Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (16): 2824-2834.doi: 10.3864/j.issn.0578-1752.2019.16.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nutrients Use Efficiency Change of Chemical Fertilizers for Spring Maize in a Typical Black Soil

QIU ShaoJun1, LI Ning1, HE Ping1, WEI Dan2,3, JIN Liang2, ZHAO ShiCheng1, XU XinPeng1, ZHOU Wei1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Institute of Soil Fertilizer and Environment Resource, Heilongjiang Academy of Agriculture and Science, Harbin 150086
    3 Institute of Plant Nutrient and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
  • Received:2019-02-10 Accepted:2019-05-06 Online:2019-08-16 Published:2019-08-21

Abstract:

【Objective】Reducing chemical fertilizer input and improving nutrients use efficiency are important agricultural strategies in China. In view of the declining soil fertility and acidification of black soil as the result of chemical fertilizers unbalanced application, the aim of this study was to explore reducing chemical fertilizers input and improving nutrients use efficiency in black soil, so as to promote the balanced utilization of chemical fertilizers in black soil in China.【Method】These treatments included no-fertilizer (CK), no N application (PK), no P application (NK), no K application (NP) and the combination of nitrogen, phosphorus and potassium treatment (NPK). Crop yield, nutrients uptake, soil inorganic nitrogen, Olsen-P and NH4OAc-K were determined in typical black soils from 2013 to 2016. 【Result】 The yield of spring maize in Heilongjiang was about 10 t·hm -2 per year. The yields and nutrients uptake by aboveground per year under NPK treatment were significantly higher than those under CK or PK treatments except for the year of 2013. The recovery efficiency, agronomic efficiency and partial productivity of N, P and K in NPK treatment increased year by year except for the P agronomic efficiency in 2016. During the period of 2013-2016 under NPK treatment, the averaged recovery efficiency of N, P and K was 45.8%, 6.1% and 3.5%, respectively; the averaged agronomic efficiency of N, P and K were 23.2 kg·kg -1, 7.2 kg·kg -1 and 5.0 kg·kg -1, respectively; and the averaged partial productivity of N, P and K are 58.3 kg·kg -1, 133.2 kg·kg -1 and 97.7 kg·kg -1, respectively. Soil mineral nitrogen test showed the alternative frozen and thawed promoted soil organic nitrogen mineralization from post-harvested to pre-sown in the following year. The averaged nutrients balances in the experimental four years showed that the rate of N or P in NPK treatment could meet the demand of P, K for spring maize, soil N or P was in the balanced status on the whole, and the luxury uptake of K by aboveground resulted in the loss status of soil potassium.【Conclusion】The continuous four years experiment in the typical black soil region showed that P and K rate greatly reduced and the use efficient of P and K increased with stable spring maize yield kept, while no chemical N fertilizer application only maintained maize yield in the first year, the decrease of maize yield and the increase of N use efficient occurred in the following years.

Key words: chemical fertilizer, nutrients use efficiency, yield of spring maize, nutrients uptake, soil available nutrients, nutrients balance, black soil

Fig. 1

Month mean temperature and month total precipitation in Harbin from 2013 to 2016"

Table 1

Yield and harvest index of spring maize under different treatments from 2013 to 2016"

处理
Treatment
产量Yield (t·hm-2) 收获指数Harvest index
2013 2014 2015 2016 平均
Average
2013 2014 2015 2016 平均
Average
CK 8.4a 5.0c 4.9b 5.0b 5.8b 0.51a 0.50a 0.44b 0.45b 0.47b
PK 8.8a 5.1c 5.4b 5.5b 6.2b 0.54a 0.44b 0.43b 0.44b 0.46b
NK 8.5a 8.9b 9.7a 11.4a 9.6a 0.53a 0.53a 0.51a 0.53a 0.52a
NP 8.5a 9.4ab 10.0a 11.0a 9.7a 0.52a 0.51a 0.51a 0.51a 0.51a
NPK 8.3a 10.1a 10.7a 11.9a 10.2a 0.53a 0.52a 0.51a 0.52a 0.52a

Table 2

N, P, K uptake by aboveground under different treatments from 2013 to 2016"

处理
Treatment
氮吸收量N uptake (kg N·hm-2) 磷吸收量P uptake (kg P·hm-2) 钾吸收量K uptake (kg K·hm-2)
2013 2014 2015 2016 平均
Average
2013 2014 2015 2016 平均
Average
2013 2014 2015 2016 平均
Average
CK 150.0a 62.7c 65.4c 59.9b 84.5c 35.6a 20.8b 28.7c 14.1c 24.8c 144.9a 71.7c 78.6d 55.5c 87.7c
PK 150.7a 66.1c 79.0c 64.7b 91.4c 35.1a 24.7b 33.8bc 16.4bc 27.5bc 141.8a 82.0c 97.4cd 70.5bc 97.9c
NK 143.4a 135.0b 164.3b 159.7a 148.7b 33.6a 31.8a 33.2bc 19.4bc 29.5b 141.9a 115.5b 114.5bc 85.9c 114.5b
NP 156.9a 149.6ab 185.2a 159.3a 162.9a 33.3a 34.1a 37.5ab 20.0b 31.2ab 152.3a 120.1ab 136.2ab 122.4a 132.8ab
NPK 151.4a 159.3a 193.9a 178.4a 169.3a 33.0a 35.5a 42.4a 26.4a 34.3a 150.1a 128.9a 143.4a 131.0a 138.3a

Fig. 2

Nitrogen, phosphor and potassium yield response and nutrient uptake response in NPK treatment from 2013 to 2016 Different letters denote significant difference among years at the 5% level. The same as Fig. 3"

Fig. 3

Nitrogen, phosphor and potassium use efficiency under NPK treatment from 2013 to 2016"

Fig. 4

NO3--N, NH4+-N and Nmin concentration above 90 cm soil depth at pre-sown(spring) and post-harvested(autumn) in different treatments from 2014 to 2016 Horizontal lines denote the significant difference at LSD0.05 level in each soil depth among different treatments"

Table 3

NO3--N, NH4+-N and Nmin content above 90 cm soil depth at pre-sown and post-harvested under different treatments from 2014 to 2016"

处理
Treatment
2014 2015 2016
播前Pre-sown 收获Post-harvested 播前Pre-sown 收获Post-harvested 播前Pre-sown 收获Post-harvested
NO3--N NH4+-N Nmin NO3--N NH4+-N Nmin NO3--N NH4+-N Nmin NO3--N NH4+-N Nmin NO3--N NH4-N Nmin NO3--N NH4+-N Nmin
CK 120.4a 41.7b 162.2a 61.7a 5.0a 66.6a 41.3c 108.9b 150.2c 53.5b 31.6a 85.1bc 36.3a 3.7a 40.0a 18.3a 14.1a 32.5a
PK 114.7a 68.6ab 183.3a 73.2a 7.1a 80.3a 62.2c 102.6b 164.8bc 57.0b 3.3a 60.3c 43.7a 7.7a 51.4a 21.0a 6.3b 27.3a
NK 94.1a 87.8a 181.8a 65.2a 10.1a 75.3a 99.2ab 108.9b 208.2ab 107.4a 10.6a 118.0a 68.9a 4.9a 73.8a 43.3a 4.5b 47.8a
NP 121.5a 75.9ab 197.4a 72.5a 8.2a 80.8a 71.3bc 111.1ab 182.4bc 117.7a 8.2a 125.9a 60.7ab 5.5a 66.2a 33.9a 4.6b 38.5a
NPK 159.0a 100.4a 259.5a 77.0a 9.9a 86.9a 114.6a 130.8a 245.4a 68.7b 5.3a 74.0c 66.3a 4.9a 71.2a 36.6a 6.2b 42.9a

Table 4

Soil available phosphorus and available phosphorus content above 30 cm soil depth at pre-sown and post-harvested under different treatments from 2014 to 2016"

处理
Treatment
速效磷Available Phosphorus 速效钾Available Potassium
2014 2015 2016 2014 2015 2016
播前
Pre-sown
收获
Post-
harvested
播前
Pre-sown
收获
Post-
harvested
播前
Pre-sown
收获
Post-
harvested
播前
Pre-sown
收获
Post-
harvested
播前
Pre-sown
收获
Post-
harvested
播前
Pre-sown
收获
Post-
harvested
CK 78.9b 84.0c 65.2c 68.1c 43.0a 39.8a 698.7b 797.4a 551.5a 477.2bc 504.6a 489.8a
PK 147.9a 136.6b 125.4a 95.7a 54.7a 46.9a 901.1a 838.4a 581.5a 591.1a 513.7a 508.5a
NK 95.0b 82.7c 75.6c 77.6bc 46.1a 39.0a 795.0ab 826.8a 593.7a 531.1ab 530.2a 609.2a
NP 147.5a 132.1b 108.2ab 94.1a 50.3a 49.0a 761.9b 803.6a 559.2a 427.5c 504.9a 487.1a
NPK 154.7a 149.9a 101.4b 86.9ab 53.4a 50.2a 767.0ab 837.4a 587.6a 532.1ab 520.3a 508.1a

Table 5

Nitrogen, phosphorus and potassium balances in different treatments from 2013 to 2016"

处理
Treatment
氮平衡N balance (kg N·hm-2) 磷平衡P balance (kg P·hm-2) 钾平衡K balance (kg K·hm-2)
2013 2014 2015 2016 平均
Average
2013 2014 2015 2016 平均
Average
2013 2014 2015 2016 平均
Average
CK 150.0a 62.7a 65.4a 59.9a 84.5a 35.6a 20.8b 28.7a 14.1b 24.8b 144.9a 71.7b 78.6b 55.5b 87.7b
PK 150.7a 66.1a 79.0a 64.7a 91.8a 1.5b -8.9d 0.1c -17.2d -6.1d 54.6b -5.1d 10.3d -16.7c 10.8e
NK -32.6b -41.0c -11.8c -16.3b -25.4c 33.6a 31.8a 33.2a 19.4a 29.5a 56.9b 24.5c 27.4d -1.2c 26.9d
NP -19.2b -26.4bc 9.2b -16.7b -13.3b -0.3b 0.5c 3.9bc -13.6d -2.4cd 152.3a 120.1a 136.2a 122.4a 122.1a
NPK -25.0b -16.8b 17.9b 2.4b -6.8b -0.6b 1.9c 8.2b -7.3c 0.5c 62.1b 37.3c 53.8c 43.9b 41.7c
[1] 张福锁 . 科学认识化肥的作用. 中国农技推广, 2017,33(1):16-19.
ZHANG F S . Scientific understanding of chemical fertilizers’ roles. China Agricultural Technology Extension, 2017,33(1):16-19. (in Chinese)
[2] 朱兆良, 金继运 . 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013,19(2):259-273.
doi: 10.11674/zwyf.2013.0201
ZHU Z L, JIN J Y . Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013,19(2):259-273. (in Chinese)
doi: 10.11674/zwyf.2013.0201
[3] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用效率现状与提高途径. 土壤学报, 2008,45(5):915-924.
ZHANG F S, WANG G Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F . Current situation of fertilizer utilization rate of major grain crops in China and its improvement methods. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)
[4] CONLEY D J, PAERL H W, HOWARTH R W, BOESCH D F, SEITZINGE S P, HAVENS K E, LANCELOT C, LIKENS G E . Controlling eutrophication: nitrogen and phosphorus. Science, 2009,323:1014-1015.
[5] OITA A, MALIK A, KANEMOTO K, GESCHKE A, NISHIJIMA S, LENZEN M . Substantial nitrogen pollution embedded in international trade. Nature Geoscience, 2016,9:111-115.
[6] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING W T, VITOUSEK P M, ZHANG F S . Significant acidification in major Chinese croplands. Science, 2010,327:1008-2010.
[7] 姜超强, 王火焰, 卢殿君, 周健民, 王世济, 祖朝龙 . 一次性根区穴施尿素提高夏玉米产量和养分吸收利用效率. 农业工程学报, 2018,34(12):146-153.
JIANG C Q, WANG H Y, LU D J, ZHOU J M, WANG S J, ZU C L . Single fertilization of urea in root zone improving crop yield, nutrient uptake and use efficiency in summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(12):146-153. (in Chinese)
[8] 巨晓棠 . 氮肥有效率的概念及意义—兼论对传统氮肥利用效率的理解误区. 土壤学报, 2014,51(5):921-933.
JU X T . The concept and significance of nitrogen efficiency -- and the misunderstanding of traditional nitrogen efficiency. Acta Pedologica Sinica, 2014,51(5):921-933. (in Chinese)
[9] CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, RÖMHELD V, ZHANG F S . Integrated soil-crop system management for food security. PNAS, 2011,108(16):6399-6404.
[10] ZHAO R F, CHEN X P, ZHANG F S, ZHANG H L, SCHRODER J RÖMHELD V . Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006,98:938-945
[11] XU X P, HE P, PAMPOLINO M F, LI Y Y, LIU S Q, XIE J G, HOU Y P, ZHOU W . Narrowing yield gaps and increasing nutrient use efficiencies using the Nutrient Expert system for maize in Northeast China. Field Crops Research, 2016,194:75-82.
[12] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN JUN, LI S Q, YE YL, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S . Producing more grain with lower environmental costs. Nature, 2014,514:486-489.
[13] 张亦涛, 王洪媛, 雷秋良, 张继宗, 翟丽梅, 任天志, 刘宏斌 . 农田合理施氮量的推荐方法. 中国农业科学, 2018,51(15):117-127.
ZHANG Y T, WANG H Y, LEI Q L, ZHANG J Z, ZHAI L H, REN T Z, LIU H B . Recommended methods for optimal nitrogen application rate. Scientia Agricultura Sinica, 2018,51(15):117-127. (in Chinese)
[14] QIU S, GAO H, ZHU P, HOU Y, ZHAO S, RONG X, ZHANG Y, HE P, CHRISTIE P, ZHOU W . Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil Tillage Research, 2016,163:255-265.
[15] 何萍, 金继运 , PAMPOLINO M F, JOHNSTON A M. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012,18(2):499-505.
doi: 10.11674/zwyf.2012.11248
HE P, JIN J Y, PAMPOLINO M F, JOHNSTON A M . Approach and decision support system based on crop yield response and agronomic efficiency. Plant Nutrition and Fertilizer Science, 2012,18(2):499-505. (in Chinese)
doi: 10.11674/zwyf.2012.11248
[16] VITOUSEK P M, NAYLOR R, CREWS T, DAVID M B, DRINKWATER L E, HOLLAND E, JOHNES P J, KATZENBERGER J, MARTINELLI L A, MATSON P A, NZIGUHEBA G, OJIMAL D, PALM C A, ROBERTSON G P, SANCHEZ P A, TOWNSEND A R, ZHANG F S . Nutrient imbalances in agricultural development. Science, 2009,324:1519-1520.
[17] 闫湘, 金继运, 何萍, 梁鸣早 . 提高肥料利用效率技术研究进展. 中国农业科学, 2008,41(2):450-459.
YAN X, JIN J Y, HE P, LIANG M Z . Recent advances in technology of increasing fertilizer use efficiency. Scientia Agricultura Sinica, 2008,41(2):450-459. (in Chinese)
[18] QIU S J, HE P, ZHAO S C, LI W J, XIE J G, HOU Y P, GRANT C A, ZHOU W, JIN J Y . Impact of nitrogen rate on maize yield and nitrogen use efficiencies in northeast China. Agronomy Journal, 2015,107:305-313.
[19] 串丽敏 . 基于产量反应和农学效率的小麦推荐施肥方法研究[D]. 北京: 中国农业科学院, 2013.
CHUAN L M . Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[20] 串丽敏, 何萍, 赵同科 . 作物推荐施肥方法研究进展. 中国农业科技导报, 2016,18(1):95-102.
CHUAN L M, HE P, ZHAO T K . Research advance on recommendation for crop fertilization methodology. Journal of Agricultural Science and Technology, 2016,18(1):95-102. (in Chinese)
[21] 程乙, 王洪章, 刘鹏, 董树亭, 赵久然, 王荣焕, 张吉旺, 赵斌, 李耕, 刘月娥 . 品种和氮素供应对玉米根系特征及氮素吸收利用的影响. 中国农业科学, 2017,50(12):2259-2269.
doi: 10.3864/j.issn.0578-1752.2017.12.007
CHENG Y, WANG H Z, LIU P, DONG S P, ZHAO J R, WANG R H, ZHANG J W, ZHAO B, LI G, LIU Y E . Effect of different maize varieties and nitrogen supply on root characteristics and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2017,50(12):2259-2269. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.007
[22] 串丽敏, 赵同科, 安志装, 杜连凤, 李顺江, 马礼 . 土壤硝态氮淋溶及氮素利用研究进展. 中国农学通报, 2010,26(11):200-205.
CHUAN L M, ZHAO T K, AN Z Z, DU L F, LI S J, MA L . Research advancement in nitrate leaching and nitrogen use in soils. Chinese Agricultural Science Bulletin, 2010,26(11):200-205. (in Chinese)
[23] 王火焰, 周健民 . 肥料养分真实利用效率计算与施肥策略. 土壤学报, 2014,51(2):216-225.
WANG H Y, ZHOU J M . Calculation of real fertilizer use efficiency and discussion on fertilization strategies. Acta Pedologica Sinica, 2014,51(2):216-225. (in Chinese)
[24] 陈新平, 张福锁 . 小麦-玉米轮作体系养分综合管理理论与实践. 北京: 中国农业大学出版社, 2006: 18-45.
CHEN X P, ZHANG F S. Nutrition Resources Management Theories and Practices of Wheat-Maize Rotation System. Beijing: China Agricultural University Press, 2006: 18-45. (in Chinese)
[25] QIU S, XIE J, ZHAO S, XU X, HOU Y, WANG X, ZHOU W, HE P, JOHNSTON A M, CHRISTIE P, JIN J . Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research, 2014,163:1-9.
[26] ZHANG W, CAO G, LI X, ZHANG H, WANG C, LIU Q, CHEN X, CUI Z, SHEN J, JIANG R, MI G, MIAO Y, ZHANG F, DOU Z . Closing yield gaps in China by empowering smallholder farmers. Nature, 2016,537:671-674.
[27] 高敏, 李艳霞, 张雪莲, 张丰松, 刘蓓, 高诗颖, 陈兴财 . 冻融过程对土壤物理化学及生物学性质的影响研究及展望. 农业环境科学学报, 2016,35(12):2269-2274.
GAO M, LI Y X, ZHANG X L, ZHANG F S, LIU B, GAO S Y, CHEN X C . Influence of freeze-thaw process on soil physical, chemical and biological properties: A review. Journal of Agro- Environment Science, 2016,35(12):2269-2274. (in Chinese)
[28] 吕欣欣, 孙海岩, 汪景宽, 丁雪丽 . 冻融交替对土壤氮素转化及相关微生物学特性的影响. 土壤通报, 2016,47(5):1265-1272.
LÜ X X, SUN H Y, WANG J K, DING X L . Effects of Freeze-thaw events on nitrogen transformation and microbiological characteristics in soils. Chinese Journal of Soil Science, 2016,47(5):1265-1272. (in Chinese)
[29] 李源, 祝惠, 袁星 . 冻融交替对黑土氮素转化及酶活性的影响. 土壤学报, 2014,51(5):1103-1109.
LI Y, ZHU H, YUAN X . Influence of freezing and thawing cycles on net nitrogen transformation and enzyme activity in black soils. Acta Pedologica Sinica, 2014,51(5):1103-1109. (in Chinese)
[30] 陈哲, 杨世琦, 张晴雯, 周华坤, 井新, 张爱平, 韩瑞芸, 杨正礼 . 冻融对土壤氮素损失及有效性的影响. 生态学报, 2016,36(4):1083-1094.
doi: 10.5846/stxb201406061171
CHEN Z, YANG S Q, ZHANG Q W, ZHOU H K, JING X, ZHANG A P, HAN R Y, YANG Z L . Effects of freeze-thaw cycles on soil nitrogen loss and availability. Acta Ecologica Sinica, 2016,36(4):1083-1094. (in Chinese)
doi: 10.5846/stxb201406061171
[31] 孙大生 . 水分与温度对土壤碳氮磷转化的影响及其机理[D]. 杭州: 浙江大学, 2016.
SUN D S . Effects of moisture and temperature on soil carbon, nitrogen and phosphorus transformation and corresponding mechanisms[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[32] LU C Y, ZHANG X D, CHEN X, SHI Y, MA J, ZHAO M Q, CHI G, HUANG BIN . Fixation of labeled ( 15NH4)2SO4 and its subsequent release in black soil of Northeast China over consecutive crop cultivation . Soil Tillage Research, 2010,106(2):329-334.
[33] 刘莹 . 吉林省几种典型土壤的固定态铵研究[D]. 吉林: 吉林农业大学, 2008.
LIU Y . The search in fixed ammonium of some typical soil in Jilin Province[D]. Jilin: Jilin Agricultural University, 2008. (in Chinese)
[34] 宋振伟, 邓艾兴, 郭金瑞, 任军, 闫孝贡, 张卫建 . 整地时期对东北雨养区土壤含水量及玉米产量的影响. 水土保持学报, 2012,26(5):254-258, 263.
SONG Z W, DENG A X, GUO J R, REN J, YAN X G, ZHANG W J . Impacts of soil preparation period on soil water storage and corn (Zea mays L.) yield in rain-fed area of Northeast China. Journal of Soil and Water Conservation, 2012,26(5):254-258, 263. (in Chinese)
[1] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[5] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[6] TANG MingYao,SHEN ChongYang,CHEN ShuHuang,TANG GuangMu,LI QingJun,YAN CuiXia,GENG QingLong,FU GuoHai. Yield of Wheat and Maize and Utilization Efficiency of Nitrogen, Phosphorus and Potassium in Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[7] WEI Lei,MI XiaoTian,SUN LiQian,LI ZhaoMin,SHI Mei,HE Gang,WANG ZhaoHui. Current Status of Chemical Fertilizers, Pesticides, and Irrigation Water and Their Reducing Potentials in Wheat Production of Northern China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2584-2597.
[8] GONG Liang,JIN DanDan,NIU ShiWei,WANG Na,XU JiaYi,SUI ShiJiang. Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(9): 1926-1936.
[9] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[10] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[11] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[12] Dan WEI,ShanShan CAI,Yan LI,Liang JIN,Wei WANG,YuMei LI,Yang BAI,Yu HU. The Response of Water-Soluble Organic Carbon to Organic Material Applications in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1180-1188.
[13] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[14] LI TingLiang,WANG YuFeng,WANG JiaHao,LI Li,XIE JunYu,LI LiNa,HUANG XiaoLei,XIE YingHe. Nutrient Resource Quantity from Main Grain Crop Straw Incorporation and Its Enlightenment on Chemical Fertilizer Reduction in Wheat Production in China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4835-4854.
[15] ZHANG QiRu,XIE YingHe,LI TingLiang,LIU Kai,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Organic Fertilizers Replacing Chemical Fertilizers on Yield, Nutrient Use Efficiency, Economic and Environmental Benefits of Dryland Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4866-4878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!