Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (7): 1244-1260.doi: 10.3864/j.issn.0578-1752.2018.07.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation Analysis on Transcriptomic and Proteome of Soybean Resistance to Bean Pyralid(Lamprosema indicata)

ZENG WeiYing, SUN ZuDong, LAI ZhenGuang, CAI ZhaoYan, CHEN HuaiZhu, YANG ShouZhen, TANG XiangMin   

  1. Institute of Economic Crops of Guangxi Academy of Agricultural Sciences/MOA Southwest Experimental Station of Maize-Soybean Intercrop, Nanning 530007
  • Received:2017-11-03 Online:2018-04-01 Published:2018-04-01

Abstract: 【Objective】In order to lay a solid basis for a holistic understanding of the defense molecular mechanism of soybean resistance to Lamprosema indicata in soybean, the correlation analysis of the transcriptomic and proteomic of soybean leaves (the highly resistant line (Gantai-2-2) and the highly susceptible line (Wan 82-178)) under Lamprosema indicate larva feeding for 0 h and 48 h was conducted. 【Method】 In this study, soybeans with high resistance and susceptibility to Lamprosema indicata were selected as the research objects. The gene and protein expression abundance was analyzed for the soybean following the Lamprosema indicata feedings using RNA-Seq and iTRAQ technology, respectively. Then the correlation value between the protein level and the transcription level was calculated.【Result】There were 236 DEPs and 1 064 DEGs, 250 DEPs and 680 DEGs, 213 DEPs and 605 DEGs, 211 DEPs and 468 DEGs identified in HR48/HR0, HS48/HS0, HR0/HS0 and HR48/HS48. The results indicated that the correlations between the quantitative protein and mRNA were 0.156, 0.2687, 0.1149, and 0.035 in HR48/HR0, HS48/HS0, HR0/HS0 and HR48/HS48, and 11, 9, 3 and 4 DEPs/DEGs were identified, of which 11, 9, 2 and 3 with same expression trend, respectively. These differential expression proteins were revealed to be involved in metabolic pathways, ribosome, flavonoid biosynthesis, linoleic acid metabolism, amino sugar and nucleotide sugar metabolism, aminoacyl-RNA biosynthesis, alpha-linoleic acid metabolism, biosynthesis of secondary metabolism, phenylpropanoid biosynthesis, RNA transport, glutathione metabolism, ascorbate andaldarate metabolism. The function correlation analysis results showed that 27 pathways correlated to 101 DEPs and 23 DEGs were identified in HR48/HR0, 15 pathways correlated to 147 DEPs and 16 DEGs were identified in HS48/HS0, 18 pathways correlated to 82 DEPs and 10 DEGs were identified in HR0/HS0, and 1 pathway correlated to 71 DEPs and 2 DEGs were identified in HR48/HS48. Candidate differential expression proteins closely related to insect resistance, such as trypsin inhibitor A-like, kunitz-type trypsin inhibitor, chalcone isomerase 4-like, lipoxygenase-9, alpha-dioxygenase 1-like, linoleate 9S-lipoxygenase 1-like isoform 1, lectin precursor, peroxidase 12-like, stress-induced protein SAM22, scorbate peroxidase 1, cytosolic, and so on. Finally, qRT-PCR analysis confirmed that the two kinds of “omics” results were reliable. 【Conclusion】 In this study, some proteins and metabolic pathways were related to insect-resistant, these differential proteins were directly or indirectly involved in soybean response to Lamprosema indicata.

Key words: soybean, Lamprosema indicata, transcriptomic, proteomic, correlation analysis

[1]    Stacey G. Genetics and Genomics of Soybean.: New York: Verlag New York Inc, 2008: 3-15.
[2]    中国农作物病虫图谱编写组. 中国农作物病虫图谱: 第五分册, 油料病虫(一). 北京: 中国农业出版社, 1982: 136-137.
Editorial committee of plate of Chinese diseases and insects on crop. Plate of Chinese diseases and insects on crop, fifth fascicule, Diseases and insects on Oil Crop (first). Beijing: China Agriculture press, 1982: 136-137. (in Chinese)
[3]    崔章林, 盖钧镒, 吉东风, 任珍静. 大豆种质资源对食叶性害虫抗性的鉴定. 大豆科学, 1997, 16(2): 93-102.
CUI Z L, GAI J Y, JI D F, REN Z J. A study on leaf-feeding insect species on soybeans in Nanjing area. Soybean Sciences, 1997, 16(2): 93-102. (in Chinese)
[4]    孙祖东, 杨守臻, 陈怀珠, 李初英, 龙丽萍. 大豆对豆卷叶螟的抗性鉴定. 中国油料作物学报, 2005, 27(4): 69-71.
SUN Z D, YANG S Z, CHEN H Z, LI C Y, LONG L P. Identification of soybean resistance to bean pyralid (Lamprosema indicata Fabricicus) and oviposition preference of bean pyralid on soybean varieties. Chinese Journal of Oil Crop Sciences, 2005, 27(4): 69-71. (in Chinese)
[5]    邢光南, 谭连美, 刘泽稀楠, 岳汉, 张寒竹, 史鸿飞, 赵团结, 盖钧镒. 大豆地方品种叶片叶柄茸毛性状的形态变异及其与豆卷叶螟抗性的相关分析. 大豆科学, 2012, 5(31): 691-696.
XING G N, TAN L M, LIU Z X N, YUE H, ZHANG H Z, SHI H F, ZHAO T J, GAI J Y. Morphological variation of pubescence on leaf blade and petiole and their correlation with resistance to bean pyralid(Lamprosema indicata Fabricius) in soybean landraces. Soybean Sciences, 2012, 5(31): 691-696.(in Chinese)
[6]    邢光南, 赵团结, 盖钧镒. 大豆对豆卷叶螟Lamprosema indicata(Fabricius)抗性的遗传分析. 作物学报, 2008, 34(1): 8-16.
XING G N, ZHAO T J, GAI J Y. Inheritance of resistance to Lamprosema indicate (Fabricius) in soybean. Acta Agronomica Sinica, 2008, 34(1): 8-16.(in Chinese)
[7]    李广军, 程利国, 张国政, 何小红, 智海剑, 章元明. 大豆对豆卷叶螟抗性的主基因+多基因混合遗传. 大豆科学, 2008, 27(1): 33-36, 41.
LI G J, CHENG L G, ZHANG G Z, HE X H, ZHI H J, ZHANG Y M. Mixed major-gene plus polyegens inheritance analysis for resistance in soybean to bean pyralid (Lamprosema indicate Fabricius). Soybean Sciences, 2008, 27(1): 33-36, 41. (in Chinese)
[8]    李广军, 李河南, 程利国, 章元明. 大豆对豆卷叶螟抗性的QTL定位. 中国油料作物学报, 2009, 31(3): 365-369.
LI G J, LI H N, CHENG L G, ZHANG Y M. Mapping quantitative trait loci for resistance in soybean to bean pyralid (Lamprosema indicate Fabricius). Chinese Journal of Oil Crop Sciences, 2009, 31(3): 365-369.(in Chinese)
[9]    XING G N, ZHOU B, WANG Y F, ZHAO T J, YU D Y, CHEN S Y, GAI J Y. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicate Fabricius) under multiple environments in four RIL populations of soybean. Theoretical & Applied Genetics, 2012, 125: 859-875.
[10]   陈晶, 韩贵清, 尚晨, 张海玲, 李佶恺, 刘慧莹, 张月学. 去除紫花苜蓿叶片高丰度蛋白的方法及其应用. 草业学报, 2015, 24(7): 131-138.
CHEN J, HAN G Q, SHANG C, ZHANG H L, LI J K, LIU H Y, ZHANG Y X. Proteomic methods for removing high-abundance proteins in alfalfa leaf. Acta Pratacultruae Sinica, 2015, 24(7): 131-138. (in Chinese)
[11]   BRADFORD B M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
[12]   MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L, WOLD B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[13]   JIA W, QIU K, HE M, SONG P, ZHOU Q, ZHOU F, YU Y, ZHU D, NICKERSON M L, WAN S, LIAO X, ZHU X, PENG S, LI Y, WANG J, GUO G. SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome biology, 2013, 14: R12.
[14]   TRAPNELL C, PACHER L, SALZBERG S L. TopHat: discovering splice junctions with RNA-Seq. Bionformatics, 2009, 25(9): 1105-1111.
[15]   TRAPELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTAL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nature protocols, 2012, 7(3): 562-578.
[16]   BENJAMINI Y, YEKTIELI D. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 2001, 29(4): 1165-1188.
[17]   LAN P, LI W F, SCHMIDT W. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Molecular Cellular Proteomics, 2012, 11(11): 1156-1166.
[18]   KITANO H. Systems biology: a brief overview. Science, 2002, 295(5560): 1662-1164.
[19]   WU J, XU Z, ZHANG Y, CHAI L J, YI H L, DENG X X. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citins. Journal of Experimental Botany, 2014, 65(6): 1651-1671.
[20]   陈全助. 福建桉树焦枯病菌鉴定及其诱导下桉树转录组和蛋白组学研究[D]. 福州: 福建农林大学, 2013.
CHEN Q Z. Pathogenic identification of cylindrocladium leaf blight collected from Fujian province and studies on transcriptomics and proteomics of eucalyptus induced by Calonectria pseudoreteaudii[D]. Fuzhou: Fujian Agriculture and Forestry University,2013.(in Chinese)
[21]   苏亚春. 甘庶应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘[D]. 福州: 福建农林大学, 2014.
SU Y C. Transcriptomics and proteomics of sugarcane response to Sporisorium scitamineum infection and mining of resistance-related genes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[22]   DERIBE Y L, PAWSON T, DIKIC T. Post-translational modifications in signal integration. Nature Structural Molecular Biology, 2010, 17(6): 666-672.
[23]   KARAS M, HILLENKAMP E. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 1988, 60(20): 2299-2301.
[24]   TAKEHIKO K, TOKUJI I, SUSUMU T. Studies on soybean trypsin inhibitors. European Journal of Biochemistry, 1973, 32(3): 401-407.
[25]   SONG S L, KIM C H, BAEK S J, CHOI Y D. Nucleotide sequences of cDNAs encoding the precursors for soybean (Glycine max) trypsin inhibitors (Kunitz type). Plant Physiology, 1993, 101(4): 1401-1402.
[26]   GATEHOUSE A M R, SHI Y, POWELL K S, BROUGH C, HILDER V A, HAMILTON W D O, NEWELL C A, MERRYWEATHER A, BOULTER D, GATEHOUSE J A. Approaches to insect resistance using transgenic plants. The Production and Uses of Genetically Transformed Plants, 1993, 342(1301): 279-286.
[27]   BIRK Y. Purification and some properties of a highly active inhibitor of trypsin and α-chymotrypsin from soybeans. Biochimicaet Biophysica Acta, 1962, 54(2): 378-381.
[28]   BROADWAY R M, DUFFEY S S, BROADWAY R M, DUFFEY S S. Plant proteinase inhibitors mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. Journal of Insect Physiology, 1986, 32(10): 827-833.
[29]   MACEDO M L R, MELLO G C, FREIRE M D G M, NOVELLO J C, MARANGONI S, DE MATOS D G G. Effect of a trypsin inhibitor from Dimorphandra mollis seeds on the development of Callosobruchus maculatus. Plant Physiology & Biochemistry, 2002, 40(10): 891-898.
[30]   SAGILI R R, TANYA P, KEYAN Z S. Effects of soybean trypsin inhibitor onhypopharyngeal gland protein content total midgut protease activity and survival of the honey bee(Apis mellifera L.). Journal of Insect Physiology, 2005, 51: 953-957.
[31]   PEUMANS W J, VAN DAMME E J M. Lectins as plant defense proteins. Plant Physiology, 1995, 109(2): 347-352.
[32]   BOULTER D, EDWARDS G A, GATEHOUSE A M R, GATEHOUSE J A, HILDER V A. Additive protective effects of incorporating two different higher plant insect resistance genes in transgenic tobacco plants. Corp Protection, 1990, 9(5): 351-354.
[33]   HILDER V A, POWELL K S, GATEHOUSE A M R, GATEHOUSE J A, GATEHOUSE L N, SHI Y, HAMILTON W D O, MERRYWEATHER A, NEWELL C A, TIMANS J C, PEUMANS WJ, EAMME E V, DOULTER D. Expression of tobacco plants results in added snow drop lectin transgenic protection against aphids. Transgenic Research, 1995, 4(1): 18-25.
[34]   VAN DAMME E J M, PEUMANS W J, PUSZTAI A, BARDOCZ S. Handbook of plant lectins: properties and biomedical applications. New York : John Willey & Sons, 1998, 20-31.
[35]   REYMOND P, FARMER E E. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 1998, 1(1): 404-411.
[36]   REYMOND P, WEBER H, DAMOND M, FANNER E E. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 2000, 12(5): 707-719.
[37]   ZHOU G X, WANG X,YAN F, WANG X, LI R, CHENG J A, LOU Y G. Genome-wide transcriptional changes and defense-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis. Physiologia Plantarum, 2011, 143(1): 21-40.
[38]   BIRKETT M A, CAMPBEEL C A, CHAMBERLAIN K, GUERRIERI E, HICK A J, MARTN J L, MATHES M, NAPIER J A, PICKETT J A, POPPY G M, POW E M, PYE B J, SMART L E, WADHAMS G H, WADHAMS L J, WOODCOCK C M. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences of the USA, 2000, 97(97): 9329-9334.
[39]   SCHALLER F, SCHALLER A, STINTZI A. Biosynthesis and metabolism of jasmonates. Journal of Plant Growth Regulation, 2004, 23(3): 179-199.
[40]   GARDNER W H. Biological roles and biochemistry of the lipoxygenase pathway. Hortscience, 1995, 30(2): 197-205.
[41]   WEI Z, HU W, LIN Q S, CHENG X Y, TONG M J, ZHU L L, CHEN R Z, HE G C. Understanding rice plant resistance to the brown plant hopper (Nilaparvata lugens): A proteomic approach. Proteomics, 2009, 9(9): 2798-2808.
[42]   CHRISTENSEN J H, BAUW G, WELINDER K G, VAN M M, BOERJAN W. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology, 1998, 118(1): 125-135.
[43]   VITALI A, BOTTA B, DELLE M G, ZAPPITELLI S, RICCIARDI P, MELINO S, PETRUZZELLI R, GIARDINA B. Purification and partial characterization of a peroxidase from plant cell cultures of Cassia didymobotrya and biotransformation studies. Biochemical Journal, 1998, 331(2): 490-518.
[44]   LESZCZYNSKI B. Changes in phenols content and metabolism in leaves of susceptible and resistant wheat cultivars infested by Rhopalosiphum padi(L.)(Hom.:Aphididae). Zeitschrift Für Angewandte Entomologie,1985, 100(4): 343-348.
[45]   NI X, QUISENBERRY S S, HENG-MOSS T, MARKWELL J, SARATH G, KLUCAS R, BAXENDALE F. Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. Journal of Economic Entomology, 2001, 94(3): 743-751.
[46]   HUANG Y H. Phloem feeding regulates the plant defense pathways responding to both aphid infestation and pathogen infection[C]. Beijing: Biotechnology and sustainable agriculture 2006 and beyond, 2006: 215-219.
[47]   ZHANG S Z, ZHANG F, HUA B Z. Enhancement of phenylalanine ammonia lyase, polyphenoloxidase, and peroxidase in cucumber seedlings by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) infestation. Agricultural Sciences in China, 2008, 7(1): 82-87.
[48]   DU B, WEI Z, WANG Z Q, WANG X X, PENG X X, DU B, CHEN R Z, ZHU L L, HE G C. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. Journal of Plant Physiology, 2015, 183: 13-22.
[49]   KHATOON A, REHMAN S, Oh M W, WOO S H, KOMATSU S. Analysis of response mechanism in soybean under low oxygen and flooding stresses using gel-base proteomics technique. Molecular Biology Reports, 2012, 39(12): 10581-10594.
[50]   ASADA K. Ascorbate peroxidase: A hydrogen peroxide scavenging enzyme in plants. Physiology Plant, 1992, 85(2): 235-241.
[51]   SHIGEOKA S, ISHIKAWA T, TAMOI M, MIYAGAWA Y, TAKEDA T, YABUTA Y, YOSHIMURA K. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 2002, 53(372):1305-1319.
[52]   CALDWELL R C, TURANO J F, MCMAHON B M. Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expressionE. coli. Planta, 1998, 204: 120-126.
[53]   YOSHIMURA K, YABUTA Y, ISHIKAWA T, SHIGEOKA S. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology, 2000, 123(1): 223-234.
[54]   KOES R E, QUATTROCCHIO F, MOLIN M. The flaonoivd biosynthetic pathway in plants: Function and evolution. BioEssays, 1994, 16: 123-132.
[55]   MUIR S R, COLLINS G J, ROBINSON S, HUGHES S, BOVY A, RIC DE VOS C H, VAN TUNEN A J, VERHOEYEN M E. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 2001, 19(5): 470-474.
[56]   LOON L C V. The nomenclature of pathogenesis-related protein. Physiological & Molecular Plant Pathology, 1990, 37(3): 229-230.
[57]   CROWEEL D N, JOHN M E, RUSSELLl D, AMASINO R M. Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Molecular Biology, 1992, 18(3): 459-466.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[8] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[9] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[10] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[11] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[12] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[13] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[14] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[15] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!