Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (24): 4690-4699.doi: 10.3864/j.issn.0578-1752.2018.24.009

• HORTICULTURE • Previous Articles     Next Articles

Apple MdMYB32 Inhibits the Anthocyanin Biosynthesis by Its Own EAR Inhibitory Sequence

XU HaiFeng(),YANG GuanXian,WANG YiCheng,JIANG ShengHui,WANG Nan,CHEN XueSen()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2018-06-22 Accepted:2018-07-16 Online:2018-12-16 Published:2018-12-16

Abstract:

【Objective】 In order to improve the metabolic mechanism of anthocyanin synthesis, several aspects of apple MdMYB32 in MYB transcription factors were studied, including the bio-informatics, the expression level and the function in the anthocyanin synthesis.【Method】 We cloned the MdMYB32 in Malus sieversii f. neidzwetzkyana F1 population and analyzed its phylogenetic tree and protein sequence. The expression level of MdMYB32 in different apple fruits with different stress treatments was studied. We verified its function in anthocyanin biosynthesis by transgene and analyzed its interaction by yeast one-hybrid.【Result】 qRT-PCR analysis showed that the expression level of MdMYB32 in 'Hongcui No. 9' with high anthocyanin content was lower than that in 'Hongcui No. 6' with low anthocyanin content. The expression level of MdMYB32 was negatively correlated with the content of anthocyanin. Both salt stress and cold stress could inhibit the expression of MdMYB32. The phylogenetic tree indicated that MdMYB32, AtMYB32, MdMYB16 and AtMYB4 were located in the same evolutionary branch, and MdMYB32 protein contained an EAR inhibitory sequence at the C-terminus. Overexpressing MdMYB32 in red-fleshed callus could inhibit the expression of ANS and reduce the anthocyanin content. However, when we overexpressed LESMdMYB32 (knocked out the EAR sequence of MdMYB32) in red-fleshed callus, we found that it could not affect the expression of ANS and the anthocyanin content. Yeast one-hybrid and Chip-PCR analyses showed that MdMYB32 and LESMdMYB32 could bind the promoter of ANS.【Conclusion】 MdMYB32 could bind the promoter of ANS and inhibit the anthocyanin biosynthesis by its own EAR inhibitory sequence.

Key words: apple, MYB transcription factors, MdMYB32, EAR inhibitory sequence, yeast one-hybrid

Fig. 1

Sectional drawing of apples in the mature period"

Fig. 2

Relative content of anthocyanin in 3 apple strains"

Fig. 3

Relative expression of structural genes associated with anthocyanin synthesis and related transcription factors in 3 apple strains"

Fig. 4

Phylogenetic tree of MYB32 and related MYB protein"

Fig. 5

Sequence analysis of MYB32 and related protein"

Fig. 6

Relative expression of MdMYB32 treated with cold stress or salt stress"

Fig. 7

Red-fleshed callus and the red-fleshed callus that overexpressing MYB32 or LESMYB32"

Fig. 8

Relative content of anthocyanin in 3 kinds of callus"

Fig. 9

Relative expression level of related genes involved of anthocyanin biosynthesis in 3 callus"

Fig. 10

Yeast one-hybrid analysis in MdMYB32, LESMdMYB32 and MdANS promoter"

Fig. 11

Chip-PCR analysis in MdMYB32, LESMdMYB32 and MdANS promoter"

[1] 张学英, 张上隆, 骆军, 叶正文, 李世诚 . 果实花色素苷合成研究进展. 果树学报, 2004,21(5):456-460.
ZHANG X Y, ZHANG S L, LUO J, YE Z W, LI S C . Advances in research on fruit anthocyanin synthesis. Journal of Fruit Science, 2004,21(5):456-460. (in Chinese)
[2] ZHANG W S, LI X, ZHENG J T, WANG G Y, SUN C D, FERGUSON I B, CHEN K S . Bioactive components and antioxidant capacity of Chinese bayberry(Myrica rubra Sieb. and Zucc.)fruit in relation to fruit maturity and postharvest storage. European Food Research and Technology, 2008,227(4):1091-1097.
doi: 10.1007/s00217-008-0824-z
[3] SUN C D, HUANG H Z, XU C J, LI X, CHEN K S . Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): A review. Plant Foods for Human Nutrition, 2013,68(2):97-106.
doi: 10.1007/s11130-013-0349-x pmid: 23605674
[4] KOES R, VERWEIJ W, QUATTROCCHIO F . Flavonoids, a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005,10:236-242.
[5] BAI S L, SAITO A, HONDA C, HATSUYAMA Y, ITO A, MORIGUCHI T . An apple B-box protein, MdCOL11, is involved in UV-Band temperature-induced anthocyanin biosynthesis. Planta, 2014,240:1051-1062.
doi: 10.1007/s00425-014-2129-8 pmid: 25074586
[6] BALLESTER A R, MOLTHOFF J, DE VOS R , TE LINTEL H B, ORZAEZ D, FERNANDEZMORENO J P, TRIPODI P, GRANDILLO S, MARTIN C, HELDENS J, YKEMA M, GRANELL A, BOVY A. Biochemical molecular analysis of pink tomatoes, deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology, 2010,152:71-84.
doi: 10.1104/pp.109.147322 pmid: 19906891
[7] ALBERT N W, LEWIS D H, ZHANG H, SCHWINN K E, JAMESON P E, DAVIES K M . Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal, 2011,65:771-784.
doi: 10.1111/j.1365-313X.2010.04465.x pmid: 21235651
[8] AZUMA A, KOBAYASHI S, MITANI N, SHIRAISHI M, YAMADA M, UENO T, KONO A, YAKUSHIJI H, KOSHITA Y . Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theoretical and Applied Genetics, 2008,117:1009-1019.
doi: 10.1007/s00122-008-0840-1 pmid: 18651125
[9] WANG L K, BOLITHO K, GRAFTON K, KORTSTEE A, KARUNAIRETNAM S, MCGHIE T K, ESPLEY R V, HELLENS R P, ALLAN A C . An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010,10:50.
[10] FENG S Q, WANG Y L, SONG Y, XU Y T, CHEN X S . Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta, 2010,232:245-255.
[11] TAKOS A M, JAFFÉ F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R . Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006,142(3):1216-1232.
doi: 10.1104/pp.106.088104 pmid: 17012405
[12] BAN Y, HONDA C, HATSUYAMA Y, IGARASHI M, BESSHO H, MORIGUCHI T . Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology, 2007,48:958-970.
doi: 10.1093/pcp/pcm066 pmid: 17526919
[13] ESPLEY R V, HELLENS R P, PUTTERILL J, STEVENSON D E, KUTTY-AMMA S, ALLAN A C . Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. The Plant Journal, 2007,49:414-427.
doi: 10.1111/j.1365-313X.2006.02964.x pmid: 1865000
[14] ESPLEY R V, BRENDOLISE C, CHAGNÉ D, KUTTY-AMMA S, GREEN S, VOLZ R, PUTTERILL J, SCHOUTEN H J, GARDINER S E, HELLENS R P, ALLAN A C . Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell, 2009,21:168-183.
doi: 10.1105/tpc.108.059329
[15] 张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红 . 新疆野苹果酚类物质组分的遗传多样性. 园艺学报, 2008,35(9):1351-1356.
ZHANG X Y, CHEN X S, PENG Y, WANG H B, SHI J, ZHANG H . Genetic diversity of phenolic compounds in Malus sieversii. Acta Horticulturae Sinica, 2008,35(9):1351-1356. (in Chinese)
[16] 张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红 . 新疆野苹果矿质元素与糖酸组分的遗传多样性. 园艺学报, 2008,35(2):277-280.
ZHANG X Y, CHEN X S, PENG Y, WANG H B, SHI J, ZHANG H . Genetic diversity of mineral elements, sugar and acid components in Malus sieversii( Ldb.) Roem. Acta Horticulturae Sinica, 2008,35(2):277-280. (in Chinese)
[17] ZHANG C Y, CHEN X S, HE T M, LIU X L, FENG T, YUAN Z H . Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007,34(10):947-955.
[18] 张艳敏, 冯涛, 张春雨, 何天明, 张小燕, 吴传金, 刘遵春, 王艳玲, 束怀瑞, 陈学森 . 新疆野苹果研究进展. 园艺学报, 2009,36(3):447-452.
ZHANG Y M, FENG T, ZHANG C Y, HE T M, ZHANG X Y, WU C J, LIU Z C, WANG Y L, SHU H R, CHEN X S . Advances in research of the Malus sieversii( Lebed.) Roem. Acta Horticulturae Sinica, 2009,36(3):447-452. (in Chinese)
[19] 冯涛, 张红, 陈学森, 张艳敏, 何天明, 冯建荣, 许正 . 新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株. 植物遗传资源学报, 2006,7(3):270-276.
FENG T, ZHANG H, CHEN X S, ZHANG Y M, HE T M, FENG J R, XU Z . Genetic diversity of fruit morphological traits and content of mineral element in Malus sieversii( Ldb.) Roem and its elite seedlings. Journal of Plant Genetic Resources, 2006,7(3):270-276. (in Chinese)
[20] 王延玲, 张艳敏, 冯守千, 宋杨, 徐玉亭, 张友朋, 陈学森 . 新疆红肉苹果果皮果肉呈色差异机理. 中国农业科学, 2012,45(13):2771-2778.
WANG Y L, ZHANG Y M, FENG S Q, SONG Y, XU Y T, ZHANG Y P, CHEN X S . The mechanism of red coloring difference between skin and cortex in Malus sieversii f. neidzwetzkyana(Dieck) Langenf. Scientia Agricultura Sinica, 2012,45(13):2771-2778. (in Chinese)
[21] 许海峰, 王楠, 姜生辉, 王意程, 刘静轩, 曲常志, 王得云, 左卫芳, 张晶, 冀晓昊, 张宗营, 毛志泉, 陈学森 . 新疆红肉苹果杂种一代4个株系类黄酮含量及其合成相关基因表达分析. 中国农业科学, 2016,49(16):3174-3187.
XU H F, WANG N, JIANG S H, WANG Y C, LIU J X, QU C Z, WANG D Y, ZUO W F, ZHANG J, JI X H, ZHANG Z Y, MAO Z Q, CHEN X S . Content and analysis of biosynthesis-related genes of flavonoid among four strains of Malus sieversii f. neidzwetzkyana F1 population. Scientia Agricultura Sinica, 2016,49(16):3174-3187. (in Chinese)
[22] JI X H, WANG Y T, ZHANG R, WU S J, AN M M, LI M, WANG C Z, CHEN X L, ZHANG Y M, CHEN X S . Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2015,120:325-337.
doi: 10.1007/s11240-014-0609-y
[23] JI X H, ZHANG R, WANG N, YANG L, CHEN X S . Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f.niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2015,123:389-404.
[24] WANG N, ZHENG Y, DUAN N B, ZHANG Z Y, JI X H, JIANG S H, SUN S S, YANG L, BAI Y, FEI Z J, CHEN X S . Comparative transcriptomes analysis of red and white-fleshed apples in an F1 populationofMalus sieversii f. niedzwetzkyana crossed with M. domestica ‘Fuji’. PLoS ONE, 2015. Doi: 10.1371/journal.pone. 0133468, 2015.
[25] XU H F, WANG N, LIU J X, QU C Z, WANG Y C, JIANG S H, LU N L, WANG D Y, ZHANG Z Y, CHEN X S . The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology, 2017,94:149-165.
[26] WANG N, XU H F, JIANG S H, ZHANG Z Y, LU N L, QIU H R, QY C Z, WANG Y C, WU S J, CHEN X S . MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant journal, 2017,90:276-292.
[27] JIN H L, COMINELLI E, BAILEY P, PARR A, MEHRTENS F, JONES J, TONELLI C . Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO Journal, 2000,19:6150-6161.
[28] HEMM M R, HERRMANN K M, CHAPPLE C . AtMYB4: A transcription factor general in the battle against UV. Trends in Plant Science, 2001,6(4):135-136.
doi: 10.1016/S1360-1385(01)01915-X pmid: 11286899
[29] AHARONI A, DE VOS C, WEIN M, SUN Z, GRECO R, KROON A, MOL J N , O’CONNELL A P . The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal, 2001,28(3):319-332.
doi: 10.1046/j.1365-313X.2001.01154.x pmid: 11722774
[30] KENNETH J L, THOMAS D S . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method . Methods, 2001,25:402-408.
[31] HE J X, GENDRON J M, SUN Y ,GAMPALA S S L, GENDRON N, SUN C Q, WANG Z. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005,307:1634-1638.
doi: 10.1126/science.1107580 pmid: 2925132
[32] HARTMANN U, SAGASSER M, MEHRTENS F, STRACKE R, WEISSHAAR B . Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB,BZIP,and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology, 2005,57(2):155-171.
doi: 10.1007/s11103-004-6910-0 pmid: 15821875
[33] ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H, MONTEFIORI M, BRENDOLIS C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E . A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell, 2014,26:962-980.
doi: 10.4161/psb.29526 pmid: 24642943
[34] PAOLOCCI F, ROBBINS M P, PASSERI V, HAUCK B, MORRIS P, RUBINI A, ARCIONI S, DAMIANI F . The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. Journal of Experimental Botany, 2011,62(3):1189-1200.
doi: 10.1093/jxb/erq344 pmid: 21041370
[35] JUN J Y, LIU C G, XIAO X R, DIXON R A . The Transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula. Plant Cell, 2015. doi: 10.1105/tpc.15.00476.
doi: 10.1105/tpc.15.00476 pmid: 26410301
[36] CAVALLINI E, MATUS J T, FINEZZO L, ZENONI S, LOYOLA R, GUZZO F, SCHLECHTER R, AGEORGES A, ARCE-JOHNSON P, TORNIELLI G B . The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology, 2015,167:1448-1470.
[37] COLQUHOUN T A, KIM J Y, WEDDE A E, LEVIN L A, SCHMITT K C, SCHUURINK R C, CLARK D G . PhMYB4 fine-tunes the floral volatile signature of Petunia × hybrida through PhC4H. Journal of Experimental Botany, 2011,62:1133-1143.
[38] OHTA M, MATSUI K, SHINSHI H, OHME-TAKAGI M . Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001,13:1959-1968.
[39] TIWARI S B, WANG X J, HAGEN G, GUILFOYLE T J . Aux/IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell, 2001,13:2809-2822.
doi: 10.2307/3871536 pmid: 11752389
[40] TIWARI S B, HAGEN G, GUILFOYLE T J . Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004,16:533-543.
doi: 10.1105/tpc.017384 pmid: 14742873
[41] CIFTCI-YILMAZ S, MORSY M R, SONG L H, COUTU A, KRIZEK B A, LEWIS M W, WARREN D, CUSHMAN J, CONNOLLY E L, MITTLER R . The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response ofArabidopsis to salinity stress. The Journal of Biological Chemistry, 2007,282:9260-9268.
[42] MITSUDA N, TODAKA D, NAKASHIMA K, YAMAGUCHI- SHINOZAKI K, OHME-TAKAGI M . Efficient production of male and female sterile plants by expression of a chimeric repressor inArabidopsis and rice. Plant Biotechnol Journal, 2006,4:325-332.
[43] KAM J, GRESSHOFF P M, SHORTER R, XUE G P . The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Molecular Biology, 2008,67(3):305-322.
doi: 10.1007/s11103-008-9319-3 pmid: 18347915
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[4] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[7] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[10] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[11] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[12] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[13] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[14] ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096.
[15] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!