/j.rse.2016.02.050.
doi: 10.1016/j.rse.2016.02.050
[27] 陈涛, 常庆瑞, 刘京, 齐雁冰, 刘梦云 . 黄土高原南麓县域耕地土壤速效养分时空变异. 生态学报, 2013,33(2):554-564. DOI: 10.5846/stxb201111161745.
CHEN T, CHANG Q R, LIU J, QI Y B, LIU M Y . Temporal and spatial variability of soil available nutrients in arable lands of Heyang County in South Loess Plateau. Acta Ecologica Sinica, 2013,33(2):554-564. DOI: 10.5846/stxb201111161745. (in Chinese)
[28] 康日峰, 任意, 吴会军, 张淑香 . 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016,49(11):2113-2125. DOI: 10.3864/j.issn. 0578-1752.2016.11.008.
KANG R F, REN Y, WU H J, ZHANG S X . Changes in the nutrients and fertility of black soil over 26 years in Northeast China. Scientia Agricultura Sinica, 2016,49(11):2113-2125. DOI: 10.3864/j.issn. 0578-1752.2016.11.008. (in Chinese)
[29] 杨艳丽, 史学正, 于东升, 王洪杰, 徐茂, 王果 . 区域尺度土壤养分空间变异及其影响因素研究. 地理科学, 2008,28(6):788-792. DOI: 10.13249/j.cnki.sgs.2008.06.013.
YANG Y L, SHI X Z, YU D S, WANG H J, XU M, WANG G . Spatial heterogeneity of soil nutrients and their affecting factors at regional scale. Scientia Geographica Sinica, 2008,28(6):788-792. DOI: 10. 13249/j.cnki.sgs.2008.06.013. (in Chinese)
[30] 危常州, 侯振安, 朱和明, 鲍柏杨, 张福锁 . 基于GIS的棉田精准施肥和土壤养分管理系统的研究. 中国农业科学, 2002,35(6):678-685.
WEI C Z, HOU Z A, ZHU H M, BAO B Y, ZHANG F S . Study on precision fertilizer recommendation and soil nutrition management in cotton land based on GIS system. Scientia Agricultura Sinica, 2002,35(6):678-685. (in Chinese)
[31] 徐蒋来, 胡乃娟, 张政文, 朱利群 . 连续秸秆还田对稻麦轮作农田土壤养分及碳库的影响. 土壤, 2016,48(1):71-75. DOI: 10.13758/ j.cnki.tr.2016.01.011.
XU J L, HU N J, ZHANG Z W, ZHU L Q . Effects of continuous straw returning on soil nutrients and carbon pool in rice-wheat rotation system. Soils, 2016,48(1):71-75. DOI: 10.13758/j.cnki.tr.2016.01.011. (in Chinese)
[32] 宋晓宇, 王纪华, 薛绪掌, 刘良云, 陈立平, 赵春江 . 利用航空成像光谱数据研究土壤供氮量及变量施肥对冬小麦长势影响 . 农业工程学报, 2004(4):45-49.
SONG X Y, WANG J H, XUE X Z, LIU L Y, CHEN L P, ZHAO C J . Assessment of the influence of soil nitrogen supplies and variable fertilization on winter wheat growth condition using airborne hyperspectral image .Transactions of the Chinese Society of Agricultural Engineering, 2004(4):45-49. (in Chinese)
[33] 杨昭君 . 不同尺度下橡胶园土壤养分时空变异特性的研究[D]. 海口: 海南大学, 2010.
YANG Z J . Study on time-space variation characters of soil nutrients in different scales of rubber plantation[D]. Haikou: Hainan University, 2010. ( in Chinese)
[34] 侯振安, 刘小玉, 龚江, 冶军 . 北疆滴灌小麦一年两作农田土壤养分动态变化研究. 石河子大学学报(自然科学版), 2012,30(6):666-671. DOI: 10.13880/j.cnki.65-1174/n.2012.06.002.
HOU Z A, LIU X Y, GONG J, YAN J . Soil nutrient dynamics in wheat-based multiple cropping field under drip irrigation. Journal of Shihezi University(Natural Science), 2012,30(6):666-671. DOI: 10.13880/j.cnki.65-1174/n.2012.06.002. (in Chinese)
[35] 张迪, 韩晓增 . 长期不同植被覆盖和施肥管理对黑土活性有机碳的影响. 中国农业科学, 2010,43(13):2715-2723. DOI: 10.3864/ j.issn.0578-1752.2010.13.011.
ZHANG D, HAN X Z . Changes of black soil labile organic carbon pool under different vegetation and fertilization managements. Scientia Agricultura Sinica, 2010,43(13):2715-2723. DOI: 10.3864/ j.issn.0578-1752.2010.13.011. (in Chinese)
[36] 崔贝, 王纪华, 杨武德, 陈立平, 黄文江, 郭建华, 宋晓宇, 冯美臣 . 冬小麦-夏玉米轮作区土壤养分时空变化特征. 中国农业科学, 2013,46(12):2471-2482. DOI: 10.3864/j.issn.0578-1752.2013. 12.008.
CUI B, WANG J H, YANG W D, CHEN L P, HUANG W J, GUO J H, SONG X Y, FENG M C . Analysis of temporal and spatial variation of soil nutrients in the winter wheat-summer maize rotation field. Scientia Agricultura Sinica, 2013,46(12):2471-2482. DOI: 10.3864/ j.issn.0578-1752.2013.12.008. (in Chinese)
[1] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[2] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[3] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[4] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[5] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[6] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[7] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[8] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[9] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[10] LI BaoXin,YANG LiPing,LU YanLi,SHI XiaoXin,DU GuoQiang. Status of Soil Fertility in Main Grape Producing Areas of China [J]. Scientia Agricultura Sinica, 2020, 53(17): 3553-3566.
[11] ZHU ZiJian,CHEN SiYu,SU Jun,TAO YongSheng. Correlation Analysis Between Amino Acids and Fruity Esters During Spine Grape Fermentation [J]. Scientia Agricultura Sinica, 2020, 53(11): 2272-2284.
[12] JianFeng LI,Bo ZHANG,JianZhang QUAN,YongFang WANG,XiaoMei ZHANG,Yuan ZHAO,XiLei YUAN,XiaoPing JIA,ZhiPing DONG. Associated Loci Detection and Elite Allelic Variations Analysis of Main Agronomic Traits in Foxtail Millet (Setaria italica L.) Based on SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(24): 4453-4469.
[13] QIU ShaoJun, LI Ning, HE Ping, WEI Dan, JIN Liang, ZHAO ShiCheng, XU XinPeng, ZHOU Wei. Nutrients Use Efficiency Change of Chemical Fertilizers for Spring Maize in a Typical Black Soil [J]. Scientia Agricultura Sinica, 2019, 52(16): 2824-2834.
[14] ZENG WeiYing, SUN ZuDong, LAI ZhenGuang, CAI ZhaoYan, CHEN HuaiZhu, YANG ShouZhen, TANG XiangMin. Correlation Analysis on Transcriptomic and Proteome of Soybean Resistance to Bean Pyralid(Lamprosema indicata) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1244-1260.
[15] LIU ZhiJuan1, YANG XiaoGuang1, Lü Shuo1, WANG Jing1,2, LIN XiaoMao3. Spatial-Temporal Variations of Yield Gaps of Spring Maize in Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(9): 1606-1616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!